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SUMMARY

Adaptation to different soil conditions is a well-regulated process vital for plant life. AtHB23 is a

homeodomain-leucine zipper I transcription factor (TF) that was previously revealed as crucial for plant sur-

vival under salinity conditions. We wondered whether this TF has partners to perform this essential func-

tion. Therefore, TF cDNA library screening, yeast two-hybrid, bimolecular fluorescence complementation,

and coimmunoprecipitation assays were complemented with expression analyses and phenotypic character-

ization of silenced, mutant, overexpression, and crossed plants in normal and salinity conditions. We

revealed that AtHB23, AtPHL1, and AtMYB68 interact with each other, modulating root development and

the salinity response. The encoding genes are coexpressed in specific root tissues and at specific develop-

mental stages. In normal conditions, amiR68 silenced plants have fewer initiated roots, the opposite pheno-

type to that shown by amiR23 plants. AtMYB68 and AtPHL1 play opposite roles in lateral root elongation.

Under salinity conditions, AtHB23 plays a crucial positive role in cooperating with AtMYB68, whereas

AtPHL1 acts oppositely by obstructing the function of the former, impacting the plant’s survival ability.

Such interplay supports the complex interaction between these TF in primary and lateral roots. The root

adaptation capability is associated with the amyloplast state. We identified new molecular players that

through a complex relationship determine Arabidopsis root architecture and survival in salinity conditions.
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INTRODUCTION

Plants’ adaptation to the environment is a finely regu-

lated process involving different biomolecules and levels

of modulation. Roots are the anchorage organs that

firstly sense changes in the soil and accordingly acceler-

ate or arrest their primary or lateral growth and devel-

opment for better adaptation, optimizing water and

nutrient uptake (de Dorlodot et al., 2007; Waidmann

et al., 2020). They enable plant adaptation to unfavor-

able environments by integrating different cues and bal-

ancing growth and development (Schachtman &

Goodger, 2008).

Phytohormones like ABA and auxin play crucial roles in

such adaptation. Under salinity stress, the growth of the pri-

mary root is inhibited concomitantly with a decrease in the

auxin content in the tip. Auxin transport toward roots is carried

out in the central cylinder by AUX1, LAX1, LAX2, and LAX3

carriers exhibiting specific expression patterns impacting the

phytohormone content in each tissue (Friml et al., 2003; P�eret

et al., 2012; Swarup & P�eret, 2012). In the tip, NaCl regulates

AUX1 and PIN2 (Liu et al., 2015). Low NaCl concentrations

(≤50 mM) generate lateral root (LR) growth, whereas higher

NaCl concentrations repress it, and these changes depend on

auxin transport and distribution (Zolla et al., 2010).
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Salinity stress and auxin content and distribution are

closely related. Starch granule synthesis happens in the

columella cells, and this process is influenced by salinity,

affecting the gravitational response (Korver et al., 2020;

Leitz et al., 2009; Zhang et al., 2019).

Molecular events modulating root architecture and

plasticity in changing and harmful conditions involve the

participation of transcription factors (TFs). These regula-

tory proteins play crucial roles, usually activating or repres-

sing entire transcriptional programs. In plants, genes

enconding TFs are abundant; about 1600 in Arabidopsis

and 1500 in rice (Oryza sativa) were identified. Such pro-

teins are classified into families and subfamilies, mainly

according to their DNA binding domains, which determine

their target specificity (Gonz�alez, 2016; Hong, 2016). For

example, in LR development, proteins from the Auxin

Response Factor (ARF) and Lateral Organ Boundaries

Domain (LBD) families have been described as master reg-

ulators (Banda et al., 2019; Friml et al., 2003; Lavenus

et al., 2013; Lee et al., 2009; Xu et al., 2020).

The homeodomain (HD) TF family is large; its members

differ in size, gene structure, localization of the HD, and

other features (Capella et al., 2016). This fact generated a

further classification of subfamilies. Among them, the HD-

Zip subfamily is composed of proteins having a leucine zip-

per (LZ) domain downstream of and adjacent to the HD and

divided into four groups (I to IV). Functional divergence

between members of subfamily I, and neofunctionalization,

was explained by different uncharacterized motifs in the N-

and C-termini of such proteins (Arce et al., 2011; Capella

et al., 2014). Among these motifs, the AHA located at the C-

terminus interacts with the basal transcriptional machinery

(Capella et al., 2014). However, deletion of the AHA motif to

avoid transactivation in yeast two-hybrid (Y2H) assays indi-

cated that the proteins still interact with others. Such was

the case of AtHB23 (AtHB23DAHA), used as bait to screen an

Arabidopsis TF library, which revealed the interaction with

four different proteins (Spies et al., 2022), including three

belonging to the large MYB family, AtMYB68 (At5g65890),

AtPHL1 (At5g29000), and AtMYB12 (At2g47460), and

AtWRKY43 (At2g46130; Spies et al., 2022).

AtHB23 is a member of group a (Henriksson

et al., 2005) or clade V (Arce et al., 2011). AtHB23 is

expressed in the lateral root primordium (LRP), acting as a

negative regulator of LR initiation, and in the tip of primary

roots involved in the salinity response (Perotti et al., 2019).

It is directly regulated by ARF7/19, and LAX3 and LBD16

are its targets (Perotti et al., 2019, 2022).

AtMYB68 is expressed during LR development and

transcriptionally induced by high temperatures (Feng

et al., 2004). However, its role in LR development remains

uncertain. It is involved in several regulatory networks con-

trolling development, metabolism, and the responses to

biotic and abiotic stresses (Dubos et al., 2010). A few

members of this family, such as AtMYB52, AtMYB53,

AtMYB56, and AtMYB87, have been linked to LR develop-

ment. Moreover, they participate in the intricate auxin-

responsive network of TFs (Lavenus et al., 2015).

AtPHL1 belongs to the 15-member MYB-CC subfamily,

which is characterized by the presence of a MYB domain

and a coiled-coiled (CC) domain (Rubio et al., 2001).

Although AtPHL1 was thought redundant with AtPHR1, the

most-studied protein of this family, such redundancy was

only partial and related to Pi starvation. PHR1 was identi-

fied as the master modulator of Pi deficiency responses,

inducing transcription of Pi starvation genes, whereas the

aberrant expression of phl1 was only mildly affected, indi-

cating a minor role in such event (Bustos et al., 2010).

Analysis of the double mutant phr1/phl1 revealed that both

genes participate in iron homeostasis regulation (Bournier

et al., 2013). Besides their participation as players in the Pi

starvation response in several plant species, the role of

MYB-CC TFs in root development or stress responses

remains largely unknown.

