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h i g h l i g h t s

• We solved analytically a Markov Dissipative QuantumWalk.
• We define and solve a non-Markov dissipative qubit.
• We calculate the concurrence and the quantum discord.
• We compare quantum correlations versus classical correlations.
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a b s t r a c t

Starting from the exact evolution of a Markovian dissipative quantum walk, a non-
Markovian decoherence of two qubits interacting with a phonon thermal bath has been
investigated analytically using quantum information tools. Concurrence and quantum dis-
cord are affected in a complexway, showing that entanglement decreaseswith dissipation.
At the limit where dissipation dominates, quantum correlations survive in time as∝ t−1/2.
Thus, even under the influence of dissipation, two qubits retain their quantumness for a
long time. Quantum correlations could be therefore observed for a long time in related
photonic experiments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Within the theory of Quantum Information (QI), we are mainly concerned with some important questions about the
preservation of quantum coherence in computation protocols. In the context of quantum circuits, we often speak about
applying unitary gates to a single qubit, but unitary operations describe only the evolution of a closed quantum system. To
begin tackling this problem, even when the systems are not closed, unitary operators in quantum computation are applied.
In a second approximation, the time-evolution of the system S (i.e., a set of qubits) is studied under different decoherence of
mechanisms [1]. Several mechanisms are used to emulate the coupling between S and the environment E , among which:
quantum internal states [2], coupling with a set of numerable external qubits [3], thermal bath [4–6] and random inter-
action [7] can be found in the literature. These decoherence of mechanisms diminish the superposition of states and in
many cases destroy the quantum entanglement in S. The main task, therefore, is to predict the temporal decay of coher-
ence (power law, exponential, etc.) in a set of qubits in order to prevent disentanglement in the computation protocol, since
entanglement is a fundamental resource in QI and Quantum Computation (QC).

The coherent nature of QuantumWalk (QW) has been recently explored, providing interesting results for a wide range of
applications in QI, QC and solid state. Among these, diverse implementations have been shown to suit the realizations of QW
in a lattice (e.g., trapped ions, neutral atoms, photon, waveguide, nuclear-magnetic-resonance), and therefore experimental
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and theoretical QW architecture have been shown to be important tools in the study of controlled time-dependent quantum
operations [8]. Dissipative QuantumWalks (DQWs) [9–11] have also been studied and they provide a universal platform for
QI analysis in the presence of quantum error [1,12]. All these studies have been enlightening as regards the interplay of
superposition and entanglement in quantummechanics, and have led to newwork in the realm of real applications and the
development of new quantum devices.

In a first approximation, the evolution of an open system is given by a quantum master equation (QME) [5], which can
be derived from first principle tracing-out of the variables of the thermal bath, considering that initially S and E are in a
separable state. In particular, tight-binding-like models in interaction with a phonon bath have been used for the derivation
of the QME [10]. Here, one particle in the lattice is considered, allowing us to define two qubits in interaction with the bath
(the qubit is associated with the empty or occupied state in a lattice site). Starting with the QME associated with a DQWwe
have defined a bipartite system, which we solve analytically, thus the exact non-Markovian evolution in continuous-time
of two qubits interacting with a bath has been found. We stress how quantum correlations (i.e., concurrence [13], and QD
[15,14]) depend on the Initial Condition (IC) of the DQW. We predict a power-law decay for the long-time quantumness of
correlation, a fact explained in terms of the non-local IC of our open system. The present results enable us to understand the
dynamics of realistic quantum circuits more precisely. In addition, our approach allows us to tackle the important problem
of two particles interacting with an environment, which may induce or reduce correlation between the particles; this issue
will be presented elsewhere.

