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The g-deformed statistics for fermions arising within the nonextensive thermostatistical formalism has
been applied to the study of various quantum many-body systems recently. The aim of the present note
is to point out some subtle difficulties presented by this approach in connection with the problem of
thermodynamic consistency. Different possible ways to apply the g-deformed quantum distributions in
a thermodynamically consistent way are considered.
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The g-deformed quantum distributions [1-10] inspired on the
nonextensive thermostatistical formalism [11-13] have been the
focus of considerable attention in recent years (see [14-19] and
references therein). An interesting recent development along these
lines was the formulation by Pereira, Silva, and Alcaniz (PSA)
of a g-deformed equation of state for relativistic nuclear mat-
ter within Walecka’s phenomenological relativistic approach [16].
The PSA equation of state may be relevant for the study of nu-
clear matter in neutron stars. Strictly speaking, however, the PSA
equation of state as derived in [16] is not thermodynamically
consistent. Here we will consider possible solutions to this dif-
ficulty. As we are going to demonstrate, the PSA approach can
be implemented in a thermodynamically consistent way either
by adopting a g-nonlinear form for thermodynamical quantities
like the total energy E or the total number of particles N that
in the standard thermostatistical formalism are linear functions
of the (mean) occupation numbers or, alternatively, by recourse
to a different choice of the entropy functional. This last proce-
dure can, in turn, be implemented in two different ways. One
possible re-definition of the entropy, accounting for the relevant
equations of constraint, yields the same quantum distribution
functions as solutions of the entropic variational principle as the
one employed by PSA, and it preserves thermodynamic consis-
tency.

Consider the g-deformed Fermi-Dirac distribution used by PSA
which has the form
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where €; are the single particle energies, 8 = 1/kT (T being the

absolute temperature and k denoting Boltzmann’s constant), u =

—% is the chemical potential, and

iy =

EI:{Z ¥f(x+ﬂel>0, 2)
—q ifa+ B <0.
The physical and mathematical motivations for the prescription (2)
are the same as those behind the celebrated Tsallis’ cut-off con-
dition, viz., to avoid unphysical negative values of the argument
of the power function appearing in the distribution (1). It must
be emphasized that Tsallis’ cut-off condition, even if leading to
thermodynamically consistent maximum entropy distributions, is
not uniquely determined by the entropic variational principle it-
self. Other prescriptions are in principle possible. The one given
by Eq. (2) has been analysed in detail in [20] and leads to a g-
deformed Fermi distribution that has already been found useful
for the description of various important physical systems [15,16,
18,19].

As shown in [20], the Fermi mean occupation numbers (1) can
be obtained from a maximum entropy principle based on the en-
tropic measure

s =3¢yl (3)
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where the function Cq(x) is defined by

x4 —x)—(1—x)1 .
e = s PE 3

Cq(X)= x=x>"1 (A=x)-(1-x>271 if 1 (4)
1—q + i-q x> 5,

and it is assumed that q > 1. The optimization of the entropic mea-
sure (3) under appropriate constraints corresponding to the total
number of particles N and the total energy E leads to the varia-
tional problem

1
8{ES¢§F)[ﬁ]+a<N—Zﬁ?)+/3<E—Zeiﬁ?)}=O, (5)
1 1
where o and S denote the Lagrange multipliers associated, respec-
tively, with the aforementioned two constraints. The solution of
Eq. (5) is given by the g-deformed Fermi distribution (1). In the
limit case ¢ — 1, the entropic functional (3) reduces to the well-

known Fermi functional

S=-=> [Ailnf; + (1 —7)In(1 - )], (6)
1

and the g-distribution (1) reduces to the standard Fermi distribu-

tion.

