Journal of Human Evolution 59 (2010) 698—703

journal homepage: www.elsevier.com/locate/jhevol

Contents lists available at ScienceDirect

Journal of Human Evolution

News and Views

Alternatives to the partial Mantel test in the study of environmental factors

shaping human morphological variation

S. Ivan Perez **, José Alexandre Felizola Diniz-Filho?

, Valeria Bernal 8, Paula N. Gonzalez®

2 CONICET, Divisién Antropologia, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900, La Plata, Argentina
b Departamento de Ecologia, ICB, Universidade Federal de Goids, CP 131, 74001-970, Goidnia, Goids, Brazil

ARTICLE INFO

Article history:
Received 18 October 2009
Accepted 30 July 2010

Keywords:

Spatial autocorrelation
Partial Mantel correlation
Spatial regression techniques

The importance of ecological factors in shaping morphological
differences among human populations is highly debated despite
numerous studies that have examined worldwide patterns of
morphological variation (Roberts, 1953; Beals et al, 1984;
Katzmarzyk and Leonard, 1998; Relethford, 2004a; Roseman,
2004; Harvati and Weaver, 2006; Betti et al., 2010). Some cranio-
facial studies have pointed out that the main forces behind cranial
shape variation are random factors such as genetic drift and
mutation (Relethford, 2004a; Manica et al., 2007; Betti et al., 2010).
Conversely, other studies have suggested that craniofacial form and
size variation, as well as dental size and postcranial morphological
variables, are associated with environmental variation (Beals et al.,
1984; Katzmarzyk and Leonard, 1998; Roseman, 2004; Harvati and
Weaver, 2006; Perez and Monteiro, 2009; Bernal et al., 2010).

The above studies generally assess the importance of ecological
factors using correlative analyses of morphological (e.g., cranial
shape, body size) and environmental (e.g., minimum temperature)
variables. However, one of the major problems with this approach is
that spatial structure may be present in the morphological variable
(Legendre and Legendre, 1998). First, morphological variation may
be related to other environmental or non-environmental variables
that are spatially structured, generating spatial dependence among
populations (Legendre and Legendre, 1998). For instance, repeated
migration from one particular locale into another results in spatial
structure—a well-defined cline—leading to high morphological
similarity between groups in close geographic proximity as well as
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greater morphological differentiation of more distant groups (Sokal
et al., 1989). Second, recent common ancestry, genetic exchange,
and/or local environmental conditions can cause populations to
become autocorrelated, i.e., they tend to be more similar to each
other— more than what is expected only by chance and indepen-
dent of the environmental variation—for a given morphological
variable (Legendre, 1993; Legendre and Legendre, 1998; Felsenstein,
2002; Ives and Zhu, 2006). Gene flow, restricted by geographical
distance, is particularly important in generating a high degree of
biological similarity among human populations at small geograph-
ical scales (Cavalli-Sforza et al., 1994; Relethford, 2004a). The pres-
ence of spatial structure biases estimates and significance tests of
standard statistical techniques used to calculate correlations
between morphological and environmental variables. For example,
if a population attained a wide cranium due to the influence of
temperature, neighboring populations may have a similar cranial
breadth as the result of gene flow with the former, even though
temperature does not directly affect them. Therefore, such similar
cranial breadth should not be taken as a proof of temperature
response (Felsenstein, 2002).

In order to test the association between morphological and
environmental variables, it is necessary to use statistical techniques
that take into account the existence of spatial structure (i.e., auto-
correlation or spatial dependence). Partial Mantel tests are the
most widely used test for this purpose in biological anthropology
(e.g., Oden and Sokal, 1992; Relethford, 2004b; Betti et al., 2010). In
this paper, we assess the efficacy of the partial Mantel test. First, we
describe Mantel and partial Mantel correlation (Smouse et al.,
1986). Then, we briefly outline the spatial regression techniques
that are designed to solve the problem of spatial structure among
human populations (Dormann et al., 2007; Diniz-Filho et al., 2009;
Perez et al., 2009a). Finally, we use a simple example to illustrate
the performance of Mantel, partial Mantel correlations, and spatial
regression techniques to test the association between morpholog-
ical and environmental variables.