2. The dissipative QWmodel

A free particle in a one-dimensional infinity lattice interacting with a thermal bath B is characterized by the total
Hamiltonian [6]:

HT =


E01 −Ω

a + aĎ

2


+

2
ν=1

Vν ⊗ Bν + HB . (1)

The first term corresponds to the (one-particle) tight-binding Hamiltonian HS where a =
s=+∞

s=−∞
|s − 1⟩⟨s| and aĎ =s=+∞

s=−∞
|s + 1⟩⟨s| are translational operators in the Wannier |s⟩ basis and 1 is the identity operator (see Appendix A in

Ref. [10]). The second term considers a linear interaction and describes the coupling between phonon operators B1 = BĎ2 =
k vkBk and system operators V1 = V Ď

2 = h̄Γ a, where Γ > 0 is the coupling parameter. The third term is the phonon
Hamiltonian


k h̄ωkB

Ď

k Bk. E0 is the tight-binding energy of site andΩ the next neighbor hopping energy. The QME for the
DQW can be obtained by eliminating the quantum variables of B [10,11]:

dρ
dt

=
−i
h̄


Heff , ρ


+ D


aρaĎ + aĎρa − 2aĎaρ


, (2)

where Heff = HS − h̄ωcaĎa is a trivial effective Hamiltonian because aĎa = 1 [10]. The additive energy h̄ωc is a cut-off in the
Ohmic approximation [11]. The diffusion constant D is given in terms of the bath temperature T and the coupling constant
Γ in the form: D ∝ Γ 2kBT/h̄. For simplicity we can add −E0 +ωc h̄+Ω to HS . This assumption does not change the general
results, and finallywe get:Heff = Ω


1 −

a+aĎ
2


. FromEq. (2)whenD → 0 (T → 0) the vonNeumann equation is recovered.

The opposite limit is the classical one (Ω → 0), in this case and from any diagonal ρss(0) the usual random walk profile is
reobtained. The exact solution of the Markovian DQW can be written from Eq. (2) using Wannier indices {s} as follows:

ρs1,s2(t) =
1
2π

 π

−π

dk1

 π

−π

dk2ρ(0)k1,k2e
F (k1,k2) t+i(k1s1−k2s2), (3)

where k1, k2 are Fourier indices and F (k1, k2) =
−i
h̄


Ek1 − Ek2


+ 2D [cos (k1 − k2)− 1], where Ek = Ω (1 − cos k) is the

continuous eigenenergy [10]. Note that for the IC ρ(0) = |k0⟩⟨k0| the system does not show decoherence in time. In general,
evaluating Eq. (3) and using the basis |s⟩ we can rewrite the operator ρ(t) using outer product notation.

Using outer product notation we can do the algebra to work out different definitions for bipartite systems. In the inset of
Fig. 1 we show the party AB and C , in particular we will be interested in the two-level system defined by the set of elements
{±s0} ∈ AB. In the presentwork, in order to consider a non-local problemwe introduce the followingmirror IC for the vector
state |ψ±

0 ⟩ ≡
1
2 (|s0⟩ ± | − s0⟩), then we will use ρ±(0) = |ψ±

0 ⟩⟨ψ±

0 | for the preparation of the density matrix. This IC has
the maximum entanglement for the particular bipartition that we will consider, i.e.,

ρ±(0) =
1
2
{|s0⟩⟨s0| + | − s0⟩⟨−s0| ± | − s0⟩⟨s0| ± |s0⟩⟨−s0|}.
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Fig. 1. Probability as function of position s for t ′ = 30, and for values of rD = 0, 0.1, 0.5, 1, 5, 10. We display plots from a non-local initial condition |ψ+

0 ⟩

with s0 = 1 (Fig. a) and s0 = 10 (Fig. c); and also for |ψ−

0 ⟩ with s0 = 1 (Fig. b) and s0 = 10 (Fig. d). The inset shows the AB party and its complement, the
party C .

In the next section a left–right bipartition will be introduced for the study of entanglement. Thus, we now introduce the
previous IC ρ±(0) in Eq. (3) to obtain the exact time-evolution for the density matrix in the lattice.

