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HIGHLIGHTS

» A homogenization approach for Steel Fiber Reinforced Concrete (SFRC) is proposed.

» It presents advantages in comparison with equivalent isotropic homogeneous models.
» The model takes information from the micro-scale to model the macro-scale.

» Fiber content, distribution and pull out response are explicitly taken into account.

» Flexure response of SFRC beams with variable fiber content is properly modeled.
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Experimental research that shows the improvement in structural behavior of concrete with the addition
of fibers has been developed in the last years. Fibers control cracking and thus increase concrete tough-
ness and ductility. Much effort has been devoted in the last decade to model this material.

A simple homogenization approach based on a modified mixture theory is proposed in this paper to
model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from
the micro-scale to model the macro-scale. SFRC is considered as a composite material composed by con-
crete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as
orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this
inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified
including information from the debonding-slipping phenomena. The model requires concrete properties,
fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is
automatically derived from concrete properties and fibers geometry or it can be alternatively obtained
from pull out tests.

As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The
model is verified with the results of bending tests of beams extracted from a SFRC slab that present dif-
ferent fibers distribution due to the slab casting process. Comparisons with other numerical approaches
modeling SFRC as an equivalent homogeneous material are also included in the paper.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

recently. New fibers were produced including synthetic fibers, cri-
teria for mechanical characterization and structural design were

A high performance material is obtained when fibers are intro-
duced in concrete. Many works have shown the advantages of
using Steel Fiber Reinforced Concrete (SFRC) in applications that
mainly include tunnel linings, pavements, shotcretes, overlays
and repairs. Fibers contribute to the control of crack propagation
and enhance mechanical properties, improving bond, fatigue and
impact performance. Significant progress has been achieved more
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proposed, and it was demonstrated that fibers can be used in high
fluidity mixtures as self compacting concrete.

It is recognized that the casting and compaction processes may
affect fiber orientation in the structural elements. In the case of Fi-
ber Reinforced Self Compacting Concrete, significant changes in
orientation produced by concrete flow and proximity to molds
walls were observed [1-3]. As in conventional vibrated SFRC, a
2D orientation appears in self-compacting SFRC [4]. Fibers align
along the flow of fresh concrete but after certain distance the fiber
alignment is not important [3]. The changes in distribution and ori-
entation of the reinforcement leads to important differences in
post peak behavior.
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Due to the well performance of SFRC in many structural and
non-structural applications much effort has been devoted in the
last decade to model this material [5]. As in the case of all fiber
reinforced composite materials, different approaches can be used
to simulate SFRC non-linear behavior.

Constitutive models for SFRC can be classified in macro-models
and micro-models according to the scale in which they are defined.

In macro-models the composite material is represented as a un-
ique material with average properties. These types of models are
usually based on a phenomenological approach in which the con-
stitutive laws are obtained from laboratory tests.

In some recent papers, models originally developed for plain
concrete are modified to simulate the behavior of SFRC. These
models are based on different approaches for the continuum like
microplane model [6], smeared crack models [7], discrete crack
models, elastoplastic models like Willam-Warnke model [8], dam-
age models [9,10] or non-linear models calibrated with experimen-
tal results from tension and compression tests [11]. Constitutive
models available for concrete in commercial hydrocodes are cali-
brated with experimental results from SFRC tests to reproduce
impact response of this material in some recent papers [12,13].

The main task in this type of approach is the definition of the
tensile behavior of SFRC that can be measured in direct tension
tests or indirectly obtained through an inverse analysis from bend-
ing tests results [14].

The advantage of this phenomenological approach is the use of
material information at the relevant scale for the analysis of the
structure [5]. The main drawback is the need of extensive and
costly experimental tests [5]. Since micromechanical behavior is
not explicitly modeled, fiber volume fraction, aspect ratio, type,
distribution and orientation cannot be taken into account and
experimental results should be obtained every time each of this
data influencing SFRC behavior is changed.

Moreover, the selection of the ¢ — w to be used in tension is not
a simple task. Curves obtained from direct tension tests are not
reliable because a great variability is usually obtained. Belletti
et al. [15] pointed out that ¢ — w or ¢ — ¢ indirectly obtained from
notched beam bending tests can be affected by the crack model
used, mesh size, element integration scheme and analytical model.

Many of these problems can be avoided with micromechanical
derived models. The development of constitutive models relating
the micro-structural parameters to the mechanical behavior of fi-
ber composites is also motivated by the possibility of designing
the material for each application and predicting the behavior of
the designed material [16].

Constitutive relations micromechanically derived involve two
major steps: (1) derivation of crack bridging force for a single fiber
in terms of microparameters and (2) derivation of the composite
behavior for a given fiber distribution [17]. Models differ in the
way in which these two steps are developed. The derivation of
the crack bridging forces can be done from experimental pull out
tests or micromechanically derived. Additionally, SFRC behavior
can be obtained through homogenization techniques from the
properties of its constituents (concrete and fibers) and the shape,
volume fraction, orientation and distribution of fibers or alterna-
tive fibers can be explicitly modeled using different types of dis-
crete elements.

A statistical micromechanical model of the tension-softening
behavior of short fiber-reinforced composites based on the random
nature of fiber distribution and accounting for dominant features
of the composite failure mechanisms like fibers pulled out at an an-
gle to the matrix crack plane as well as slip-weakening or harden-
ing of the fiber interface during the pull-out process, was presented
by Li et al. [16].

Based on fiber pullout curves derived from a micromechanical
model, Leung and Geng [18] established the tensile stress-dis-

placement relation along a Mode I (opening) and used a statistical
model to account for random fiber distribution. The composite
behavior was simulated with a finite element code using a discrete
crack approach and placing truss elements across the crack to sim-
ulate the fiber bridging effect [18]. Lange-Kornbak and Karihaloo
[19] developed a model for the tension softening response of
short-fiber-reinforced cementitious composites in which the
cracks in the localization zone are bridged along their entire length
by adhesively or frictionally bonded fibers.

Li and Li [20] developed a continuum damage approach to mod-
el SFRC in tension. They proposed a parallel bar model in which fi-
bers and concrete were connected by parallel-series components.
Two damage variables related to matrix and fibers were defined.
The fiber-matrix interface properties were explicitly taken into
account in the model.

A constitutive model for cohesive fracture of fiber reinforced
concrete was proposed by Park et al. [21] by differentiating the
aggregate bridging zone and the fiber bridging zone. The cohesive
fracture model is defined by experimental fracture parameters,
which are obtained through three-point bending and split tensile
tests.