Mantel and partial Mantel tests

The comparison of distance matrices using Mantel-based tests is
commonly used in biological anthropology to test the association
between morphological and environmental variables, even when
its statistical properties in this context are unknown (also see
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Harmon and Glor, 2010). The first step is to calculate the distances
between samples (e.g., Euclidean distances for morphometric,
geographical, and environmental data) using vector data (e.g.,
variables). Mantel (1967) introduced a method that can be used to
directly estimate the correlation between two distance matrices.
The Mantel Z statistic is the sum of the cross-products of the
elements in two matrices, Zxy = > (XY), where X and Y are
unfolded distance matrices describing the independent variables
and the trait variation, respectively (i.e., the distance matrices are
unfolded column by column to form a long vector, excluding the
diagonal elements; Smouse et al., 1986; Legendre et al., 1994,
Legendre and Legendre, 1998). The Pearson product—moment
correlation coefficient, ryy = 37 (XY)/[32(X2) 32 (Y2)]/2, is mono-
tonically associated to Z, and it is generally preferred in anthro-
pological studies because it has the advantage of being expressed in
standardized units (Smouse et al., 1986). Given the fact that
elements in a distance matrix are related to one another, Z and r
statistics cannot be parametrically tested for significance. There-
fore, a randomization test is used to estimate the significance of the
Z and r statistics (Smouse et al., 1986; Legendre et al., 1994).

If a correlation between morphological variation and geography
(i.e., spatial structure in the morphological variable) is detected,
a partial Mantel test can be used to account for spatial structure
(Oden and Sokal, 1992; Relethford, 2004b; Betti et al., 2010). The
partial Mantel test, or Mantel method for three matrices, computes
the partial correlation between the matrices X and Y, conditional
upon a third matrix, V, which describes the geographical distances
(Smouse et al., 1986; Legendre and Legendre, 1998). First, the
elements of X are regressed on the elements of V to obtain a matrix
of residuals. Second, the same procedure is used to obtain a matrix
of residuals of Y on V. Finally, the correlation between the residual
matrices (i.e., Z and r statistics) is calculated and its significance is
tested by performing a randomization test (Smouse et al., 1986).
Therefore, the partial Mantel matrix correlation, as well as the
simple partial correlation, is a linear correction that removes all
variation in the matrices X and Y that is correlated to the matrix V,
e.g., geography (Smouse et al., 1986; Oden and Sokal, 1992;
Legendre and Legendre, 1998).

Spatial regression models

Several regression techniques have been recently proposed to
test whether or not a morphological variable could be associated
with environmental variation. These techniques directly model the
morphological and environmental variables (i.e., the vector data-
set) and take into account the spatial structure in the data (for
recent reviews, see Diniz-Filho et al., 2009; Perez et al., 2009a).
These models have the general structure of a regression model such
as: y = Xb + ¢, where y is the vector that describes the trait vari-
ation, X is the matrix of independent variables, b is the vector of
regression coefficients, and € is the error term, normally distributed
with constant variance and independently distributed among
observations (Legendre and Legendre, 1998). Thus, the covariance
matrix C among residuals is C = 21, where ¢? is the variance of the
residuals—which is constant throughout the diagonal of C—and I is
an identity matrix (a matrix of ones along the diagonal and zeros
elsewhere), highlighting that there is no correlation structure
among the data. This simple model is usually estimated using least-
squares and is commonly referred to as the ordinary least-squares
regression model (OLS). All this could be easily generalized to
multivariate forms (Rohlf, 2001).