ρ±

s1,s2(t) =
is2−s1

2e2Dt

n


Js1+s0+n


Ωt
h̄


Js2+s0+n


Ωt
h̄


± (−1)s0 Js1+s0+n


Ωt
h̄


Js2−s0+n


Ωt
h̄


± (−1)s0 Js1−s0+n


Ωt
h̄


Js2+s0+n


Ωt
h̄


+ Js1−s0+n


Ωt
h̄


Js2−s0+n


Ωt
h̄


In (2Dt) . (4)

Hermiticity, positivity and normalization of ρ(t) can be checked from Eq. (4) using the properties of the Bessel functions.
The first important consideration to be analyzed is the probability profile as a function of D.

In the non-dissipative case (D = 0) the expression for the QW probability profile P±
s (Ω,D, s0, t) ≡ ρ±(t)s,s is quite

simple and shows the expected interference phenomena coming from the non-local IC ρ±(0), i.e.: P±
s (Ω, 0, s0, t) =

1
2


J2s+s0


Ωt
h̄


+ J2s−s0


Ωt
h̄


± (−1)s0 Js+s0


Ωt
h̄


Js−s0


Ωt
h̄


. From this expression, and due to the symmetry of the problem,

it is possible to write a simple formula for the time-dependent interference pattern at the origin. The pattern is
constructive for the symmetric IC |ψ+

0 ⟩ and destructive for the antisymmetric one |ψ−

0 ⟩, i.e., the probability at the origin is
P+

0 = 2J2s0


Ωt
h̄


; P−

0 = 0

.

As expected, at the limit Ω → 0 we recover from Eq. (4) the classical profile on the lattice: P±
s (0,D, s0, t) =

1
2e

−2Dt
Is+s0 (2Dt)+ Is−s0 (2Dt)


[16,17]. Nevertheless, if we calculate the off-diagonal elements of ρ±(t), at the limitΩ → 0 from

Eq. (4) we get a non null lattice structure for the off-diagonal elements:

ρ±(t)s1,s2 =
1
2
e−2Dt Is1±s0 (2Dt) iif 2s0 = ±(s2 − s1). (5)

So at the highly dissipative limit there will be a remanent quantumness correlation from the entanglement of |ψ±

0 ⟩, which
decays asymptotically in time as ρ±(t)s1,s2 ∼ t−1/2.

Nowwedefine a newparameter rD =
2D
Ω/h̄ (rate of characteristic energy scales in the system) and t ′ =

Ω

h̄ t a dimensionless
time in order to plot the figures, thus the classical limit will be rD ≫ 1 and the non-dissipative limit will be rD ≪ 1. In
Fig. 1 we plot the probability profile Ps(t ′ = 30) ≡ Ps(Ω,D, s0, t) as a function of s for different values of the dissipation
parameter rD and t ′ = 30, for the two cases of symmetry ρ±(0) and two values of separation s0 at the IC. The comparison of
the probability profile ρ±(t)s,s for the two symmetries involved in the IC, ρ±(0) = |ψ±

0 ⟩⟨ψ±

0 |, is shown in this figure. It can
be seen that for small values of separation s0, the quantum probability profile is different for the symmetric case as in the
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case antisymmetric (Fig. 1(a)–(b)), but the probability profile has a similar behavior for both symmetries for large values of
s0 (Fig. 1(c)–(d)).

For small values of rD the quantum correlations are notorious in the system (Fig. 1(a)–(d)), but for large values of rD the
probability tends towards the Gaussian behavior. To quantify the quantumness of correlations present in the system, we
will analyze the concurrence [13] and Quantum Discord (QD) [15].