Pasa Dutra et al. [5] developed a homogeneization method for
the elastic and viscoelastic behaviors of SFRC. They assumed a ma-
trix/inclusion morphology for SFRC. The fibers were modeled as flat
spheroids, and a Mori-Tanaka homogenization scheme was used
to estimate the overall elastic properties. The model assumed no
slip on the matrix-fiber interface.

Recently, Gal and Kryvoruk [22] proposed a two-step homoge-
nization approach to evaluate elastic properties of SFRC. The sug-
gested framework executes the multi-scale analysis of SFRC
structures by incorporating an original concrete unit cell generator
into a commercial finite element software package.

Alternatively, some approaches that consider the discrete con-
tribution of fibers in SFRC were proposed. Bolander [23] models
individual fibers and fiber-matrix interface, within a random lat-
tice representation of the material matrix. Radtke et al. [24] repre-
sent concrete with a regularized damage model and model it with
the finite element method. Fibers are treated as discrete entities
which are not related to the matrix discretization but represented
by reaction forces. These forces take into account fiber action and
fiber-matrix interface and contain information from the micro-
scale obtained from pull-out relations. Cunha et al. [25] use a
smeared crack model for concrete and assume steel fibers as
embedded short cables distributed within matrix according to a
Monte Carlo method. The stress-slip relations for the fibers are
obtained from pull-out tests.

A simple homogenization approach for SFRC based on a modi-
fied mixture theory is proposed in this paper. The proposed and
calibrated model takes information from the micro-scale to model
the macro-scale. SFRC is considered as a composite material com-
posed by concrete matrix which is modeled with an elastoplastic
model [26,27] and steel fibers are considered as orthotropic elasto-
plastic inclusions that can debond and slip from the matrix. Consti-
tutive equations of fibers are modified using the approach
proposed by Luccioni et al. [28] in order to include this inelastic
phenomenon without explicitly modeling the interface. The model
requires concrete properties, fibers material, geometry, distribu-
tion and orientation as input data. The fibers bond-slip behavior
is automatically derived following the ideas originally proposed
by Naaman et al. [29-31] and Chanvillard [32] or it can be alterna-
tively obtained from pull out tests.

The model is calibrated with experimental results from con-
crete compression tests and fibers pull out tests and verified with
the results of bending tests of beams extracted from a self com-
pacting SFRC slab. The beams show significant differences in fibers
orientation and distribution when different zones or directions
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(normal or parallel to flow) of the slab are considered. Conse-
quently, the load-crack opening displacement curves are different.
Many of these curves are properly reproduced proving the ability
of the proposed model to simulate the response of SFRC with dif-
ferent fibers contents and distributions.

2. Composite model

SFRC can be regarded as composite material formed by a brittle
concrete matrix with short disperse fibers that can debond and slip
from the matrix. Fibers are usually not randomly distributed but
follow some preferment alignment related to the casting process
and the mold walls.

One of the simplest ways of modeling composites behavior
using information from the microscale is the mixture theory. This
theory is based on strong simplifying assumptions and cannot be
directly applied to the simulation of a composite material with
the characteristics described. Nevertheless, there are some previ-
ous papers showing that the original mixture theory can be suc-
cessfully modified to reproduce fibers anisotropy, debonding and
slipping [28,33,34].

The theory of mixtures is based on the following assumptions
[35]:

(1) the set of component substances is present in each infinites-
imal volume of the composite;

(2) each component contributes to the behavior of the compos-
ite in proportion to its volumetric participation;

(3) the volume occupied by each component is lesser than the
volume occupied by the composite; and

(4) all the components have the same strain (compatibility con-
dition). For small strains, and two component composite
materials this last assumption is written

&j = (&j)m = (8i)y (1)

where the sub indexes m and f refer to concrete matrix and steel fi-
bers respectively. The strain compatibility assumption constitutes a
strong limitation of the mixtures theory. In particular, fiber slipping
represents a strong discontinuity in the strain field inside the com-
posite that cannot be simulated with this theory. When debonding
occurs, the stress transfer between the matrix and the fibers
through the fiber-matrix interface is affected and a stress reduction
results in the fibers. This stress reduction can be assimilated to a
strain reduction related to the interface deformation [28]. The strain
compatibility Eq. (1) can be replaced by the following equation,

(&); = &5 — (&) = (&j)m — (&4)s (2)

where strain tensor (¢;)s represents a measure of the interface
deformation or slipping. This deformation depends on the stress
state and is composed of an elastic component and an irrecoverable
component. In general, the elastic component can be neglected
when compared with the inelastic deformation, the latter being
interpreted as an irrecoverable deformation which takes place as
a result of the fiber debonding-slipping.

If an elastoplastic behavior is assumed for steel, the fiber’s
secant constitutive equation can be written as follows,

(&y)r = (Cipa)pl(en)y — (&g = (Cima)yleia — (&a)s — (R)y] 3)

where (sfj’.)f represents the fiber permanent strains and (Cy)y is the
fibers secant constitutive tensor.

Eq. (3) can be interpreted as describing two dissipative mecha-
nisms that simultaneously take place in the set formed by the steel
fibers together with the fiber-matrix interface. One dissipative
mechanism is due to steel inelastic strains and the other is due
to debonding and slipping of the steel fibers.

On the other hand, the composite free energy density can be
written [35]

P (&3, o) = ki ¥ (&g, Dmi) + Ke Pr((€5)5: Dy Si) (4)

where ¥, and ¥ are the free energy density of matrix and fibers
. _ dVp _ de .

respectively, k, = < and ky = o are the corresponding volume ra-
tios; pmi» P, and s; represent sets of internal variables associated
with dissipative processes taking place in matrix, fibers and fiber/
matrix interface respectively.

The composite secant constitutive equation can be obtained
from Coleman relations that guarantee the fulfillment of Clasius

Duhem inequality,
OV (&u, k) I O m (&, Pmi) 0¥y ((&y)y: Py»Si)
=kn —+ kf
(98,']' 88,]' BSU (5)
ij = kn(0i), + Kr ()

Ojj =

where the stresses (o), and (o) are obtained from the matrix and
the fiber constitutive equations respectively.

An elastoplastic damage model is used for concrete while an
anisotropic elastoplastic model including debonding-slipping is
used for the fibers.

2.1. Concrete constitutive model

A modified plastic model is used for concrete [27]. The plastic
behavior is obtained as a generalization of classical theory of plas-
ticity especially appropriate for geomaterials.