Now, the most fundamental requirement of a thermostatistical
formalism is thermodynamical consistency. That is, the formal-
ism must comply with the standard thermodynamical relationships
among thermodynamical variables such as entropy, energy, tem-
perature, etc. For instance, one requires the well-known relation-
ship

0S 1
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between the entropy, the energy, and the temperature of a thermo-
dynamical system at equilibrium to be satisfied. It can be shown
(see [20,21] and references therein for details) that any thermo-
statistical formalism constructed on the basis of the constrained
externalization of an entropic functional (that is, following Jayne’s
maximum entropy prescription) complies with the thermodynam-
ical relationships (which, in the context of Jayne’s’ maxent formu-
lation are usually referred to as Jaynes’ relationships). To obtain
a thermodynamically consistent formulation one has to make the
appropriate identifications between relevant constraints and exten-
sive thermodynamical quantities, on the one hand, and between
the corresponding Lagrange multipliers and appropriate intensive
thermodynamical quantities, on the other one. In the case of the
formalism based upon the entropic variational principle (5) the ap-
propriate identifications are

Zfl?—) N,
i

S il E, (8)
and

B — 1/kT,

—a/B— . 9

The functional (3), of course, is to be identified with the entropy of
the system. It is plain from (8) that, in order to compute physical
quantities in a thermodynamically consistent way, one must not
use directly the particle distribution given by Eq. (1) (as is done
in [16], see Egs. (17)-(20) in [16]) but, instead, use the effective
particle distribution

i = (14 [1+ @G- DB —w] ™) ", (10)

with q defined as in (2). For instance, if the energy of an ideal
Fermi gas is to comply with the basic thermodynamical relation-
ship (7), it has to be computed (according to (8)) as

E=Y e(1+[1+@- DB —mw]7) " (11)

It must be stressed that making the identification (8) does not
imply any severe conceptual difficulty, since the n; are not proba-
bilities and, consequently, are not normalized to unity (see [22] for
a similar situation arising in connection with the g-generalization
of the classical Boltzmann distribution). In fact, it is possible to
reformulate the variational principle (5) in terms of linear con-
straints, by recourse to an appropriate re-definition of the entropic
functional. Indeed, if one introduces the new entropy,

50 =3¢y, (12
i

with the function Cg still defined as in (4), then the variational
principle

1~ - _ _

S{ESéF)[n]—i—a(N—Zni)+5(E—Zeini)}:0, (13)
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is equivalent to the variational principle (5). The solution to this

variational problem is given by the mean occupation numbers

fi=(1+[1+ @ - DBE — w]iT) ", (14)

which are given by the same expression as the one given in (10).
The thermodynamical quantities N and E are now expressed in
terms of the mean occupation numbers (14) using the standard
linear forms.

There is another possible modification of the maxent variational
problem that can be implemented in order to recover thermody-
namic consistency. One can redefine the entropy functional to be

SZ:Sq + o1 Z(ﬁi—ﬁ?)-i-ﬂ]ZGi(ﬁi—r_l?). (15)

In this case the variation of the entropy functional with the stan-
dard constraints N=7)";7n; and E =Y _; €;n; is given by

8{5;‘+(N—a2i:ﬁ,~>+<E—ﬂ2i:e,'ﬁ,')]=0, (16)

where o1 and B; are constants as g to be determined. Now if the
following choices, 1 =« and 1 = $ are made, the solution to the
variational problem given in Eq. (16) is formally given by Eq. (1)
where « and 8 are now determined by the standard equations of
constraint since both variational equations, (5) and (16), are equiv-
alent.

However, in order for this to be a useful result, it is essential
that thermodynamic consistency is also preserved. In order to ver-

. S asx . .
ify this it is necessary to evaluate (¢ )v n. This can be done in
the following manner,

OE Jy n  \omj )y n/ \ORj Jy y
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as required.
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Fig. 1. S*/L for m=1 MeV and § = 10° MeV.

Thermodynamic consistency is therefore preserved when the
following identifications are made

Zﬁ,‘—) N,
i

Zfliei—> E, (18)
and

B — 1/kT,

—a/B— U. (19)

It should also be noted that in the limit ¢ — 1, the last two terms
in (15) cancel and it again reduces to (6). Requiring S;‘ — 0 in the
limit T — O places the restriction q < 2.