It was previously reported that AtPHL1 and AtHB23

are coexpressed in the pedicel–silique nodes and the funic-

ulus, interacting to promote sucrose transport (Spies

et al., 2022). In the present work, we investigated the inter-

play between AtHB23, AtMYB68, and AtPHL1 and their role

in root development. We found that AtHB23 interacts with

both MYB TFs in yeast and in plants. Moreover, these MYB

TFs interacted with each other as well. The three TFs are

coexpressed in specific cell groups and during specific

developmental stages of the primary roots and LRs. Under

control and salinity conditions, they play cooperative and

opposite roles depending on the situation.

RESULTS

The interaction between transcription factors AtHB23,

AtPHL1, and AtMYB68 was validated in yeast, in vitro, and

in planta

HD-LZ TFs harbor uncharacterized motifs at their N- and C-

termini, potentially interacting with other specific proteins

(Arce et al., 2011). Such was the case of AtHB23, used as

bait to screen an Arabidopsis TF library, allowing the iden-

tification of four putative partners. In previous work, we

corroborated the interaction between AtHB23 and AtPHR1-

like1 (hereafter, AtPHL1) by carrying out independent Y2H

and bimolecular fluorescence complementation (BiFC)

assays (Spies et al., 2022). Moreover, the functional mean-

ing of such an interaction was studied in conductive tis-

sues and siliques (Spies et al., 2022), whereas the

interaction with AtMYB68 (At5g65890) remained unex-

plored. Hence, we decided to continue the study with this

putative AtHB23 partner.

Firstly, we verified the interaction between AtHB23 and

AtMYB68 by independent Y2H and b-galactosidase activity

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16273

2 Fiorella Paola Spies et al.

 1365313x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16273 by C

bua-C
onsorcio D

e B
ibliotecas, W

iley O
nline L

ibrary on [22/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



assays (Figure 1a). To further validate the relationship in

planta, we examined their subcellular localization and deter-

mined that they colocalized in the nucleus (Figure 1b).

Moreover, their interaction was confirmed by BiFC assays in

Nicotiana benthamiana leaves (Figure 1c; Figure S1).

Given that the established relationships were indepen-

dent, AtHB23 with AtMYB68 or with AtPHL1, we wondered

whether AtMYB68 and AtPHL1 also interacted with

each other. Unfortunately, Y2H analysis between Gal4BD-

AtHB68 and Gal4BD-AtPHL1 did not succeed because

Gal4BD-AtMYB68 and Gal4BD-AtPHL1 showed strong tran-

scription activities in yeast. Therefore, we performed a

BiFC assay using VENUS-N:AtPHL1 and VENUS-C:

AtMYB68 with positive results (Figure 1c; Figure S1). Fur-

thermore, these proteins colocalized in the nucleus when

tobacco leaves were cotransformed (Figure 1c). A

Figure 1. The transcription factors AtHB23, MYB68, and PHL1 interact with each other in yeast and in planta.

(a) Y2H assay performed with BD-AtHB23DAHA + AD-MYB68 and the corresponding controls on selection media (SD–Trp,Leu [�TL], SD�Trp,Leu,His [�TLH],

and �TLH with 0.1 mM 3 AT [3-Amino-1,2,4-triazole]). On the right panel, b-galactosidase activity in miller units is shown. BD, Gal4 DNA binding domain; AD,

Gal4 activation domain. BD-HY5 + AD-STO and pDBLeu + pAD-502 were used as positive and negative controls, respectively. In AtHB23DAHA, the C-terminal

AHA domain was removed (Capella et al., 2014). (b) Colocalization assay using Nicotiana benthamiana leaves. Agrobacterium tumefaciens harboring 35S:

AtHB23:GFP and 35S:AtMYB68:RFP were infiltrated and pictures were taken 2 days after with a confocal microscope. GFP, GFP image; RFP, RFP image; Merge,

merge of fluorescence and light images. (c) Mutual interactions between AtHB23, AtMYB68, and AtPHL1 in planta. Agrobacterium tumefaciens transformed with

N-YFP:AtHB23 and C-YFP:AtMYB68, with N-YFP:AtHB23 and C-YFP:AtPHL1, with N-YFP:AtPHL1, and with C-YFP:AtMYB68 were used. NLS-RFP was used for

cotransformation as a nuclear localization signal. (d) Coimmunoprecipitation assay in vivo. AtHB23 carrying a Myc tag (MYBC-HB23) was coexpressed with HA-

tagged AtMYB68 (HA-AtMYB68) and AtPHL1 (HA-AtPHL1). The right panel shows the interaction between Myc-AtHB23 and HA-AtPHL1.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
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reciprocal combination of the three TFs constructed in the

N-VENUS and C-VENUS vector sets resulted in crossed

interactions with each other (Figure S1). Next, we per-

formed coimmunoprecipitation assays to confirm the

obtained results by an independent method (Figure 1d).

Total protein extracts from tobacco plants transiently trans-

formed with Myc-AtHB23 plus HA-AtMYB68 and Myc-

AtHB23 plus HA-AtPHL1 were pulled down with anti-Myc

antibodies (Figure 1d, left panel). Both pairs coimmunopre-

cipitated, supporting the above described results

(Figure 1d, right panel).

AtMYB68 and AtPHL1 are coexpressed with AtHB23 in

specific tissues and during specific developmental stages

of root development

To test the functional role of the interaction between these

three TFs, we first investigated the expression patterns of

AtMYB68 and AtPHL1 in roots, the organ in which AtHB23

was deeply investigated, associated with developmental and

salinity responses (Perotti et al., 2019, 2020, 2022). For this

purpose, we used 8-day-old transgenic plants carrying the

constructs prAtMYB68:GUS and prAtPHL1:GUS. AtPHL1 was

expressed in the root tip and at the base of the LRP in stages

V to VII (Malamy & Benfey, 1997) and in the tip of emerged

LRs. GUS activity driven by the AtMYB68 promoter was evi-

dent in vascular tissue and in developing LRPs and LRs (Fig-

ure 2; Figure S2). AtMYB68 and AtPHL1 coincided with

AtHB23 at the base of LRPs, hinting at a coordinated role of

these interacting TFs in LR development (Figure S3). Later,

AtMYB68 expression in LR development was restricted to the

surrounding cells of the primordium, resembling that of other

auxin-responsive genes involved in this developmental con-

text (Figure 2; Marin et al., 2010).

AtMYB68 and AtPHL1 play a role in primary and lateral

root development together with AtHB23

Given the expression patterns and interactions described

above, we wondered whether regulation at the transcriptional

level between these genes takes place in specific root tissues.

To elucidate this question, we obtained AtMYB68 silenced

(amiR68; no mutants were available in the Col-0 background)

and AtMYB68 overexpression (AT68) plants with altered tran-

script levels (Figure S4). Transcript levels of AtHB23, AtPHL1,

and AtMYB68 were evaluated in amiR23, phl1, amiR68, AT23,

ATPHL1, and AT68 genotypes (Figure S5). Notably, except for

AtMYB68, showing very mild downregulation in phl1 and

amiR23 roots, the transcript levels were not altered, either in

mutants or in overexpression plants, indicating that the contri-

bution to transcriptional regulation is not relevant in this case.