3. Bipartition from the DQW

To study how quantum correlations on the lattice are affected by the dissipation we now introduce the following
bipartition procedure from our Markovian DQW. Consider two fixed sites ±s, tracing-out over the remaindering sites on
the infinite 1D lattice (see the inset in Fig. 1). We can define a two-level system as our bipartite system ‘‘AB’’. To quantify the
concurrence [13] and QD [15], we need to know the reduced density matrix for two qubits (in our case as a function of ±s).
Using the outer product notation for ρ and the Wannier basis (state of one particle) in the form | − s⟩ = |1A⟩ ⊗ |0B⟩ ⊗ |0C ⟩

and |s⟩ = |0A⟩ ⊗ |1B⟩ ⊗ |0C ⟩ (where |0R⟩ and |1R⟩ are the empty and occupied states in the subsystem R, with R = A, B, C),
and tracing over the sites sj ≠ ±s we end up with a 4 × 4 reduced (non-Markovian) density matrix ρ±

AB (simplifying the
notation for the basis in the system AB, we can write |1A0B⟩ ≡ |1A⟩⊗ |0B⟩, and we can use a similar notation for other states
in AB):

|1A1B⟩ |1A0B⟩ |0A1B⟩ |0A0B⟩

|1A1B⟩

|1A0B⟩

|0A1B⟩

|0A0B⟩


0 0 0 0
0 ρ±

−s,−s(t) ρ±

−s,s(t) 0
0 ρ±

s,−s(t) ρ±

s,s(t) 0
0 0 0 1 −


j=±s

ρ±

j,j(t)

 .
(6)

Noting that the reduceddensitymatrix represents a genuine non-Markovprocess. Hereρ±
s1,s2(t) is given by the exact solution

presented in Eq. (4). The non-Markov dynamics given in Eq. (6) will have an important implication on the behavior of the
concurrence and quantum discord, as will be seen later.

3.1. Concurrence for two dissipative qubits

The quantum entanglement between A and B is C±(−s, s, t) = 2|ρ±

−s,s(t)|, see Ref. [18]. To measure the total
entanglement in our system, we now consider the sum of concurrences between all sites−s and s, thus we call this measure
the mirror concurrence CM as in Refs. [19,20]. For the contribution of the entanglement of all sites−s and its mirror swe get
the analytical expression:

C±

M (Ω,D, s0, t) = 2
∞
s=1

ρ±

−s,s(t)
 . (7)

In the non-dissipative case D = 0, using (4) we get from the symmetric IC: C+

M (Ω, 0, s0, t) = 1, and for the antisymmetric
one C−

M (Ω, 0, s0, t) = 1 − 2J2s0(
Ωt
h̄ ), i.e., with initial maximum entanglement.

As mentioned previously, in the classical asymptotic limit (rD ≫ 1) using Eq. (5) in (7) for the mirror concurrence we
get: C±

M (0,D, s0, t) = e−2Dt I0 (2Dt), indicating that there is a remanent correlation that asymptotically decays in time as
C±

M (0,D, s0, t → ∞) ∼ t−1/2.
In Fig. 2 we plot C±

M as a function of t ′ for different values of the dissipation parameter rD, two cases of symmetry ρ±(0)
and several values of separation s0 at the IC |ψ±

0 ⟩. The case rD = 0 is plotted in Fig. 2, and the validity of our asymptotic
expression can be verified. It can be seen that for s0 = 1 and |ψ+

0 ⟩ (Fig. 2(a)) and |ψ−

0 ⟩ (Fig. 2(b)) the concurrence has a
different behavior, but for s0 = 10 the behavior is similar at long time. In all cases concurrence decreases with rD, and for
large values of rD an asymptotic long-time behavior of CM can be appreciated. The analytical case rD → ∞ can be obtained
by inserting solution (5) into Eq. (7). This phenomenon is intriguing and is due to the power-law decay of

ρ±

−s,s(t)
, and

so the entanglement does not show a sudden death [21]. In contrast, from a localized IC the entanglement is zero [22] (the
off-diagonal elements of ρ(t) are null).