The elastic behavior limit is defined through a yield function:

F(oy; KP) = f(0y) — K(gy; kP) < 0 (6)

where flo;) is the equivalent stress. A modified Lubliner-Oller
yielding criterion is used in this paper [27]. K(a; kP) is the yield
threshold and «” is the plastic damage variable or isotropic plastic
hardening variable.

The following flaw rule is defined for the plastic strains.

(()G(O-an O(k)

-p .
ek =)
Y (90',‘}‘

(7)
where / is the plastic consistency parameter and G is the plastic po-
tential function.

The plastic hardening variable k” is obtained normalizing en-
ergy plastically dissipated to unity and varies between O for the
virgin material and 1 when the material has dissipated all the
available energy. The evolution law for the plastic hardening vari-
able takes into account the differentiated behavior in tension and
compression and properly simulates energy dissipation for triaxial
compression processes:

. r 1-r .
KP = gf*" +%} O',‘ng» (8)
where
3
> (o] 1
=2 (o) =g loi+lal ©)
i=11Yi

o; are the principal stresses

14H(-1) 14H(-1)
g? = >i1loilR” g gP— >ilail g? (10)
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=0ifx>0
H“”{:lﬁxgo
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R is the compression/tension yield threshold ratio, g}’ and g? are
the maximum energy densities dissipated in uniaxial tension and
compression respectively and can be evaluated as follows

g= and g=% (1)
C C
where Gyand G, are fracture and crushing energies respectively and
I is an externally parameter that depends on the finite element
mesh introduced to achieve response objectivity respect to the
finite element mesh size.

The following evolution law is used for the equivalent yielding
threshold.

K(oy,kP) = 10¢(K") + (1 — 1) (KP) (12)

where o(xP) and ¢ (k) represent the yielding thresholds evolution

in uniaxial tension and compression tests respectively.
Loading/unloading conditions are derived from the Kuhn-Tuck-

er relations formulated for problems with unilateral restrictions.

I>0 FP<0 iFPF=0 (13)

2.2. Constitutive model for fibers

As pointed out in Eq. (3) two dissipative mechanisms take place
in the set of fiber and fiber/matrix interface. Associated with these
mechanisms, two sets of internal variables may be defined. The fol-
lowing flow rules are used for the inelastic strains of the fibers and
the debonding-slipping deformations [28]:

. 0G o
() = Jp E)(a:)f; pi = iph? (14)
. [=0if Fy((ay);.p) <O (15)
) > 0if Fp((04):p;) =0

i . O0Gs . Sops
(&j)y = Asa(Tij)f§ $i = 4shy; (16)
. [=0if Fi((oy);,5:) < 0 17
*\ > 0if Fi((0y)y,5:) =0 v

where p; and s; represent sets of internal variables associated with
plasticity and slipping mechanisms and h! and h; are tensors defin-
ing the flow of each of the internal variables. G, and G; represent
convex potential functions; 4, and J; are plastic and slipping consis-
tency parameters; and F, and F; plasticity and slipping threshold
functions, respectively, which should also be convex functions [36].

The way in which fibers plastic orthotropy is taken into account
in Egs. (14) and (15) is first presented in Section 2.2.1. Then the
model used to simulate fiber debonding-slipping phenomenon in
Egs. (16) and (17) is described in Section 2.2.2.

2.2.1. Plastic orthotropy

It is well known that, although steel can be considered isotropic
itself due to their geometry steel fibers present a marked orthotro-
py characterized not only by the elastic orthotropy but also by the
marked difference of strength and debonding strength in the prin-
cipal directions.

The approach used in this paper to handle orthotropy is based
on the assumption that two spaces can be defined [37,38]: (a) a
real anisotropic space and (b) a fictitious isotropic space. The prob-
lem is solved in the fictitious isotropic space allowing the use of
elastoplastic models originally developed for isotropic materials.

Stress tensors in both spaces are related by a tensor transforma-
tion that can be written as,

Tij = Ajju (T35, KP) O (18)

where 7 and oy, are the stress tensors in spaces (a) and (b) respec-
tively, and Ay, is a fourth order transformation tensor that contains
the information about strength anisotropy depending on material
symmetry. In the most general case, this tensor varies with the
stress state and the evolution of the inelastic process represented
by the isotropic plastic hardening variable . In this paper, fibers
are assumed initially orthotropic with three axes of material sym-
metry. There are different alternatives to define tensor Ay, for this
case [39-41]. The simplest way is a diagonal fourth order tensor
[34],

3 3
Ajju = Zz5im51‘n5km(§ln’f/5’mn (19)
m=1n=1
where 7T is the strength in the fictitious isotropic space and G, is
the actual strength in the direction m in the plane with normal n.
A better approach has been proposed by Oller et al. [41].
The plastic threshold is defined through a yielding function,

Fp(0j; K7) = Fy(135: KP) = 0 (20)

where F and F represent the yielding function in the real anisotropic
space and the fictitious isotropic space respectively; x” and kP are
plastic internal variables in correspondence with both spaces.

The transformation defined by Eq. (18) allows the use of yield-
ing functions F defined for isotropic materials in the fictitious iso-
tropic space. It should be noted that this space is isotropic with
respect to yielding thresholds and strength but not necessarily
with respect to other properties like elastic stiffness.

This concept can be extended to the case of plastic flaw rule too.
Instead of working with potential functions that should be aniso-
tropic, function G, defined in the fictitious isotropic space could
be used.

Gp(Gy; KP) = Gp(Ty; KP) (21)
Eq. (14) can then be rewritten as,
& = 1(0Gy/00y) = A(0Cp/0T) 9T/ 00y) = (G /OT)Auy = 2hy
(22)

where 8@ /0Ty is a second-rank tensor and represents the plastic
flow in the fictitious isotropic space.

2.2.2. Fiber debonding-slipping model

Fibers matrix bonding has several components: physical and/or
chemical adhesion, frictional strength and a mechanical compo-
nent associated with the fiber geometry that acts as an anchorage.
In most cases, fibers are pulled out from the matrix once they have
lost their adherence to it and before they reach rupture. Therefore,
the longer the fibers the greater their capacity to resist pull-out
forces. This phenomenon is normally studied through experimen-
tal tests called pull-out tests [29-32,42-49].