Considering the tissue-specific and subcellular colocali-

zation of AtMYB68, AtPHL1, and AtHB23, plus their interac-

tion in yeast and in planta, we investigated how these

genes affect root architecture. The number of initiated and

emerged LRs in amiR68 plants and phl1 mutants was evalu-

ated. AtMYB68 silencing did not affect primary root length

but significantly reduced the LRP density (Figure 3a), the

opposite phenotype to that of amiR23 plants (Perotti

et al., 2019). Phl1 mutants and amiR23 plants had longer pri-

mary roots, whereas PHL1 overexpressors (ATPHL1)

showed the opposite phenotype (Figure 3c). On the other

hand, phl1 mutants did not exhibit significant differences in

the number of LRPs or LRs. AtMYB68 overexpressors

showed a similar phenotype (Figure S6).

Remarkably, relative total LR length was diminished in

amiR68 plants and significantly augmented in phl1

mutants, like in amiR23 plants (Figure 3b). To test if the dif-

ferences between the three genotypes in the relative total

LR length were due to changes in the cell number or the

cell size, LR root tips were analyzed by confocal micros-

copy. The analysis revealed fewer cells in amiR68 plants in

the transition zone, whereas phl1 and amiR23 mutant

plants showed the opposite phenotype (Figure 3d,e).

Altogether, the results indicate a complex interplay

between the three partners at the base of the LRP and the

LR tip.

Auxin induces AtMYB68 expression impacting the

hormone distribution in the root

Given that AtHB23 expression in LRs is regulated by auxin

and this TF directly modulates the gene expression of the

Figure 2. AtMYB68 and AtPHL1 genes are expressed in primary and lateral roots.

(a, b) Expression of AtPHL1 (a) and AtMYB68 (b) in the primary root, evaluated with prAtPHL1:GUS and prAtMYB68:GUS transgenic plants. (c, d) Expression pat-

tern of the same genes during lateral root development. I to VII represent different stages of lateral root primordium (LRP) development; LR indicates emerged

roots as described by Malamy and Benfey (1997). The black bar indicates 50 lm.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
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auxin carrier LAX3, we wondered whether its partners

were also regulated by this hormone. PrMYB68:GUS plants

were treated with 1 lM IAA and analyzed by histochemistry

and reverse transcriptase quantitative PCR (RT-qPCR). Both

assays indicated a strong induction of this gene by auxin

in the root vascular system (Figure 4a,b). We also tested

Figure 3. AtMYB68 and AtPHL1 modulate root architecture.

(a) Relative main root length in 8-day-old amiR68 mutants compared with the Col-0 control. The relative density of LRPs or LRs was calculated as the number of

LRPs or LRs per mm of the primary root, and the relative density of total lateral roots (LRPs + LRs) was also calculated. The values were normalized to those in

the control Col-0. For root length, 100% = 18.27 mm; for LRP density, 100% = 0.64 LRPs mm�1; for LR density, 100% = 0.25 LRs mm�1; and for total RL density,

100% = 0.88 LRs mm�1. (b) Total LR length of Col-0 and amiR68, phl1, and amiR23 mutants. In the left panel, 1 = 13.03 mm, and in the right panel, 1 = 0.67. (c)

Time course of root elongation of phl1 and OEPHL1 relative to Col-0 plants; 100% = 8.78, 15.85, 36.27, and 40.97 mm (left panel) and 100% = 7.85, 16.95, 27.58,

and 37.52 mm (right panel). (d) Number of cells in the transition zone of Col-0, amiR68, phl1, and amiR23 mutants. (e) Illustrative confocal microscopy picture of

root tips of Col-0 and amiR68, phl1, and amiR23 mutants. Assays were repeated three times with n = 15 per genotype. Error bars represent SEM. Asterisks indi-

cate significant differences as determined using Student’s t-test (**P < 0.01, ***P < 0.001, ****P < 0.0001).

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
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the effect of auxin on the expression in the root tip of

AtPHL1 and AtHB23. AtPHL1 did not exhibit significant dif-

ferences in the presence of IAA, whereas AtHB23 showed

strong induction in the vascular system (Figure S7). In view

of the impact of IAA on AtMYB68, we used DR5:GUS

plants to cross them with amiR68 mutants. Notably, DR5

expression in the primary root tip disappeared in the

crosses, indicating repression of the hormone transport to

this tissue. The effect was similar in LR tips, whereas DR5

staining increased in the LRPs (Figure 4c,d). To elucidate

the influence of AtPHL1, we generated new crosses

between DR5:GUS and phl1 mutants. In this case, the

expression in the tips remained unaltered, whereas it dis-

appeared from the vascular system (Figure 4e). Regarding

auxin carriers, AUX1 appeared strongly induced by

AtMYB68 because the crosses prAUX1:GUS 9 amiR68

showed significantly less staining than prAUX1:GUS plants

(Figures 4f,g).

AtMYB68 and AtPHL1 play opposite roles under salinity

conditions

Considering the impact of the interaction between

AtMYB68, AtPHL1, and AtHB23 in root architecture and

given the positive role of AtHB23 in salinity conditions, we

wondered whether these MYB TFs were necessary for such

a response. To answer this question, we analyzed the

expression of these genes in salinity conditions. Trans-

genic plants carrying prAtMYB68:GUS and prAtPHL1:GUS

Figure 4. AtMYB68 expression is induced by IAA and alters auxin distribution.

(a) GUS histochemistry of 8-day-old prAtMYB68:GUS roots (four independent lines: #2, #9, #15, and #21) grown in control conditions (left panel) or treated with

1 lM IAA (right panel) for 12 h. The black bar indicates 50 lm. (b) Transcript levels of AtMYB68 in 7-day-old roots of seedlings grown in standard conditions or

with 1 lM IAA for 12 h. The value was normalized to that in the control Col-0. (c–e) GUS histochemistry of 8-day-old roots of DR5:GUS (c), DR5:GUS 9 amiR68

(d), and DR5:GUS 9 phl1 (e) genotypes. (f) Transcript levels of GUS in 8-day-old DR5:GUS and DR5:GUS 9 amiR68 roots of seedlings. The values were normal-

ized to the control DR5:GUS. (g, h) prAUX1:GUS and prAUX1:GUS 9 amiR68 roots. (i) Transcript levels of GUS in 8-day-old prAUX1:GUS and prAUX1:GUS 9

amiR68 roots. Value were normalized to the control prAUX1:GUS. Asterisks indicate significant differences (post hoc Tukey test). PR, primary root; LRP, lateral

root primordium; LR, emerged lateral roots. The black bar indicates 50 lm. Assays were repeated three times with n = 15 per genotype.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
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were subjected to NaCl treatment and analyzed by histo-

chemistry. AtPHL1 was strongly induced in the root tip and

the vascular system (Figure 5a), whereas prAtMYB68:GUS

plants did not exhibit significant differences in GUS stain-

ing. However, AtMYB68 transcript levels were significantly

increased in Col-0 plants treated with NaCl (Figure 5b). To

test whether the modulation of the expression of these

genes by NaCl impacts mutant and overexpressor pheno-

types, we counted survivors and dead plants after 9–
15 days of treatment; amiR68 and ATPHL1 plants showed

similar sensitive phenotypes (Figure 5c). Moreover,

ATPHL1 plants arrested the growth of the primary root,

whereas phl1 mutants showed the opposite behavior

(Figure 5d). Considering total LR length, these mutants

treated with NaCl resembled the Col-0 genotype, whereas

amiR68 and amiR23 seedlings, which in normal conditions

exhibited shorter LRs, were less sensitive than the Col-0

under salinity considering this trait (Figure 5e).