3.2. Mirror quantum discord

We have also calculated QD, which is an alternative measurement of the quantum correlations in a bipartite system. We
stress the different nature of the QD in comparisonwith the entanglementmeasured from the concurrence (QD is ameasure
of the difference between two natural, yet different in quantum analogs, of classicalmutual information, see Refs. [15,14]). In
our system, the Classical Correlations (CCs) can be defined explicitly (from the mutual information), and the mirror QD can
be calculated between sites s and−s using the reduced density matrix given in Eq. (6). Following Ref. [23] we have obtained
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Fig. 2. The quantumconcurrence for the bipartition shown in the inset of Fig. 1 as a function of t ′ , for values of rD = 0, 0.01, 0.005, 0.1, 0.25, 0.5, 0.75, 1, 2,
and non-local initial conditions |ψ±

0 ⟩ with values of s0 = 1, 10.

Fig. 3. The sum of quantum discord for the sites s and −s (QD) as a function of t ′ , for values of rD = 0, 0.01, 0.005, 0.1, 0.5, 1, 2 ((a) and (c)). In (b) and
(d) the total classical correlations (CC) can be observed. For non-local initial conditions |ψ±

0 ⟩ and with s0 = 10.

an expression for QD and CC as functions of rD using Eq. (4) in (6). We stress that in this instance Eq. (6) is not a Werner
state [24], where the classical correlations CC(s) between the sites s and −s read as follows, CC(s, t) = Hbin(ps) − Hbin(p′

s),

where Hbin(x) = −x log2(x) − (1 − x) log2(1 − x), ps = ρs,s(t) and p′
s = [1 +


4ρ2

s,s(t)+ (2ρs,−s(t)− 1)2]/2. Finally, QD
is calculated analytically using Eq. (25) from Ref. [23].

Fig. 3 shows the total QD calculated as the sum of the mirror QD between sites s and −s [22] (using our bipartition, see
inset of Fig. 1) for different IC |ψ±

0 ⟩ and values of rD. The total QD is in good agreement with the total mirror concurrence
analysis (see Fig. 2), as both decay asymptotically in time following a similar law.

We note that these correlations (quantum and classical) decrease with dissipation (rD). As expected, the behavior of CC
is converse to the increase in entropy of the DQW interacting with the quantum bath [10].
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4. Discussion

Starting with a QW in interaction with a phonon bath, we have presented an analytical bipartition to measure the
quantum correlations of two qubits interacting with a thermal bath. The mirror concurrence has been shown to depend
in a non-trivial way on the rate of energies of the system: rD =

2D
Ω/h̄ . This result is in agreement with the calculation of other

measures of entanglement such as negativity [22]. The non-dissipative limit (rD ≪ 1), and the classical limit (rD ≫ 1) have
been found to be in agreement with the physical expectations of the system.

The importance of the present model is the opportunity it offers us to understand a non-Markovian dynamics of realistic
quantum circuits more precisely, taking into account dissipative effects, and we have done this by analyzing classical and
quantum correlations separately. Our approach also enables us to tackle the important subject of the analysis of the QD
phase diagram in terms of the observables of the system. Interestingly, we have determined that the negativity also shows
that the mirror concurrence and mirror QD describe well the quantum to classical transition [22].

An important aspect of our results is that for non localized initial states (withmaximumentanglement as in the bipartition
we studied) quantum correlations are present in the system even in the long-time regimen with characteristic power-law
behavior, even though the dissipation is longer than the bandwidth of the QW (rD ≫ 1). This means that the time evolution
of quantum correlations (concurrence and QD) strongly depends on the IC superimposed at t = 0 (for a localized IC the
concurrence and QD is zero for all times [22]). This fact might be observed in the lab by using, for instance, photons in a
prepared spatial IC with a suitable entanglement initial state, (as in Perets et al. and/or in Peruzzo et al. [8]). Therefore,
quantum correlations should be observed over a long time in the experiment, and are possible scenarios where our present
results can be applied.
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