When applying such a model it is assumed, after considering the
effects of the environment, that residual variation is randomly
distributed among local populations. However, if part of that
similarity among local populations is unrelated to the environment

but instead relates to higher gene flow, local environmental
conditions, or both gene flow and local environmental conditions
among neighboring populations, then residuals will be autocorre-
lated. Statistically, this implies that C=¢2I, which violates standard
OLS assumptions. Taking this into account, a number of modifica-
tions in the OLS equation can be performed, both in order to
improve the understanding of morphological variation, as well as to
better estimate and test model parameters (for recent reviews, see
Bini et al., 2009; Diniz-Filho et al., 2009; Perez et al., 2009a). In
general, we refer to these techniques as spatial regression models.
These can be grouped together in two classes, based on the idea of
incorporating spatial structure either into model residuals, by cor-
recting the matrix C above (e.g., generalized least-squares), or into
model structure (e.g., autoregression and spatial eigenvector
mapping) (Diniz-Filho et al., 2009; Perez et al., 2009a).

The generalized least-squares model (GLS) is the same as the
ordinary least-squares model, but incorporates autocorrelation into
model residuals and thus does not assume that C = ¢21. Hence, the
error structure in C is designed to incorporate the lack of indepen-
dence expected in the observations as a consequence of the spatial
distribution of the populations. In this model, the covariance matrix C
is based on a matrix W (the “expected relationship matrix” or
weighting matrix). For example, C = ¢2W, which contains the
correlation structure among populations. The elements of W can be
estimated by different and complex inverse functions of geographic
distances (d;;) between populations, given by inverse distance-pow-
ered functions of the form: w;; = 1/ dg‘ where « is the parameter that
regulates the model (see Perez et al., 2009a). In essence, the zeros in
the identity matrix (I) used in OLS are replaced by numbers that
reflect the inverse of the geographic relationship among populations.

Another alternative approach for spatial regression, instead of
modifying the error term, is to introduce new explanatory variables
in the model that “captures” the spatial variation, thereby mini-
mizing the autocorrelation in the residuals or removing the spatial
dependence. There are several ways to incorporate spatial variables
into the model structure in order to eliminate or minimize residual
autocorrelation, and the general model has the form
y = Xb + G + ¢, where X, b, and € are as defined for OLS equation
and Gis avector or matrix showing the geographic space. This spatial
regression takes into account autocorrelation in the residuals by
capturing spatial relationships in the G term, which can be defined in
different ways. The simplest way to define space is by using spatial
coordinates of local populations (e.g., latitude, longitude, or its
principal components), which can be added to the model as spatial
independent variables. This technique is known as trend surface
analysis (TSA) and is better suited to model broad-scale trends (i.e.,
to remove the spatial dependence), rather than local autocorrelation
in the data (Legendre and Legendre, 1998). Recent comparative
evaluations (e.g., Bini et al., 2009) have suggested that a good, and
presently popular, way to take into account spatial patterns into the
model structure is to use spatial eigenvector mapping (SEVM; Griffith
and Peres-Neto, 2006). In this model, G is defined by principal
coordinates of the W matrix, so that eigenvectors with different
eigenvalues describe the geographical patterns at different spatial
scales. It is important to point out that these spatial regression
techniques, as well as the partial Mantel test, assume spatial sta-
tionarity (i.e., spatial autocorrelation and effects of ecological
correlates are homogeneous across regions; Dormann et al., 2007).

Performance of partial Mantel correlation and spatial
regression techniques: an example

We will now use a simple example to illustrate the performance
of the partial Mantel test versus other regression models in order to
examine the association between morphological and environmental
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variables that vary geographically. This example is based on 2D
cranial landmarks and semilandmarks from ten late Holocene South
American samples previously used by Bernal et al. (2006) to study
robusticity. Bernal et al. (2006) and Perez and Monteiro (2009) have
shown, using regression techniques and quantitative genetic models
(i.e., testing the magnitude of divergence), that temperature was
a significant predictor of cranial divergence found among these
populations. The climate hypothesis is also supported by experi-
mental and observational studies (Bernal et al., 2006).