The adaptation ability of AtHB23, AtPHL1, and AtMYB68

mutants, overexpressors, and crossed plants to salinity is

correlated with the starch granule state in the root tip

Root gravitropism depends on the auxin gradient between

the upper and lower sides (Zhang et al., 2019). In the colu-

mella cells, starch aggregates are formed, named statoliths

or amyloplasts (Leitz et al., 2009). A saline medium severely

affects the auxin gradient and consequently amyloplast for-

mation. AtHB23, AtPHL1, and AtMYB68 mutant and overex-

pressor plants differentially responded to salinity stress

(Figure 5). To understand this, we analyzed starch content

by staining the root tips of these plants with Lugol solution

(Figure 6). Seedlings were grown in normal conditions for

5 days (Figure 6a) and then placed in 150 mM NaCl for 7–8 h

(Figure 6b). It was previously shown that amiR23 plants sig-

nificantly reduced their starch content after this treatment

(Perotti et al., 2022; Figure 6b). As expected, amiR68 and

Figure 5. AtMYB68 has a positive role in the response to salinity, whereas AtPHL1 is a negative regulator of such response.

(a) GUS histochemistry of 8-day-old prAtPHL1:GUS-1 roots (upper panel) and after treatment with 100 mM NaCl (lower panel). (b) Transcript levels of AtMYB68

in 7-day-old roots of seedlings grown in standard conditions or with 100 mM NaCl for 12 h. Values were normalized to the Col-0 control. The asterisk indicates a

significant difference (post hoc Tukey test). (c) Survival rate of Col-0, phl1, ATPHL1, amiR68, and AT68 plants placed in plates with 100 mM NaCl 3 days after

sowing for 9–15 additional days. Red columns indicate the percentage of dead plants and green columns indicate the percentage of survivors. (d) Time course

of the main root length evaluated in Col-0, OEPHL1 (three independent lines: #14, #16, and #21), phl1 (two independent lines: #1 and #2) mutant, and amiR23

seedlings grown in 75 mM NaCl. Quantitative measurements were performed from day 4 after sowing until day 10. (e) Total LR length of Col-0, phl1, amiR68,

and amiR23 mutants grown in control conditions or treated with 75 mM NaCl. In the left panel, 100% = 8.63 mm; in the middle panel, 100% = 13.03 mm; and in

the right panel, 100% = 7.66 mm.

The assays were repeated at least three times with n = 15 per genotype. The black bar represents 1 cm. Different letters indicate significant differences (Tukey

test, P < 0.01). Error bars represent SEM.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16273
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ATPHL1 genotypes exhibited the same phenotype

(Figure 6b). The phenotype of amiR68 seedlings was res-

cued in plants crossed with the AT68 genotype, indicating

that the silencing of this gene was responsible for the NaCl-

enhanced sensitivity (Figure 6b). Afterward, one half of the

seedlings were transferred back to MS medium while the

other half remained in NaCl. Like AT23 plants, phl1 and

AT68 roots slowly adapted to the saline medium and

Figure 6. The adaptation ability to salinity conditions depending on AtHB23, AtPHL1, and AtMYB68 levels is correlated with the starch granule stage in the root

tip.

(a) Illustrative pictures of 5-day-old root tips of Col-0, phl1, OEPHL1, amiR68, AT68, amiR23, and AT23 seedlings grown in normal conditions stained with Lugol

solution. (b) After 8 h of treatment with 150 mM NaCl. (c, d) The roots were transferred to normal conditions (c) or maintained in 150 mM NaCl for additional

72 h (d). (e–h) The same analysis was carried out with the crosses phl1 9 amiR23, phl1 9 AT23, OEPHL1 9 AT23, amiR68 9 amiR23, and amiR68 9 AT23. (e)

Control conditions. (f) After 8 h in 150 mM NaCl. (g) After 8 h in 150 mM NaCl + 72 h in MS medium. (h) After 8 h + 72 h in 150 mM NaCl. The black bar repre-

sents 50 lm.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16273
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recovered their starch granules as they did in the NaCl-free

medium (Figure 6c,d), whereas amiR68 and ATPHL1 geno-

types were unable to restore a healthy phenotype

(Figure 6c,d; Figure S8).

Salinity and osmotic stresses are closely related.

Moreover, plant transfer from the control condition to

medium containing 150 mM NaCl can cause an osmotic

shock. To corroborate or discard that the phenotypes

observed in mutants and overexpressors were due to salin-

ity and/or osmotic stress, we analyzed starch amyloplasts

after treatment with 150 mM mannitol (Figure S9).

None of the genotypes with altered levels of AtHB23,

AtPHL1, or AtMYB58 was affected by this treatment, indi-

cating that the observed effects were salinity-specific.

Given these results, we stated the hypothesis based

on the availability of AtHB23 to exert a positive action deal-

ing with salinity, avoided by AtPHL1 or enhanced by

AtMYB68. To test this, we obtained crossed plants and

assayed their behavior by performing the same assay

described above. amiR23 9 amiR68 plants lost their amy-

loplasts and could not recover them after 72 h in normal

conditions (Figure 6e–h). Notably, amiR68 9 AT23 plants

did not lose their starch granules after the NaCl treatment,

suggesting that the overexpression of AtHB23 compen-

sated somehow for the low availability of AtMYB68 to

cooperatively interact. On the other hand, phl1-1 9 amiR23

seedlings behaved like the amiR23 genotype, supporting

the essential role of AtHB23 in the positive response to

salinity. In ATPHL1 9 AT23 crosses, the picture was inter-

mediate between that of the parent genotypes (Figure 6e–
h).

Regarding these results, we evaluated transcript levels

of genes encoding key enzymes participating in starch syn-

thesis and degradation in phl1 and amiR68 plants. The

transcript levels of ADG1 and PGM, which are involved in

starch synthesis, did not significantly change, except in

amiR68 roots, where they were slightly reduced in salinity

conditions and after recovery, respectively (Figure S10).