For the case of straight fibers immersed in concrete the basic
components contributing to pull-out strength are adhesion and
friction. When an axial force is applied to the fiber, adhesion ini-
tially acts on the total length of the fiber. Shear stresses in the fi-
ber-matrix interface are not uniform and the maximum stresses
are located near the crack. If the axial force is increased beyond
the adhesion strength, the fiber begins to debond from the matrix
and friction starts to act in these zones. When the complete inter-
face has lost adhesion, slipping is initiated with a marked drop in
pull-out strength that is only provided by friction. As the fiber is
pulled out, friction decreases due to a combined action of abrasion
and cement and sand particles compaction around the fiber. This is
the case of straight fibers. To prevent the sharp drop of pull-out
strength when adhesion has run through, fibers with special
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geometry, as fibers with hooks at their ends or wavy fibers or fibers
with polygonal cross section are used. In this way a mechanical
component is added to pull-out strength.

Pull-out strength also depends on matrix integrity. If the matrix
is progressively disintegrated as the fiber is pulled out, all the resis-
tant capacity and ductility of the fibers cannot be exploited. For
this reason, some authors have tried to combine fibers of different
sizes where the shorter fibers are responsible of preserving the sta-
bility of the matrix while the longer fibers bridge the cracks devel-
oping the maximum capacity of the later [50].

A debonding-sliping criterion, a flow rule and a hardening rule
should be specified in Egs. (16) and (17) in order to complete the
SFRC model previously defined. In this case in which fibers are as-
sumed as component materials in mixture theory the debonding-
slipping criteria is mainly a limit in fibers axial stress and slipping
is assumed to be in the direction of the fibers so the flow vector %
is known in advance and is constant.

The fibers pull-out curve can be used in order to define the deb-
onding-slipping criteria and the hardening/softening law. The
load-displacement curves obtained from the tests have different
shapes mainly depending on the number of curve parts, the length
of the different fiber parts and their curvature ratio, that is, on the
fiber axis geometry. The final shape and the pull-out strength also
depend on the fiber diameter, its surface texture and the mortar
quality.

The pull-out curve can be obtained from pull-out tests or alter-
native it can be numerically simulated modeling the debonding-
slipping process. Both approaches were used and compared in this
paper and are presented in the following sections.

A different simplified alternative consists of the estimation of
the fibers pull-out response from flexure tests. This approach is
an inverse method requiring the calibration of a very simplified,
bilinear o three-linear pull-out curve from the numerical simula-
tion of flexure tests. This approach is also used in this paper and
the results are shown together with flexure tests numerical results.

The numerical model used for fiber pull-out simulation [51] is
based on the models originally developed by Naaman et al.
[29,52] (model for straight fibers) and Chanvillard [32] (model
for curve axis fibers).

The analysis consists of two steps, the first step simulates the
elastoplastic process in the interface and the loss of adhesion be-
tween fiber and matrix (crack that surrounds the fiber and propa-
gates through the interface, up till the slip beginning) [52]. See
Fig. 1

The second step comprises the fiber slipping process [32] once
all the adhesion has been exhausted. The fiber axial deformation
is assumed negligible and the pull-out strength is supposed to be
the result of friction and fiber curvature change. See Fig. 2. Friction
is assumed to be provided by:

- Fiber surface irregularities due to the manufacturing process

and to the shape change and from the wedging of the material
released from the matrix during the fiber slipping.

Crack face

Matrix

Adhesion in the complete
nterface

Interface without adhesion

Partial lost of adhesion

- Changes of fiber axis curvatures. The change of direction of the
axial force implies a normal force that compresses the concave
part of the fiber against the matrix.

- Lateral confinement of the fiber provided by the matrix under a
multiaxial stress state.

The fiber axial stress oy that should be transmitted through the
interface can be estimated as follows,

L
o = /%f /0 (dflf;) M+ T + P(s)C(S)r — 6xpr> ds (23)

where Ay is the fiber cross sectional area, s the curvilinear coordinate
along the fiber axis, i the fiber perimeter, L the fiber length in con-
tact with the matrix, ((s) the fiber curvature in position s, é the fiber
slipping, M the moment developed by the fiber change of curvature,
74 the friction stress, r the friction coefficient, ¢ the mean confine-
ment stress resulting from the matrix action on the fiber, P(s) is
the pull-out strength provided from the fiber end to the position s

2.3. Numerical implementation

The material models used for the different approaches pre-
sented in this paper were implemented in 3D and 2D non-linear
finite element programs developed for research purposes.
Nevertheless, they can be easily introduced as user subroutines
in commercial codes.

In the code used in this paper the material is supposed to be
formed by several components. When using the equivalent homo-
geneous approach, only one component is assumed for SFRC.

A Newton Raphson algorithm is used for the iterative solution
of global equilibrium equations. The strain tensor is known for
each iteration. According to classical mixture theory, all the com-
ponents have the same strain (see Eq. (1)) and therefore, the con-
stitutive equations can be separately integrated to obtained the
stress tensors of each of the components that can be combined
using Eq. (5) to get the composite stress. The described procedure
is sketched in Fig. 3 where U is the nodal displacement vector, AU
is the nodal displacement increment, K is the stiffness matrix and
Fresig = Fext — Finds the residual force vector.

The elastoplastic models defined for the components are
integrated using a return mapping [53] algorithm. In the case
of the fibers the plastic and slipping constitutive equations are
simultaneously integrated.

The plastic and slipping consistency conditions in load step n,
iteration k, are posed as a linearization around iteration k — 1.

k k-1 8Fp k-1 k ({)Fp k=1 ok

Pl = IRl + 52| oo+ |52 ot -0 24)
kK rpik-1 | OFs o [oF KT v

Fl =[] aote [Ghe] a0

Interface without adhesion

Matrix

Total lost of adhesion and slip
beginning

Fig. 1. Adhesion lost before slipping.
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P(s; 1

(a) Fiber-matrix interface without
adhesion. Slipping beginning.

| P(s)+P(s)C(s) r ds
—

/ dT=P(s)C(s)r ds
AN=P(s)C(s)ds

(b) Fiber deferential element. Friction
due to the change of direction [32].

dc(s)
Tas
(¢) Fiber deferential element. Friction
due to the change of curvature [32].