The samples studied belong to prehistoric populations from
different geographic and ecological regions, distributed along
3,000 km (from latitude 25—55° South; Fig. 1). Twelve landmark
and twenty-five semilandmark coordinates (Fig. 2) were recorded
from the digital images. They were subsequently aligned using
Generalized Procrustes Analysis (GPA) and the semilandmarks
were slid along the contour using the minimum Procrustes distance
criteria (Mitteroecker and Gunz, 2009). Finally, a Principal
Components Analysis (PCA) was performed on the Procrustes
coordinates plus centroid size, in order to describe major trends in
form variation (Mitteroecker and Gunz, 2009). More details about
the 2D cranial dataset and morphometric analysis, as well as
additional sample descriptions, are presented in Bernal et al.
(2006). The first PC score, accounting for 31.85% of the total varia-
tion among sample means, is used in the example to simplify the
explanation. Although we used a univariate approach to study
variation among populations, the techniques discussed here can be
generalized to multivariate models (Smouse et al., 1986; Legendre
and Legendre, 1998; Rohlf, 2001; Perez et al., 2009b).

Figure 1. Map showing the geographic localization of the samples of crania analyzed.
An: Andalgala, N = 15; SJ: San Juan, N = 15; RN: Rio Negro Valley, N = 21; SB: San Blas,
N = 30; 1j: Laguna del Juncal, N = 20; Ch: Chubut Valley, N = 31; NOSC: Northwest of
Santa Cruz, N = 16; CSSC: Center-south of Santa Cruz, N = 10; IGTF: Isla Grande of
Tierra del Fuego, N = 11; Mg: Magallanian region, N = 11. All samples are detailed in
Bernal et al. (2006).

The relationship between PC1 and latitude (a good proxy for
geographical distance in the region under study) shows morpho-
metric similarity among neighboring populations (Fig. 3a). We
explore the spatial structure of form variation using a spatial
correlogram based on Moran’s I autocorrelation coefficients (Sokal
and Oden, 1978). The correlogram of PC1 score vs. Moran’s I shows
a cline affecting the entire distribution of the samples (Fig. 4),
which can be explained by several processes (e.g., directional
selection or gene flow). However, it is important to point out that
PC1 values are similar among neighbor populations (ca. 200 km;
Fig. 4), showing that, in this dataset, there is autocorrelation among
them. We also note that other works show a great similarity among
neighbor populations in southern South America (more similarity
to each other than expected by chance alone, i.e., autocorrelation),
probably as a consequence of genetic exchange and/or local envi-
ronmental conditions (Perez, 2006; Perez et al., in press).

These analyses also show a strong relationship between PC1 and
mean annual temperature in southern South America (Fig. 3b). The
samples from southernmost Patagonia show more robust cranial
features than those from northern Argentina and this is a result of
the lower temperatures in Patagonia (for a more detailed
morphometric results, see Bernal et al, 2006). Regression and
Mantel correlation results are shown in Table 1. The OLS analysis
confirms that temperature has a significant effect on the variation
of robusticity patterns, described in the first PC score (Table 1). The
slope value for temperature is highly significant: particularly robust
crania are found in cooler regions (Fig. 3b). Moreover, this envi-
ronmental variable explains 75% of the variation in form. The
Mantel test also indicates that temperature has a significant effect
on the patterns of robusticity variation, but for this analysis,
temperature only explains 40% of form variation (Table 1).

We used both spatial regression techniques and partial Mantel
correlation to test the association between PC1 and temperature,
incorporating spatial structure into the analysis. To define the
spatial structures for the spatial regression models, we calculated
the weighting matrix (W) as the inverse of the geographic distance
matrix, where the influence of one sample over the other decreases
non-linearly with the increase of the geographical distance
between the samples (Fig. 5). This generates a large decline in
morphometric distances when geographical distance is between
0—300 km and shows a plateau with little distance change after
500 km (Fig. 5). This approach works under the assumption that the
morphometric variation of a population is likely to resemble the
variation of another population from the same area due to genetic
exchange and/or local environmental conditions (Perez et al.,
2009a). Alternatively, we calculated the first principal component
of the geographic coordinates, which describes broad-scale
geographic trends in this region on a north—south direction (the
correlation between PC1 of the geographic coordinates and latitude
was 0.836, P = 0.003). Using this PC score in the regression model,
we assume that the clinal pattern of morphometric variation
among populations was generated by processes such as migration
from one side (Legendre and Legendre, 1998).