The gene expression of BAM1, participating in degrada-

tion, was induced in amiR68 plants in salinity conditions,

whereas phl1 mutants behaved similarly to the WT and

GWD did not show differences. These results indicate that

starch turnover was altered by the levels of AtMYB68 and

AtPHL1 (Figure S10). However, they alone cannot explain

the absolute lack of starch observed in amiR68 plants and

the amyloplast integrity in phl1 mutants, indicating that

other mechanisms must also be modulating this process.

DISCUSSION

Root plasticity is crucial for plant adaptation to different soil

conditions and involves the growth or arrest of the primary,

lateral, and high-order roots. These events are finely modu-

lated by many biomolecules, such as TFs and phytohor-

mones. Many detailed studies reported the functional

characterization of TFs in LR initiation, emergence, and elon-

gation, as well as in primary root growth (Banda et al., 2019).

These studies were performed in normal growth conditions

and under different stress factors (Ambastha et al., 2020;

Verma et al., 2022). However, information on the involvement

of an individual TF in the determination of global architecture,

including primary roots and LRs, is less abundant. Here, we

reported how three TFs, one HD-Zip TF and two MYB family

members, interact to activate or repress primary root and LR

development, depending on the environmental conditions.

AtHB23, the most-studied protein among the three, was

shown to be non-redundant with its putative paralog AtHB13

in roots (Perotti et al., 2019). AtPHL1 was studied only related

to Pi starvation response, in which its paralogue AtPHR1 has

the main role (Bustos et al., 2010). AtMYB68 is expressed in

the root pericycle of the Ler ecotype, responding to environ-

mental cues (Feng et al., 2004), and is also detected in the

Arabidopsis root protein expression landscape (Petricka

et al., 2012). Its role in the reproductive stage was also stud-

ied, and it was found to affect seed yield and tolerance to

abiotic stress factors including drought and high tempera-

tures (Deng et al., 2020).

Several members of the HD-Zip I family are expressed

in different root tissues (Perotti et al., 2021), and a few

were functionally characterized as being involved in root

development and the response to stress (Miao et al., 2018;

Mora et al., 2022). MYB-CC proteins were studied in several

species, and were found to be associated with the

response to Pi starvation (Bai et al., 2019; Bhutia

et al., 2020). The large MYB family has many well-

characterized members acting in roots. For example,

AtMYB77 was shown to regulate a subset of auxin-

responsive genes during LR development and interacted in

vitro with ARF proteins. The knockout mutant atmyb77

exhibits a lower density of LRs than the WT (Shin

et al., 2007). Also, AtMYB93 is an auxin-inducible gene act-

ing as a negative regulator of LR development in Arabidop-

sis, being part of an auxin-triggered negative feedback

loop, ensuring that LRs only develop when required (Gibbs

et al., 2014). Finally, AtMYB36 was reported as a regulator

of the transition from proliferation to differentiation in the

endodermis. The characterization of atmyb36 mutants sug-

gested that this TF acts as a positive regulator of differenti-

ation and a negative regulator of proliferation in root

meristems (Liberman et al., 2015).

Although there are significant differences in root devel-

opment depending on the ecotype (Perotti et al., 2020), the

expression pattern reported in Ler plants (Feng et al., 2004)

was similar to the one described in the present manuscript.

There is abundant literature about the transcriptional,

post-transcriptional, and post-translational regulation of TFs,

influencing their stability or activity (Deribe et al., 2010; Nel-

son & Millar, 2015; Zhang et al., 2021; Zhu, 2016). However, it

is hard to find literature describing TFs functioning in both

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16273
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primary root and LR development and also about the associa-

tion between members of different families acting coopera-

tively or in opposite ways by protein–protein associations. TF

partitioning between the nucleus and the cytoplasm is an

essential mechanism regulating developmental events and

adaptation (Allen & Strader, 2021). Such is the case of the

interaction between the HD-Zip I TF HaHB11 from Helianthus

annuus and AtHB7 from Arabidopsis, modulated by Kine-

sin13B (Miguel et al., 2020). Despite this scarcity, it was

recently reported that the OsFTIP6–OsHB22–OsMYBR57 mod-

ule regulates drought tolerance in rice (Yang et al., 2022).

Notably, OsHB22 is an HD-Zip I TF previously reported as a

negative regulator in ABA-mediated drought and salt toler-

ance in rice (Zhang et al., 2012). Rice mutants in this gene

behaved better under drought stress, showing no yield pen-

alty (Zhang et al., 2012). OsMYBR57 is a MYB-related protein;

its mutant displayed a drought-sensitive phenotype. Yang

et al. (2022) revealed that it interacts with the HD-Zip OsHB22

and both TFs together modulate the expression of several

bZIP TFs participating in the drought response. Another

example is the interaction in the nucleus between XPO1-

interacting WD40 protein 1 (XIW1) and ABA INSENSITIVE 5

(ABI5), modulating the ABA response (Xu et al., 2019).

Coexpression of TFs in the same tissue, during the

same developmental stage, and under the same environ-

mental conditions is an absolute requirement for interac-

tion. We showed that AtHB23, AtMYB68, and AtPHL1 are

expressed in the primary root tip and during specific

stages of LR development (Figure 2). Remarkably, amiR68

mutants exhibited fewer LRPs, the opposite phenotype of

amiR23 plants (this paper and Perotti et al., 2019), suggest-

ing that AtHB23 needs AtMYB68 to exert its function.

AtPHL1 does not participate in LR initiation (Figure S6) but

it does participate in LR elongation, having a cooperative

role with AtHB23, opposing that of AtMYB68, at least in

normal conditions (Figure 3). Regarding primary root

growth, AtMYB68 seems absent, whereas AtPHL1 and

AtHB23 exhibit opposite roles (Figure 3).

AtMYB68 was induced by auxin in the vascular sys-

tem. Although we could not detect its expression in the

root tip of prAtMYB68:GUS seedlings, it seriously affected

auxin distribution in this tissue, as shown by the DR5:

GUS 9 amiR68 cross (Figure 4). AtPHL1 did not affect

auxin levels in the tips of primary roots and LRs, but in the

vascular system of these tissues. Among auxin carriers,

AUX1 is involved in LR initiation and LAX3 in LR emer-

gence (Marchant et al., 1999, 2002). AtHB23 regulates

LAX3, whereas AtMYB68 modulates AUX1 expression in

primary roots and LRs.

The three TFs are induced in salinity conditions exert-

ing cooperative (AtHB23 and AtMYB68) and opposite

(AtPHL1) functions (Figure 5). Like amiR23, amiR68 and

ATPHL1 plants showed a reduced survival capacity in

150 mM NaCl, accompanied by a lower ability to elongate

primary roots exploring a less saline medium. Regarding

LR elongation, amiR68 plants were less penalized in NaCl

than in control conditions, whereas phl1 mutants lost their

more elongated phenotype.