= psy+ L9 Mds

Fig. 2. Fiber slipping. Friction components.
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Fig. 3. Numerical integration of the composite model.

where
oG k-1 G k-1
k k < 1k
50'ij = Ciﬂm (521, L?O':J ) — (MS( |:80'1;j| ) (25)
opf = oiglhfly" ost = ozglhi]y (26)

If Egs. (25) and (26) are replaced in Eq. (24), linear system in 64,
and J/s is obtained. Solving this system the variables can be up-
dated as follows,

k=1 k-1
k k=1 k oG k k-1 k oG,
=k ] etk ok 5]
(27)
pE=pi" +onlhfl " st =i 4 oy (28)
(Uij)l; = Cijim (&), — (85)’,; — (Sf])ﬁ) (29)

The same algorithm can be used for concrete but in this case
only one dissipative process is activated. Thus, only the first of
Egs. (24), (26)-(28) are solved.

Whether the pull-out curve is obtained from pull-out tests or it
is numerically simulated, it constitutes input data for the slipping
model.

3. Experimental program

The experimental program includes pull-out tests performed on composed
mortar-fiber specimens to analyze the bond slip mechanisms of steel fibers and
to obtain the data for the model calibration.

In order to verify the model, a slab was molded with a self-compacting SFRC.
The selection of this type of concrete and structural element makes possible the
analysis of different postpeak behaviors as there is important concrete flow during
casting. In this way, the effect of fiber orientation on the residual mechanical prop-
erties of concrete can be considered.

The experimental details and the obtained results are presented next.

3.1. Pull out tests

Pull-out tests were performed on 40 x 20 x 160 mm prisms with rectangular
cross section and an interruption in the middle that separated them in two parts
that are joined by a fiber in the center as shown in Fig. 4a. The matrix interruption
simulates the crack and allows the evaluation of the fiber pull out resistance.

Fig. 4b shows the pull-out test setup. The specimens were tested under uniaxial
tension with displacement control using a loading rate of 0.01 mm/s during the first
5 mm, then the loading rate was increased to 0.05 mm/s up to 10 mm and finally, a
constant loading rate of 0.1 mm/s was applied until the fiber was completely pulled
out.

A 60 MPa mortar and five types of hooked end fibers were used. See Table 1.

Four load-slippingt curves corresponding to Fiber 5 (Table 1) are presented in
Fig. 5. These curves show a marked decay of the pull-out force in correspondence
with the straightened of the fibers curve parts while slipping. This observation
shows the important contribution of curve parts to pull out strength.

It is observed that in case of hooked end fibers, the pulled out end looks straight
but with some imperfections after the test. These imperfections are located at fibers
ends and thus maintain a constant friction during the slipping up to the complete
pull out. In the case of straight fibers, friction decreases during the slipping due
to a combined action of abrasion and compaction of the matrix around the fiber
[29]. These phenomena of abrasion and compaction also take place in the case of
hooked end fibers but, due to the imperfections, they do not have the same effect
on friction.

The mean peak pull out load, displacement corresponding to peak load and
residual load for a displacement of 10 mm are included in Table 1 for each type
of hooked end fibers tested. The pull-out strength (peak pull-out force) increases
with the fiber diameter and with strength of the fiber material. Nevertheless, it
was observed in the tests that fibers with greater pull-out strength are more likely
to slip from both ends. The fiber slenderness (L/®) and the peak pull-out force
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Fig. 4. Pull-out test. (a) Specimen dimensions, and (b) loading setup.

divided by the fiber volume (V= n®?L/4) for the different fibers tested are also
presented in Table 1. It is observed that, in general, more slender fibers give a great-
er pull-out strength for the same fiber volume ratio. This tendency is valid up to cer-
tain slenderness (L/®) from which pull-out strength begins to decrease. This
observation is coincident with the effect of fibers slenderness on the behavior of
SFRC reported by different authors [54].

3.2. Effect of fiber distribution and orientation on the behavior of SFRC

3.2.1. Self-compacting SFRC slab

Aslab 0.9 x 1.8 x 0.09 m was cast with a self-compacting concrete incorporat-
ing 35 kg/m> of hooked end steel fibers 35 mm length and 0.45 mm diameter, as-
pect ratio of L/® =77.7 (Fiber 5 in Table 1). Concrete incorporated 640 kg/m> of
normal portland cement + calcareous filler, natural siliceous sand, 12 mm maxi-
mum size granitic crushed stone and policarboxilated based superplasticizer. The
main characteristics of this SFRC were: slump-flow = 700 mm, V-funnel time = 9.3 s
and 28-days compression strength = 61.3 MPa.

Concrete was poured from one extreme of the slab. For the analysis the slab was
divided into three sectors A, B and C, where the flow and border conditions are dif-
ferent; sector A is affected by the pouring of concrete, sector B has a high flow rate
and is influenced by the lateral wall effect, and sector C is affected by the end of the
formwork. Fig. 6 shows a scheme of the slab and the cut beams. The results of the
shadowed beams will be used to verify the numerical model.

To evaluate the effects of fiber orientation, small beams 90 x 70 x 320 mm
from different zones of the slab and with different orientation (directions parallel
and normal to concrete flow) were cut. A notch depth of 15 mm and 300 mm span
were used. Three-point bending tests were done following the general guidelines of
EN 14651-2005 [55]. The load vs crack mouth opening displacement (CMOD) or rel-
ative displacement between both sides of the notch was recorded. As the load-
CMOD response was determined on small beams, the same span/height and
notch/height ratios as indicated in the standard were adopted, making possible to
obtain the residual strength parameters [56]. The first crack stress (f;), the maxi-
mum stress (fys), and the residual strengths fr1, fr2, fr3, fra Were calculated.

400
e Test
) — - — Test2
300 — /,"f 1 —#— Test 3
i \ —=— Test 4
;o ' —— Numerical simulation

Load [N]

Slipping [mm]

Fig. 5. Load-slipping curves obtained from the pull out tests of Fiber 5. Comparison
of experimental and numerical results.
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Fig. 6. Scheme of the slab and the cut beams.
Table 2
Summary of bending test results.
Stresses (MPa)  Sector A Sector B Sector C
Parallel Normal Parallel Normal Parallel Normal
fi 5.6 52 5.6 5.1 53 5.6
fum 7.7 5.9 8.4 5.1 6.4 6.3
fr 4.7 2.8 52 1.7 3.6 3.0
fro 6.9 3.2 7.8 1.7 54 44
fr3 7.5 3.2 8.3 1.8 5.9 5.1
fra 7.2 33 8.1 1.8 5.6 53
Mean fiber density on fracture surfaces (fibers/cm?)
1.20 0.74 1.59 0.53 1.03 1.08

After bending tests, the density of fibers was determined on the fracture sur-
faces. The mean values corresponding to each zone are presented in Table 2. In
addition, on the specimens chosen to verify the model, cuts were performed in
the three directions obtaining the density of fibers in each plane.