The results of GLS, SEVM, and TSA regression models are shown
in Table 1. The GLS and SEVM models were calculated using the
matrix W to define the spatial structure and showed, as did the OLS
analysis, a significant effect of temperature over robusticity varia-
tion patterns—though with a lower significance value. However,
the TSA model, calculated using the first principal component of
geographic coordinates to define the spatial structure, showed no
significant effect of temperature on PC1 score (Table 1). The partial
Mantel test was calculated using the matrix of geographic distances
among samples (the V matrix, which describes the broad-scale
geographic trends in the region) to define the spatial structure, and
also suggests that robusticity is not associated with temperature,
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Figure 2. Allocated landmarks (squares) and semilandmarks (circles) on craniofacial structures. Landmarks: 1) frontex; 2) nasion; 3) frontomalare anterior; 4) frontomalare
temporale; 5) infraorbitale; 6) zygomaxillare anterior; 7) the most superior point on the suture between the zygomatic process of the temporal bone and the temporal process of the
zygomatic bone; 8) the most inferior point on the same suture as landmark 7; 9) auriculare; 10) the point on the lateral aspect of the inferior border of the root of the zygomatic
process; 11) the most anterior point on the root of the mastoid process; 12) the most posterior point on the root of mastoid process. Drawing by Marina Perez.

showing a r° value of 0.06 and a P value of 0.141 (Table 1). Whereas
the results of GLS and SEVM models shown here corroborate the
previous works by Bernal et al. (2006) and Perez and Monteiro
(2009), the partial Mantel test and the TSA model behaved as
expected: they eliminate the relationship between robusticity
variation and temperature after removing the linear relationship of
both variables with geographic distance.

Discussion

Despite its popularity in biological anthropology, ordinary
Mantel and partial Mantel tests show questionable performance
when testing the association between morphological and envi-
ronmental variables. In our example, the association between

a 2
1 i
o i
Q o
-1 —
2 | | |
60 -50 -40 -30 -20

Latitude Variation

morphological and environmental variables decreased when
Mantel correlation was used (ca. 35% lesser association; Table 1).
These results agree with previous ones, which have shown that the
Mantel test has a low statistical power (Harmon and Glor, 2010).
The reduced performance of the Mantel test could be partly a result
of the fact that the vector data are converted to pairwise distances;
therefore, the same set of distances could be obtained from two
different vectors, and a single value in the original vector could
have a cascading effect on distance matrix (Harmon and Glor, 2010).
Based on our results, we suggest not converting vector data to
pairwise distances in order to test the importance of environmental
variables on morphological variation. In this way, Harmon and Glor
(2010) recommended the use of Mantel tests only when absolutely
necessary, i.e.,, when data cannot be expressed in any form other
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Figure 3. Plot of PC1 score vs. latitude variation (a) and mean annual temperature (b) among samples.
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Figure 4. PC1 vs. Moran’s I autocorrelation. Filled circles indicate significant autocor-
relation coefficient values.

than pairwise distances. A better alternative would be to first
convert this distance matrix to vectors using principal coordinate
analysis (Mitteroecker and Bookstein, 2009), and then use an
ordinary or spatial regression model. Additionally, in our example,
the partial Mantel test “removed” the geographical variation and
the effect of temperature (Oden and Sokal, 1992; Perez et al,,
2009b). However, as noted above, temperature is a factor for
which we have good reasons to believe that actually covaries with
cranial variation in this dataset. The performance of the partial
Mantel test could be due to the fact that it is designed to test the
association between two variables (e.g., morphology and temper-
ature) after removing their linear relationship with a third variable
(e.g., geographic distance).

Spatial regression models are generally more powerful and
flexible when testing for correlations between morphological and
environmental variation in the presence of spatial dependence or
autocorrelation in the dataset. This is because the partial Mantel
correlation does not exactly work as spatial regression techniques,
i.e., taking into account only spatial similarity among neighbor
populations. This is particularly important in human population
studies where, as a result of spatial structure, gene flow will be
more frequent between nearby populations leading to some
degree of genetic uniformity at smaller geographical scales, while
greater distances restrict gene flow, leading to genetic differenti-
ation by genetic drift (Cavalli-Sforza et al., 1994; Relethford, 2004b;
Betti et al., 2010). Therefore, the partial Mantel test could be useful
when our interest lies in eliminating broad-scale lineal trends or

Table 1
Results of the regression and Mantel analyses performed between PC1 score and the
temperature variables.