Under abiotic stress conditions, the survival ability

was correlated with the conservation or degradation of

amyloplasts in the columella cells (Takahashi et al., 2003).

Notably, LRs survive lethal salinity longer than the primary

root (Ambastha et al., 2020). AtHB23 silencing provoked

the loss of starch granules (Perotti et al., 2022). After ana-

lyzing amyloplasts in single mutants and crosses, we pro-

pose that since AtHB23 is necessary to deal with salinity

and silenced plants cannot survive in such conditions, the

action of this gene is fine-tuned. The phenotype of the

crosses under salinity conditions supported this interpreta-

tion (Figure 6). AtMYB68 interaction is required for this

Figure 7. Proposed model for the interactive action of AtHB23, AtPHL1, and AtMYB68 in normal and salinity conditions.

(a, b) Proposed model for the roles of AtHB23, AtPHL1, and AtMYB68 in primary and lateral root development in control (a) and salinity (b) conditions. Arrows

between actors indicate direct regulation.

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16273
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function, and AtPHL1 kidnaps both TFs by protein–protein
interactions to modulate such response (Figure 7).

Altogether, our results indicate a fine regulation of pri-

mary root and LR development in normal growth and in

salinity conditions by the interplay between AtHB23,

AtMYB68, and AtPHL1 (Figure 7).

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis thaliana plants (accession Col-0) were grown on Klas-
mann Substrate N° 1 compost (Klasmann-Deilmann GmbH, Geeste,
Germany) in a growth chamber at 22–24°C under long-day (16/8 h
light/dark cycles) conditions, with a light intensity of approximately
120 lmol m�2 sec�1 in 8 9 7 cm pots. Four plants were planted per
pot unless stated otherwise.

Transgenic plants carrying AUX/LAX promoters fused to GUS,
which were previously described (prAUX1:GUS: Marchant et al., 1999,
2002; prLAX1:GUS: Bainbridge et al., 2008; and prLAX3:GUS: Swarup
et al., 2008), were generously gifted by Dr. Swarup’s lab.

Arabidopsis mutant lines phl1-1 and -2 (SAIL_731_B09) and
(SALK_079505.20.10) and DR5:GFP transgenic plants were
obtained from the Arabidopsis Biological Resource Center (ABRC)
stock. AtHB23 silenced plants (amiR23), prAtPHL1:GUS,
prAtHB23L:GUS, and prAtHB23S:GUS were previously described
(Perotti et al., 2019; Perotti et al., 2022; Spies et al., 2022).

Genetic constructs used for plant transformation

35S:AtMYB68: The vector pENTER223 harboring the coding
sequence of AtMYB68 (G22683) was obtained from the ABRC and
recombined into the pFK247 plasmid using the Gateway� (Invitro-
gen, Carlsbad, CA, USA) system.

35S:AtMYB68:GFP: Using as probe the construct pENTER223-
AtMYB68 (see above), the AtMYB68 coding sequence was ampli-
fied with specific oligonucleotides (Table S1). The amplification
product was introduced in the pGEM T-easy vector and then sub-
cloned in the plasmid pENTER3C between the BamHI and XbaI
sites. By Gateway� (Invitrogen) recombination, it was finally
cloned in the destination vector pFK248.

35S:amiR68: The design of amiRMYB68 was carried out with
WMD3 software (Web MicroRNA Designer; wmd3.weigelworld.
org) (Schwab et al., 2006). Four oligonucleotides (Table S1) and
natural miR319a precursor (already cloned in pNB47) were used in
an overlap PCR. The amplification product was cloned in the
pGEM T-easy vector and then in the pENTER3C previously
digested with BamHI and EcoRI. Finally, amiRMYB68 was intro-
duced in the pKGWFS7 destination plasmid using the Gateway�

(Invitrogen) recombination system.

PrMYB68:GUS:GFP: A 2377-bp fragment upstream of the
ATG codon corresponding to the promoter region of AtMYB68
was amplified by PCR using genomic DNA and specific oligonu-
cleotides (Table S1). The PCR product was cloned into the pGEM-
T easy vector, digested with BamHI and XhoI, and finally recom-
bined into the pKGWFS7 destination plasmid using the Gateway�

(Invitrogen) system.

Genetic constructs used for BiFC and colocalization

analyses

For PCR, cDNA was used as a template. Primers are listed in
Table S1.

AtHB23:GFP, Myc-AtHB23, Venus-N:AtHB23, and Venus-C:

AtHB23: A 765-bp DNA fragment upstream the ATG codon (trans-
lation start site [TSS]) of the AtHB23 gene was amplified with spe-
cific oligonucleotides (Table S1) and cloned into the pMDC83
(Ka+) Gateway� vector system (Invitrogen). The Myc-pBA
vector having a 6×Myc tag at the N-terminal, the pDEST-GWVYNE
vector, and the pDEST-GWVYCE vector (GATEWAY-BiFC vectors;
Gehl et al., 2009).

MYB68:RFP, HA-AtMYB68, Myc-AtMYB68, Venus-N:

AtMYB68, and Venus-C:AtMYB68: A 1122-bp fragment starting
from the ATG codon (TSS) of the AtMYB68 gene was amplified by
PCR using cDNA and specific primers (Table S1). The PCR product
was cloned into the pH7RWG2 (Spec+) Gateway� vector system
(VIB-UGent Center for Plant Systems Biology, Zwijnaarde, Bel-
gium), the HA-pBA vector harboring a 39HA tag at the N-terminal,
and the HA-pBA vector, the pDEST-GWVYNE, and pDEST-GWVYCE
vectors.

HA-AtPHL1, Venus-C:AtPHL1, and Venus-N:PHL1: A 1239-bp
fragment starting from the ATG codon (TSS) of the AtPHL1 gene
was amplified by PCR and cloned into the HA-pBA vector, the
pDEST-GWVYCE vector, and the pDEST-GWVYNE (Ka+) vector.

NLS-RFP: The plasmid harboring a nuclear localization signal
(NLS)-tagged RFP gene (NLS-RFP) was obtained from Prof. Sang
Yeol Lee’s lab (Gyeongsang National University, Jinju).

Venus-N:AtHY5: A 540-bp fragment starting from the ATG
codon (TSS) of the AtHY5 gene was amplified and cloned into the
pDEST-GWVYNE vector.

Venus-C:AtSTO: A 744-bp fragment downstream of the ATG
codon (TSS) of the AtSTO gene was amplified by PCR and cloned
into the pDEST- vector.

AD:PHL1, BD:PHL1, AD:AtHB23DAHA, and BD:AtHB23DAHA,
which were used for Y2H assays, were previously described (Spies
et al., 2022).