3.2.2. Results

Fig. 7 shows typical load-CMOD curves of specimens cut from the slab differen-
tiated by group and beam orientation with respect to the flow direction (parallel or
perpendicular). A summary of the strength parameters is presented in Table 2; the
mean values of all specimens from each sector and direction are given.

Table 1
Fibers dimensions and average results of pull-out tests.
Fiber Scheme fy (MPa) < (mm) L (mm) LI Ppeak (N) Jpeak (MM ) Presia (N) Ppear/V (N/mm?)
1 e 1100 1.10 50 45.0 487 1.00 130 10.2
2 ————— 860 1.00 50 50.0 388 0.60 134 9.9
3 - 1100 0.75 50 67.0 333 0.70 96 15.1
4 ——— 2470 0.71 60 84.5 510 2.00 118 21.5
5 S 2470 0.45 35 77.7 230 1.30 25 419

AL L Ly

0 10 20 30 40 50 60
[mm]

fy: yield stress; @: diameter; L: length; Ppeq: peak pull-out load; dpeqk: displacement corresponding to peak pull-out load; Presig: load corresponding to 10 mm displacement;

V: fiber volume.
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Fig. 7. Load-CMOD curves of specimens cut from the slab. (a) All beams, (b) zone A, (c) zone B, and (d) zone C.

It can be seen that f; is similar in all sectors, as this parameter mainly depends
on the matrix strength and it is less affected by the fiber orientation (Table 2). On
the contrary, the post peak parameters show differences between each sector and
beam orientation; these changes in the residual parameters are significant and
should be considered for the structural design. The highest mean value of the max-
imum stress (fy) and the residual strengths fr1, fr2, fr3, fra correspond to the parallel
beams of sector B followed by sector A.

Fig. 7 clearly shows variable post peak behaviors along the slab. Parallel beams
have a higher postpeak residual capacity than normal beams, as fibers are orien-
tated due to concrete flow; the unique exception is normal beam C-9n that is at
the end of the mold. In addition parallel beams closer to the formwork walls show
a better response than their companion internal beams (B-7p and B-5p > B-6p; C-1p
and C-6p > C-4p); this is attributed to a better fiber alignment. When comparing
sectors A, B, and C, it seems that the higher post peak parameters correspond to sec-
tor B followed by sector A, and finally sector C. The greater differences in the beam
responses correspond to sector B, where the highest rate of flow combined with the
wall effect enhance fiber orientation. In sector C due to the decrease in concrete
velocity and the influence of the end of the formwork the fibers are less oriented.

Summarizing, there is a clear orientation of fibers, especially along the sector B
where the differences between parallel and perpendicular beams are greater. In sec-
tor C the end of the formwork and the low flow rate reduces the orientation of the
reinforcement leading to a more homogenous mechanical response.

These results show that there can be a great variation in the mechanical behav-
ior when different zones of a structural element are considered. In this sense the
possibility of modeling the effect of fibers orientation becomes relevant regarding
SFRC applications.

4. Numerical simulation of SFRC tension response
4.1. Pull out response

The mean compression strength and the elasticity modulus
were determined from standard characterization tests and are pre-
sented in Table 3. The rest of the matrix parameters used in the
pull-out numerical model are independent of the fiber types and
were obtained from calibration with the results of the 63 pull

Table 3
Concrete properties.

Elasticity modulus, E (MPa) 40200

Poisson ratio, v 0.2

Uniaxial tension strength, ¢, (MPa) 2.93

Uniaxial compression strength, ¢, (MPa) 62.9

Uniaxial compression yield threshold, o (MPa) 44.0

Compression/tension elastic limit ratio, R 15.0

Yield function Modified
Lubliner-
Oller [27]

Compression equibiaxial/uniaxial ratio, Rbc 1.16

Parameter to control the shape of yield function in the 3.5

Octahedric plane [27] y

Tension hardening curve Exponential

Compression hardening curve Exponential
maximum

Value of the plastic hardening variable for the peak 0.15

compression Stress, Kromp

Fracture energy density, Gf (kN/mm) 0.029

Crush energy density, GZ (kN/mm) 3.6

Plastic potential function Modified
Lubliner-
Oller [27]

out tests previously described. The matrix parameters obtained
are presented in Table 4.

The numerical pull-out curve obtained with the model de-
scribed in Section 2.2.2 is compared in Fig. 5 with the experimental
results. A good agreement is achieved.

4.2. SFRC tension response

The model described can be used to simulate the tension re-
sponse of SFRC. This response mainly depends on the number of
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Table 4

Matrix parameters for numerical simulation of pullout tests.
Compression strength (MPa) 62.9
Friction shear stress (MPa) 2.0
Friction coefficient 0.50

fiber crossing the transverse section and on the fiber properties.
The curves obtained can be used to simulate SFRC as a concrete
with a modified tension response avoiding the use of the compos-
ite model described for the simulation of structural problems.

Unfortunately no tension tests were performed for the concrete
and fibers under study. Therefore, the results presented are only
numerical and are later used for concrete as previously described
and compared with experimental results from flexure tests.

The concrete tension behavior used for the slab for different
number of fibers per unit of area is obtained in this section.

The properties used for concrete are those presented in Table 3.
Some of them were obtained from compression and flexure tests
while standard values were used for the rest [27].

The pull out curve of the fibers is the mean of experimental
curves or that numerically obtained to reproduce this mean
response. The fiber content in axial and transverse directions
(Table 5) is taken into account in the numerical simulation.

Table 5
Beams dimensions and fiber content.

Beam b (mm) H (mm) h, (mm) Fiber content (mm?/mm?)
ky ky
C-1p 79 74 88 0.00185 0.00008
B-1n 78 73 89 0.00045 0.00059
A-4n 78 73 92 0.00103 0.00151
C-7p 76 77 91 0.00141 0.00132
C-4p 83 75 90 0.00130 0.00116
B-2n 76 75 94 0.00059 0.00049
C-9n 74 75 89 0.00186 0.00073
A-1p 79 70 80 0.00164 0.00132
4
(i) —=— C-1p
1 1 0 0 A B-In
E — A-dn
Z —— C-Tp
@
]
172
=]
5
172
=
[5]
[ = e e L - = - Ty s—
0 T T T T
0.0 0.5 1.0 1.5 2.0 2.5
Crack width [mm]
(b)
—— C-4p
E
E
&
P
&
7]
=
g
w
=
P
h
0 T T T T
0.0 0.5 1.0 1.5 2.0 2.5

Crack width [mm]

Fig. 8. Numerical simulation of SFRC tension response for different fibers contents.
Stress vs crack width. (a) C-1p, B-1n, A-4n, C-7p; and (b) C-4p, B-2n, C-9n, A-1p.
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Fig. 9. Contribution of fibers in transverse direction. (a) C-1p, B-1n; and (b) B-2n,
C-9n.