Technique r 2 Std coeff. P value
temp.
Standard models
Ordinary least-squares 0.861 0.741 0.861 0.002
(OLS)
Mantel 0.632 0.399 — 0.001
Spatial models
Generalized least-squares 0.848 0.720 0.716 0.014
(GLS)
Spatial eigenvector 0.793 0.793 1.319 0.014
mapping (SEVM)?
Trend surface analysis 0.877 0.769 0.634 0.085
(TSA)?
Partial Mantel 0.258 0.066 - 0.141

@ The r and r? values show the predictor plus the spatial structure. Bold letters
represent significant associations.
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0 500 1000
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1500 km

Figure 5. Plot of geographical distance (d) vs. distance/weight (wyj).

spatial dependence out of a dataset, e.g., the geographic trends
generated by an expansion or migration from a single direction
(Sokal et al., 1989). However, given the problems found when
converting vector data to pairwise distances (see above), we would
rather incorporate the broad-scale lineal trends into the structure
of a spatial regression model (e.g., into trend surface analysis, TSA;
Diniz-Filho et al., 2009; Perez et al., 2009a).

Here, we stress the use of spatial regression techniques, but we
could also incorporate genetic distance or phylogenetic relation-
ships to test autocorrelation among populations, an approach
known as the comparative phylogenetic method (for reviews, see
Rohlf, 2001; Garland et al., 2005). In such cases, different evolu-
tionary models (e.g., isolation-by-distance or phylogenetic trees)
can easily be used to generate the W matrix, instead of geographical
distances (Rohlf, 2001; Perez et al., 2009a). For example, Bernal
et al. (2010) used a GLS model where W matrices were generated
using a neighbor-joining tree, the inverse function of mtDNA
distances, and the inverse function of geographical distance
between human populations. Having a strong model for depen-
dence and/or autocorrelation due to ecological or evolutionary
processes in the dataset analyzed, will improve the ability of
regression techniques to detect the association between a partic-
ular environment factor and a morphological variable.

Although anthropological studies generally apply correlation
analyses to infer the importance that environmental variables
have in shaping morphological differences among human pop-
ulations, the use of quantitative genetic models to measure the
magnitude of shape variation, and not only its pattern, could be
a good complementary approach (Schluter, 2000; Roseman, 2004;
Perez and Monteiro, 2009; Perez et al., in press). These techniques
are useful for understanding the importance of ecological factors
in shaping the patterns of morphological variation among pop-
ulations in an explicit geographical context. However, neither tests
for pattern nor magnitude is sufficient for determining if natural
selection is the evolutionary process shaping morphological
divergence among populations. Once the importance of an envi-
ronmental variable has been detected with the appropriate
method, further studies based on morphological, genetic, ecolog-
ical, and evolutionary evidence are required in order to prove the
existence of natural selection and adaptation (Losos, 2000).

Conclusions

The results obtained by partial Mantel tests should be treated
with caution because these tests can sometimes remove the effect
one is trying to detect, including the influence of environmental
factors. Spatial regression techniques, on the other hand, could be
used to provide more accurate statistical estimates of the associa-
tion between morphological and ecological variables. The spatial
and phylogenetic regression techniques are not new to interspecific
research (Ives and Zhu, 2006; Bini et al., 2009), but they have been
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underused in biological anthropology. In our view, spatial regres-
sion techniques are more flexible and they can incorporate simi-
larity among populations (i.e., autocorrelation) as well as broad-
scale geographic trends (i.e., spatial dependence) into the models,
depending on how the data are modeled. We do not claim that
previous studies aiming to test ecological factors are misguided, but
we wonder if the use of more explicit spatial regression models
could also be used to study the importance of ecological factors
driving morphological variation among human populations.
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