Arabidopsis stable transformation

Stable transformation of Arabidopsis plants was performed via a
floral dip procedure as previously described (Clough & Bent, 1998).
Agrobacterium tumefaciens strain LBA4404 carrying the con-
structs described below was used for transformation. Selection
was performed on the basis of their resistance to Basta
(50 mg L�1) or kanamycin (50 mg L�1).

Transgene insertions were verified by PCR using genomic
DNA as a template and specific oligonucleotides (Table S1).
Three/four positive independent lines were further reproduced
and homozygous T3 and T4 plants were used for further analyses.

Plant crosses

Mutant plants phl1-1, phl1-2, amiR68-1, and amiR68-5 were fertil-
ized with pollen from prAUX1:GUS, prLAX1:GUS, and DR5:GUS
genotypes and then selected based on their resistance to the corre-
sponding chemical, depending on the donor (kanamycin resistance
for the constructs bearing the promoters of LAX1 and AUX1).

AmiR23 and AT23 plants were fertilized with pollen from
phl1-1, phl1-2, OEPHL1-14, OEPHL1-16, amiR68-1, and amiR68-5
genotypes, whereas AT68-5 plants were fertilized with pollen from
amiR68-1 and amiR68-5 genotypes.

Yeast two-hybrid screening

A truncated version of AtHB23 (AtHB23DAHA; Capella et al., 2014)
was used as bait for Y2H screening as previously described (Spies
et al., 2022).

� 2023 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), doi: 10.1111/tpj.16273
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Transient transformation of N. benthamiana for

colocalization and BiFC analyses

Nicotiana benthamiana leaves were transformed by infiltration with
a syringe containing 10 mM MES, 0.1 mM acetosyringone, 10 mM

MgCl2, and cultured A. tumefaciens GV3101 (at an OD600 of 0.3) pre-
viously transformed with the constructs indicated in the corre-
sponding figures and mixed with A. tumefaciens cells transformed
with the silencing inhibitor p19. Two days after infiltration, samples
were harvested starting 2 h before the end of the day and used for
visualization under a confocal microscope (FLUOVIEW FV3000
Olympus confocal laser microscope). Samples were excited using a
514-nm laser, and emission was detected using two channels: 520–
530 nm for Venus and 540–600 nm for lignin autofluorescence.

Coimmunoprecipitation

Nicotiana benthamiana leaves were infiltrated with A. tumefaciens
GV3101 at a final OD600 of 0.5. Proteins were extracted using a
buffer containing 100 mM Tris–HCl (pH 7.4), 150 mM NaCl, 1 mM

EDTA (pH 8.0), 0.1% NP40, and protease inhibitor cocktail
(5 lg ml�1 Leupeptin, 1 lg ml�1 Aprotinin, 5 lg ml�1 Antipain,
1 lg ml�1 Pepstatin A, 5 lg ml�1 Chymostatin, 3 mM DTT, 100 lM
PMSF, 1.5 mM Na3VO4, 2 mM NaF, and 50 lM MG132), and coim-
munoprecipitated using the DynabeadsTM Protein A Immunopre-
cipitation Kit (InvitrogenTM, Catalog No. 10006D) with mouse
monoclonal anti-Myc tag (9B11, Cell Signaling Technology�, Dan-
vers, MA, USA, Catalog No. 2276S). Proteins were separated by
10% SDS-PAGE and transferred to Immobilon�-P PVDF mem-
branes (Merck KGaA, Darmstadt, Germany, Catalog No.
IPVH00010) using a Trans-Blot� TurboTM Transfer System (Bio-Rad,
Hercules, CA, USA, Catalog No. #1704150). The proteins were
detected by incubating the membranes with horseradish peroxi-
dase (HRP)-conjugated anti-HA (Roche, Basel, Switzerland, prod-
uct code: 12013819001) and HRP-conjugated mouse monoclonal
anti-Myc tag (9B11, Cell Signaling Technology�, Catalog No.
2040S) for 2 h at room temperature. Images were taken using a
ChemiDocTM MP Imaging System (Bio-Rad, Catalog No. 12003154).

Root phenotyping

For root phenotyping, seeds (Col-0, mutant, and overexpressor
plants) were surface sterilized and placed at 1 cm from the top of
square Petri dishes (12 9 12 cm) for 3 days at 4°C before placing
the dishes in the growth chamber at 22–24°C for five additional
days under long-day (16/8 light/dark cycle) conditions with a light
intensity of approximately 110–120 lmol m�2 sec�1. The growth
medium was Murashige–Skoog medium supplemented with vita-
mins (MS, PhytoTechnology LaboratoriesTM, Lenexa, KS, USA).

For root surveys, photograph series were taken and analyzed
with ImageJ and RootNav software.

Salinity and osmotic stress treatments

Seedlings were grown in normal conditions as described above
and then placed in plates with the same medium supplemented
with NaCl (concentrations indicated in the corresponding figure
legends). Primary roots were analyzed after additional 5 days of
growth when seedlings were 8 days old. To analyze the kinetics of
primary root elongation, root length was measured every 2 days
until day 10.

The survival experiment was performed with plants placed in
100 mM NaCl after 3 days of growth in normal conditions. The
counting was done on different days as indicated in the corre-
sponding figure legend.

For amyloplast observation, 5-day-old plants grown in con-
trol conditions were treated for 8 h with 150 mM NaCl. After that,
half of the plants were transferred to control conditions and the
other half remained in the saline medium for an additional 72 h.
Osmotic treatments were carried out essentially as described
above but with 150 mM mannitol instead of 150 mM NaCl.

GUS histochemistry

In situ assays of GUS activity were performed essentially as
described by Jefferson et al. (1987) with little modifications
(Ribone et al., 2015).

RNA isolation and expression analyses by RT-qPCR

Total RNA was isolated for real-time RT-PCR analysis from rosette
leaves of 25-day-old plants or 5–8-day-old roots using TRIzol�
reagent (Invitrogen) according to the manufacturer’s instructions.
Total RNA (1 lg) was reverse-transcribed using oligo(dT)18 and M-
MLV reverse transcriptase II (Promega, Fitchburg, WI, USA).

qPCR was performed using an Mx3000P Multiplex qPCR sys-
tem (Stratagene, La Jolla, CA, USA) as described before (Mora
et al., 2022) using the primers listed in Table S1. Transcript levels
were normalized by applying the 2�DDCt method. Actin transcripts
(ACTIN2 and ACTIN8) were used as internal standards. Three bio-
logical replicates, obtained from three individual plants and tested
in duplicate, were used to calculate the standard deviation.

Amyloplast staining and light microscopy observation

To observe the amyloplasts in the columella cells of the root tips,
15–20 5-day-old Arabidopsis roots were dipped in Lugol staining
solution (Sigma-Aldrich, Darmstadt, Germany) for 8–10 min,
washed with distilled water, and then observed using an Eclipse
E200 Microscope (Nikon, Tokyo, Japan, https://www.nikon.com/)
equipped with a Nikon Coolpix L810 camera.