The results obtained for different fibers densities covering the
range measured in the fracture plane of the beams extracted from
the slab are presented in Fig. 8a and b. It is clear the effect of fiber
density on tension response. Although the tensile strength is only
slightly incremented the shape of the load-crack width curve
and thus ductility strongly depend on the SFRC fiber content.

Fig. 9 shows the difference found in tension response of SFRC if
only the axial content of fibers is taken into account. It is clear that
when fiber content in transverse direction is not negligible, their
contribution to tension response should be taken into account.

5. Numerical simulation of the beams tested under flexure

The numerical simulation of the flexure tests of the SFRC
notched beams extracted from slab described in Section 3.2 is pre-
sented in this section. Different approaches previously described
are used to model SFRC and are compared with experimental re-
sults corresponding to the same concrete matrix but different fi-
bers orientations resulting from the SFRC slab casting process.

In all cases SFRC is modeled as a composite material formed by
a concrete matrix with fibers distributed in three orthogonal direc-
tions in coincidence with beams principal symmetry axis. Different
approaches are used to obtain the fibers pull-out response. Fiber
debonding-slipping is:

(a) obtained from pull-out tests,
(b) obtained from numerical simulation, and
(c) approximated from one of the flexure tests results.

Approaches a and b give the same results because the numerical

simulation of fiber debonding-slipping was calibrated to repro-
duce the results of pull out tests available.

5.1. Numerical model

The dimensions of the beams tested are slightly different and
are presented in Table 5 and indicated in Fig. 10a. All the beams
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Fig. 10. Notched beams tested under flexure. (a) Beam’s dimensions, and (b) finite element mesh.

have the same span (1 =300 mm). The fiber densities in planes yz
and xz (k,, k), obtained as the number of fibers per unit area by
the fiber area are also included in Table 5.

The finite element mesh, load and boundary conditions used for
the numerical simulation of the beams tested under flexure are
presented in Fig. 10b. Taking advantage of the problem symmetry
conditions, only one half of the beam was modeled. Four nodes iso-
parametric plane stress elements were used.

The finite element mesh used was chosen after proving mesh
size independence of global structural response that is partly as-
sured by the model used. The mesh was refined until no difference
between two consecutive refinements was obtained. The effect of
the type of finite elements used was also studied. As expected, qua-
drangular elements give a better description of the problem than
triangular elements. The use of higher order quadrangular ele-
ments (with more than four nodes) is not expected to change the
results for the mesh refinement used in this paper. There is still
some almost negligible mesh size dependence that cannot be
avoided and that was also pointed out by Belletti et al. [15]. This
spurious mesh size dependence is related to the vertical finite ele-
ment size. Cracking begins at the lowest integration points. As the
mesh is refined these points are more distant from the neutral axis
and more tensioned so cracking begins for lower loads. On the
other side, only the higher integration points are in compression
and thus a greater ultimate flexure moment (load) is obtained
when a finer mesh is used.

5.2. Comparison of numerical and experimental results

The mechanical properties of concrete were partly obtained
from standard characterization tests and partly estimated follow-
ing the suggestions in Luccioni and Rougier [27]. Normally, the
number of parameters of a constitutive model increases with its
applicability to different materials and its ability to simulate more

complex behavior and thus more tests are required to completely
characterize material response. Nevertheless, if the model is to
be applied to a material that is well known and broadly studied
as steel or concrete, a good estimation of some of the parameters,
for example as a function of compression strength as illustrated in
Ref. [27], can be used to avoid performing many experimental
tests. Although not always explicit, this procedure is vastly used
in constitutive modeling when some functions or constants are a
priori fixed.

The material parameters used in the numerical model are pre-
sented in Tables 1, 3 and 4.

The fibers contents in the direction of the beams symmetry
principal axis and orthogonal to it are included in Table 5.

The fiber debonding-slipping curve was experimentally ob-
tained from pull-out tests described in Section 3.1 and was also
numerically modeled (see Section 2.2.2). The curves presented in
Fig. 5 were used as input data defining the fiber hardening/soften-
ing behavior in approaches (a) (experimental curves) and (b)
(numerical curve). In case of approach (c), the fiber debonding-
slipping curve was indirectly obtained from the calibration of the
flexure response of beam C-1p (Fig. 11) and then applied to the
numerical simulation of the other beams.

Figs. 11-18 show the results obtained from the numerical sim-
ulation (approaches (a), (b) and (c)) of the beams tested and their
comparison with experimental results. A reasonable agreement of
numerical and experimental results is obtained in most cases.
Comparing Figs. 11-18 with Fig. 7, it is observed that the numerical
curves lie among experimental results for each zone in the slab
that present an appreciable variability. The greater differences be-
tween numerical and experimental results are obtained for the
groups of beams (A-4n, A-5n) and (B-2n-B-3n) that are located
near the laterals of the framework and normal to concrete pouring
direction (See Fig. 6). SFRC is an heterogeneous material with non-
uniform spatial distribution of components. The fibers densities in
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Fig. 13. Beams A-4n, A-5n - comparison of numerical and experimental results.

different directions were obtained from only one cut of each beam
and were assumed uniform all over each beam in the numerical
simulation. This simplification could be partly responsible for the
differences observed between numerical and experimental results.
Nevertheless, it should be observed that the differences are in the
order of the differences obtained in the tests. Even for beams ex-
tracted from the same zone of the slab the experimental load-dis-
placement curves present considerable differences among them.
See, for example, the curves corresponding to beams A-1p, A-2p
and A-3p in Fig. 7b.
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Fig. 15. Beam C-4p, C-5p - comparison of numerical and experimental results.
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Fig. 16. Beam B-2n, B-3n - comparison of numerical and experimental results.