To illustrate the behavior of this redefined entropy functional,
consider the toy model of a one-dimensional Fermi gas. In this case
the entropy density (entropy per unit length) can be calculated
from

)

S* _ .

== / [Ca(i) + (€ = B (A — i) g (e) de (20)
0

where § is a high energy cutoff introduced for numerical purposes,

and g(e)de = %ﬁde is the one-dimensional density of states
per unit length. For m =1 MeV and § = 10° MeV, Fig. 1 shows
S*/L for various values of q. The entropy density increases at a
given temperature for increasing values of g but remains a strictly
convex function. Thus, this redefinition introduces no additional
structure into the entropy density.

Similar results can be obtained for quantum systems given in
terms of Bose-Einstein distributions. It is also interesting to note
that analogous results can easily be obtained for a g-deformed
classical entropy functional. Indeed, for the entropic measure

Classical Classical) , =
S((; assical) — Z Cé assma)(pi)’ (21)
i

where the function Céﬂassjcal)(x) is defined by

x—x1 .
<
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(22)

T ifx>1,

the variational principle

1
5{E5c(1cmscal)[15] —i—ot(N _ Zﬁ?) +ﬁ<E — Zglplq>} =0,
(23)

yields a g-deformed generalization of the classical Maxwell-
Boltzmann distribution,
1

pi =[1+@— D& — P, (24)
where q is again given by (2). The distribution (24) has the same
form as the well-known Tsallis distribution, except for the fact that
Tsallis’ cut-off condition is now replaced by the prescription (2).
Notice, however, that the p; in (24) are occupation numbers and
not probabilities and, consequently, are not normalized to 1. In or-
der for the distribution (24) to be normalizable at all, the single
particle energy values €; must be bounded from below. Clearly, this
distribution can also be obtained using standard linear constraints
by redefining the entropy functional as in (15).

Alternatively, as in (12), one can also choose
S‘éClassical) _ Z C((]Classical) (ﬁl/q) (25)

i
i

In this case the variation

1. )
5{E5£1C13551cal)[/3] —i—o[(N _ Zpl> —i—ﬁ(E _ Zeip,)} =0,
(26)

yields the distribution

q
pi=[1+@— (& —m)B]™, (27)
which is analogous to (14).

In the present work we have considered the g-deformed quan-
tum entropy functional given in terms of Fermi-Dirac distribution
functions. Modifying the entropy functional admits the possibil-
ity of using standard linear constraints such that thermodynamic
consistency is preserved. Techniques similar to those developed by
Hasegawa [23] can then be used to obtain exact as well as good
approximate numerical solutions for g-generalized quantum sys-
tems.

Summing up, our main conclusions are the following.

e First, a straightforward application of the variational principle
(5) is not consistent, from the thermodynamical point of view,
with the use of the standard identifications N — ) ;n; and
E — > ;€ii; for the total number of particles and the total
energy, respectively (a similar problem occurs with other ther-
modynamical quantities that in the standard thermostatistical
formalism are expressed as linear functions of the mean occu-
pation numbers).

Thermodynamic consistency can be recovered by using the
identifications N — Y°;i! and E — Y ;€. This approach
does not lead to serious conceptual problems, because the
mean occupation numbers are not probabilities and are not
normalized to one.

Alternatively, thermodynamic consistency can be recovered by
appropriately redefining the entropy functional. In the present
work we have considered two alternative ways of implement-
ing this last procedure.

Thermodynamical consistency is certainly a strong and funda-
mental constraint in the development of extended or generalized
thermostatistical formalisms of physical significance. However, in
the case of the g-deformed Fermi-Dirac statistics, this requirement
alone does not determine unequivocally a unique nonextensive
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generalization of the standard statistics for fermions. As we have
pointed out, there are several ways to implement a thermostatis-
tical formalisms for the g-deformed Fermi-Dirac distribution in a
thermodynamically consistent way. Only when more experimen-
tal data is available, and more applications to concrete quantum
many-body systems are investigated, will one definitively be able
to ascertain which choices of the concomitant entropy functional
and constraints should be used and under which circumstances.
Any further developments along this lines will be very welcome.
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