For salinity or osmotic treatments, seedlings were transferred
to Petri dishes with MS medium supplemented with 150 mM NaCl
or 150 mM mannitol for 7–8 additional hours, according to the
method described by Sun et al. (2008).

Fluorescence microscopy

For confocal imaging, roots from different genotypes were treated
with 10 lg ml�1 propidium iodide, rinsed with a drop of distilled
water, and examined and imaged using a confocal inverted micro-
scope (Confocal LEICA TCS SP8) with a 209 objective. Propidium
iodide was excited using a 514-nm line laser (18% intensity), and
emission was detected at 498–532 nm using bandpass filters.

Statistical analysis

Phenotypic characteristics such as primary root length, total LR
length, number of initiated and emerged secondary roots, and
number of cells, as well as qPCR data, were statistically analyzed
using one-way analysis of variance (ANOVA) considering genotype
as the main factor.

Significant differences between means were analyzed using
Tukey’s post hoc comparison and are indicated by different let-
ters. The number of biological replicates for each assessment is
indicated in the corresponding figures.

ACCESSION NUMBERS

Genes can be found with the following accession numbers:

AT1G26960 (AtHB23), AT5G65790 (AtMYB68), AT5gG29000
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(AtPHL1), AT2G38120 (AUX1), AT5G48300 (ADG1), AT5G51820

(PGM), AT1G10760 (GWD), and AT3G23920 (BAM1).
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Figure S1. The transcription factors AtHB23, AtMYB68, and
AtPHL1 interact with each other in all combinations.

BiFC analysis of protein–protein interaction between AtHB23,
AtMYB68, and AtPHL1 using agroinfiltrated Nicotiana benthami-
ana leaves. AtHB23, AtMYB68, and AtPHL1 were cloned as fusions
with the N-terminal and C-terminal of YFP. Venus-N was used for
N-YFP and Venus-C for C-YFP. On the top, the positive control
done with HY5 and STO is shown. Lines 2 to 7 represent negative
controls of the interaction of these TFs with the empty vector.
Lines 8 and 9 show the interaction between AtMYB68 with AtHB23
and AtPHL1, respectively, cloned in the C-terminal. In line 10, the
interaction between AtHB23 and AtPHL1 is shown

Figure S2. AtMYB68 is expressed during root development.

GUS histochemistry of prAtMYB68:GUS transgenic plants in the
primary and lateral roots during development. Three independent
lines (#9, #15, and #21) were analyzed. I to VII represent different
stages of lateral root primordium (LRP) development and LR indi-
cates emerged roots as described by Malamy and Benfey (1997).
Black bar indicates 50 lm.

Figure S3. AtPHL1 is expressed during root development.

GUS histochemistry carried out with the transgenic independent
line prAtPHL1-2:GUS in the primary and lateral roots. Black bars
indicate 50 lm.

Figure S4. Relative transcript levels of AtMYB68 in overexpression
and silenced plants.

Transcript levels of AtMYB68 in 10-day-old AT68 and amiR68 seed-
lings grown in normal conditions. The transcript levels were nor-
malized to those in Col-0. Bars represent SEM. Data were analyzed
using two-way ANOVA considering genotype and treatment. Differ-
ent letters indicate significant differences (Tukey test, P < 0.01).

Figure S5. AtHB23, AtMYB68, and AtPHL1 do not regulate each
other at the transcriptional level.

Transcript levels of AtPHL1, AtMYB68, and AtHB23 in 8-day-old
seedlings of the genotypes indicated on the x-axis grown in nor-
mal conditions. Transcript levels were normalized to those in Col-
0. Bars represent SEM. Data were analyzed using two-way ANOVA

considering genotype and treatment. Different letters indicate sig-
nificant differences (Tukey test, P < 0.01).

Figure S6. AT68 and phl1 mutant plants did not exhibit differential
root phenotypes.

(a) Relative main root length in Col-0 and two independent trans-
genic ATMYB68 overexpression lines (AT68 #5 and #7). The rela-
tive density of LRPs or LRs was calculated as the number of LRPs
or LRs per mm of primary root, and the relative density of total lat-
eral roots (LRPs + LRs) was also calculated. The values were nor-
malized to those in the Col-0 control. (b) Relative main root length
in Col-0 and two phl1 mutants (#1 and #2). The relative density of
LRPs or LRs was calculated as the number of LRPs or LRs per mm
of the main primary root, and the relative density of total lateral
roots (LRPs + LRs) was also calculated.

Assays were repeated three times with n = 15 per genotype. Error
bars represent SEM. Different letters indicate significant differ-
ences (Tukey test, P < 0.01).

Figure S7. AtHB23 expression is induced by IAA in primary root,
whereas AtPHL1 expression is not.

GUS histochemistry of 8-day-old prAtHB23L:GUS (a) and
prAtPHL1:GUS-1 (b) roots (three independent lines, #1, #2, and #3)
grown in control conditions or treated with 1 lM IAA for 12 h. The
black bar indicates 50 lm.

Figure S8. The adaptation ability to salinity depending on AtHB23,
AtPHL1, and AtMYB68 levels is correlated with the starch granule
stage in the root tip.

(a) Illustrative pictures of root tips of 5-day-old Col-0, phl1-2,
OEPHL1-16, amiR68-5, and AT68-5 seedlings grown in normal con-
ditions stained with Lugol solution. (b) The same genotypes after
8 h of treatment with 150 mM NaCl. (c, d) The roots were trans-
ferred to normal conditions (c) or maintained in 150 mM NaCl for
additional 72 h (d). The black bar represents 50 lm.

Figure S9. Starch granules in the root tips of plants with altered
expression levels of AtHB23, AtPHL1, and AtMYB68 were not
affected by osmotic stress.

Illustrative pictures of root tips of 5-day-old Col-0, phl1-1, ATPHL1-
14, amiR68-11, AT68-7, amiR23-1, and AT23-1 seedlings grown in
normal conditions (upper panel) or the same genotypes after 7 h
of treatment with 150 mM mannitol (lower panel) stained with
Lugol solution. The black bar represents 50 lm.

Figure S10. Starch synthesis and degradation are affected by
AtPHL1 and AtMYB68.

Transcript levels of key genes in WT (Col-0), phl1-1, and amiR68-5
plants grown in normal conditions for 5 days, treated for 7 h with
150 mM NaCl, and placed in MS medium to recover for an additional
72 h. (a) GWD and BAM1 are involved in starch degradation. (b) PGM
and ADG1 are involved in starch synthesis. All values were normal-
ized to the WT (Col-0). Bars represent SEM. Data were analyzed using
two-way ANOVA considering genotype and treatment. Different letters
indicate significant differences (Tukey test, P < 0.01).

Table S1. Oligonucleotides used for cloning, RT-qPCR, or BiFC.
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