The mean and the standard deviation of experimental results
for groups of beams from the same zones were calculated. The re-
sults are included in Figs. 11-18 where the curves corresponding to
the mean of experimental results for the zone is plotted and the
area between the mean minus standard deviation and the mean
plus standard deviation is shaded. It can be seen that except for
the beams located near the laterals or the end of the framework
the numerical curve corresponding to approaches (a) and (b) lies
inside or near the shaded area.
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Fig. 18. Beam A-1p, A-2p, A-3p - comparison of numerical and experimental
results.

The numerical results obtained with approach (c) are also in-
cluded in Figs. 11-18. These results were obtained calibrating a
bi-linear curve for the fibers pull-out curve in order to fit the flex-
ure response of beam C-1p in Fig. 11. Then the curve was used to
reproduce the experimental results of the rest of the beams
(Figs. 11-18). Although the results are similar to those obtained
with approaches (a) and (b), it is observed that indirectly obtain-
ing the fibers pull-out curve from flexure results is somewhat cum-
bersome and can lead to some erroneous results when the
response used corresponds to a distribution of fibers not only in
axial direction. Moreover, as only the initial slope of the pull-out
curve was calibrated, numerical results depart from experimental
results when the crack width increases.

The wave phenomenon observed in numerical results from ap-
proach c is typical of the tension response of concrete and harden-
ing fibers working with the strain compatibility assumption (Eq.
(1)). In this case the composite stress is obtained as the sum of
the contributions of concrete and steel fibers multiplied by their
volume ratio (Eq. (5)). When fibers are in hardening regime, con-
crete is softening until it completely looses strength and the fibers
are responsible of resisting the applied stress showing a hardening
response. Depending on the material properties and the fibers vol-
ume fraction, the combination of these effects leads to a peak in
stress followed by a strength loss and then a second hardening re-
gime. In the case of flexure more than one local peak is numerically
obtained as concrete cracking spreads upwards with the increase
of applied displacement, involving more elements.

This phenomenon also takes place in the tests and sometimes it
is evidenced in uniaxial tension experimental curves. Nevertheless,
the physical flexure problem is a continuous problem where crack-
ing advance is progressive and thus the waves are not marked as in
numerical discrete approach (finite element) used to approximate
the problem.

5.3. Comparison with numerical results obtained for an equivalent
homogeneous material

The numerical results obtained in previous section are com-
pared with those obtained modeling SFRC as an equivalent homo-
geneous material. For that purpose SFRC is modeled as a
homogeneous elastoplastic material using the concrete model de-
scribed in Section 2.1. This model requires the definition of the
functions o(x®) and o (k") used in Eq. (12). These functions can
be directly obtained from the stress-strain curves in tension and
compression respectively, with the aid of the plastic hardening var-
iable definition (Eqs. (8)-(11)). Assuming that fiber addition has
not influence on concrete behavior in compression, the stress—
strain curve of plain concrete is used for SFRC in compression. As
there were not experimental results for tension response, stress—
strain curve in tension is obtained from a previous numerical sim-
ulation using the composite model described in Section 3 with fi-
ber debonding-slipping behavior obtained from tests. The curves
defining SFRC behavior in tension for different fiber contents are
those previously presented in Fig. 8a and b.

The flexure response of the beams obtained with the homoge-
neous model for SFRC is shown in Figs. 11-18 and compared with
experimental results and numerical results obtained modeling
SFRC as composite material. It is observed that better agreement
between experimental results is obtained when SFRC is simulated
as a composite material since the effect of fibers in different direc-
tions can be approximated more accurately than in the case of an
equivalent homogeneous isotropic model calibrated in one direction.

6. Conclusions

Experimental results from pull-out and flexure tests of SFRC
present a great dispersion that in case of flexure tests can be attrib-
uted to the non-uniform distribution and orientation of fibers in
concrete resulting from many factors, mainly related to the con-
crete casting process. The variability of the fiber contents mea-
sured in beams extracted from the slab and the consequent
difference observed in their flexure response is a clear evidence
of this observation.

In spite of this variability, predicting models are still necessary
for design purposes. Among different types of models available in
the literature, micro-mechanics based models have the advantage
that they can explicitly take into account all the variables contrib-
uting to the differences observed. On the other side, macro-
mechanics based models are more practical for design and
analysis.

The model presented in this paper represents an attractive
alternative to model SFRC since it incorporates information from
the micro-scale in a very simple way. The composite model origi-
nally developed in Ref. [28] for long fibers reinforced composite
was extended to model SFRC, a hooked end short fiber reinforced
composite with fibers in different orientations. For this purpose,
the model developed in Ref. [27] was used to simulate the concrete
matrix while a further development of the pull out model
presented in Ref. [51] combined with the anisotropy treatment
described in Ref. [38] was used for the fibers.

The proposed model is able to reproduce fiber pull-out, tensile
and flexure behavior of SFRC specimens with different fiber
contents.
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The proposed model is able to simulate the crack-opening flex-
ure response of self-compacting steel fiber reinforced concrete
beams with different fibers contents and distributions.

Different approaches to use the same model have been pro-
posed and compared. The results show that fibers pull-out re-
sponse and fibers content have an important influence on tensile
behavior of SRFC. Although the tensile strength of SFRC is nearly
the same than that of concrete, the shape of the tensile response
curve strongly depends on fibers content and bond-slip behavior.
If the fiber content orthogonal to tensile behavior is not negligible
it has some influence in tensile response. This type of effects can-
not be taken into account by equivalent homogeneous models
mainly calibrated in tension because they assume an isotropic
behavior based on experimental results calibrated for one
direction.

As a consequence of the preceding observation flexure response
is also strongly influenced by fiber content and bond-slip behavior.
Fiber distribution can be approximately modeled as fibers in three
orthogonal directions with different contents in each direction.
While volumetric ratios are usually used for components in mix-
ture theory, area ratios in three orthogonal planes are more ade-
quate for this type of inclusion due to the geometry of the fibers.
The effect of non-axial fibers in flexural response is not negligible.
It is shown that numerical simulation of SFRC in bending with a
calibrated tensile response can conduct to some errors in the resid-
ual strength that can be attributed to this cause. Conversely, it can
be concluded that calibration of tension response of SFRC from
flexure response can lead to some errors related to fiber content
in non-axial directions.

Although the proposed model allows placing the fibers in any
direction, the bond slip behavior has only been modeled for the
case of fibers pulled out normally to concrete crack. This limitation
has proved not to be important to model flexure response. Never-
theless, the model should be improved taking into account fiber
inclination with respect to the crack plane in order to be able to
reproduce more complicated stress states.
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