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Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and
evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D
vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our
formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible
the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the
universe on cosmological scales.
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1. Introduction

The origin of cosmological scales magnetic fields is one of the
most important, fascinating and challenging problems in modern
cosmology. Many scenarios have been proposed to explain them.
Magnetic fields are known to be present on various scales of the
universe [1]. Primordial large-scale magnetic fields may be present
and serve as seeds for the magnetic fields in galaxies and clusters.

Until recently the most accepted idea for the formation of large-
scale magnetic fields was the exponentiation of a seed field as
suggested by Zeldovich and collaborators long time ago. This seed
mechanism is known as galactic dynamo. However, recent observa-
tions have cast serious doubts on this possibility. There are many
reasons to believe that this mechanism cannot be universal. This
is why the mechanism responsible for the origin of large-scale
magnetic fields is looked in the early universe, more precisely dur-
ing inflation [2], which should be amplified through the dynamo
mechanism after galaxy formation. In principle, one should be able
to follow the evolution of magnetic fields from their creation as
seed fields through to dynamo phase characteristic of galaxies.
It is believed that magnetic fields can play an important role in
the formation and evolution of galaxies and their clusters, but are
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probably not essential to our understanding of large-scale structure
in the universe. However, an understanding of structure formation
is paramount to the problem of galactic and extragalactic magnetic
fields [3,4].

It is natural to look for the possibility of generating large-scales
magnetic fields during inflation with strength according with ob-
servational data on cosmological scales: < 10−9 Gauss. However,
the FRW universe is conformal flat and the Maxwell theory is
conformal invariant, so that magnetic fields generated at inflation
would come vanishingly small at the end of the inflationary epoch.
The possibility to solve this problem relies in produce non-trivial
magnetic fields in which conformal invariance to be broken.

On the other hand, the five-dimensional model is the simplest
extension of General Relativity (GR), and is widely regarded as the
low-energy limit of models with higher dimensions (such as 10D
supersymmetry and 11D supergravity). Modern versions of 5D GR
abandon the cylinder and compactification conditions used in orig-
inal Kaluza–Klein (KK) theories, which caused problems with the
cosmological constant and the masses of particles, and consider
a large extra dimension. In particular, the Induced Matter The-
ory (IMT) is based on the assumption that ordinary matter and
physical fields that we can observe in our 4D universe can be ge-
ometrically induced from a 5D Ricci-flat metric with a space-like
noncompact extra dimension on which we define a physical vac-
uum [5].

Gravitoelectromagnetic Inflation (GEMI) [6] was proposed re-
cently with the aim to describe, in an unified manner, electromag-
netic, gravitational and the inflaton fields in the early inflationary
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universe, from a 5D vacuum. It is known that conformal invari-
ance must be broken to generate non-trivial magnetic fields. A very
important fact is that in this formalism conformal invariance is
naturally broken. Other conformal symmetry breaking mechanisms
have been proposed so far [7]. In the framework of the IMT, elec-
tromagnetic effects were studied at a classical level in [8]. How-
ever, most of these are developed in the Coulomb gauge. In this
Letter we study a semiclassical approach of this formalism in a
Lorentz gauge. Furthermore, for simplicity we shall neglect back
reaction effects on the semiclassical Einstein equations.

2. Vector fields in 5D vacuum

We begin considering a 5D manifold M described by a sym-
metric metric gab = gba .1 This manifold M is mapped by coordi-
nates {xa}
dS2 = gab dxa dxb, (1)

where gab is the 5D tensor metric, such that gab = gba . From the
geometrical point of view, to describe a relativistic 5D vacuum, we
shall consider that gab is such that the Ricci tensor Rab = 0, and
hence: Gab = 0. To describe the system we introduce the action on
the manifold M

S =
∫

d5x
√−g

[
(5)R

16πG
− 1

4
Q bc Q bc

]
, (2)

where (5)R is the 5D scalar curvature on the five-dimensional met-
ric (1) and Q ab = F ab − γ gab∇ f A f , where the 5D Faraday tensor
is F bc = ∇b Ac − ∇c Ab = ∂b Ac − ∂c Ab . We shall consider that the
fields Ab are minimally coupled to gravity and free of interactions,
so that the second term in the action is purely kinetic.

2.1. Einstein equations in 5D

If we minimize the action respect to the metric we will obtain
Einstein equations in 5D. In this Letter we shall use a semiclassical
approach where the Einstein equations are expressed by the ho-
mogeneous component of the fields. This slightly differs from the
one used by [9] in the fact that we don’t need to renormalize the
stress tensor, but at the cost of assuming a semiclassical behavior
of the fields that rules out the dependence with the wavenumber
in the calculation of the semiclassical Einstein equations

Gab = −8πGT (0)

ab , (3)

where T (0)

ab ≡ 〈Tab( Āc)〉. Notice that we use a semiclassical expan-
sion of the vector fields

Ac = Āc + δAc, (4)

where the overbar symbolizes the 3D spatially homogeneous back-
ground field consistent with the fixed homogeneous metric and
δAc describes the fluctuations with respect to Āc . In this sense
when we perform the expectation value of the stress tensor, adopt-
ing the ansatz 〈δAc〉 = 0, only will appear zero order T (0)

ab and the

second order T (2)

ab in perturbations terms. The last corresponds to
a feedback term and is related to back-reaction effects, which do
not will be consider in this Letter. The stress tensor is defined by
the fields Lagrangian being symmetric by definition

Tbc = 2√
g

{
∂

∂ gbc
(
√

gL f ) − ∂

∂xe

[
∂

∂ gbc
,e

(
√

gL f )

]}
. (5)

1 In our conventions latin indices “a,b, c, . . . ,h” run from 0 to 4, greek indices
run from 0 to 3 and latin indices “i, j,k, . . .” run from 1 to 3.

The appearance of variations respect to derivatives of the metric is
because we are dealing with vector fields whose covariant deriva-
tive operators involve Christoffel symbols (i.e. ordinary derivatives
of the metric). In our case the stress tensor reduces to

Tbc = F e
b Fce + 1

4
gbc Fde F de − λ

{
2Ae;e

[
A(b;c)

− (
2A

(b gc)h, f + ghf ,(b Aa)

)
ghf ]

+ gbc

[(
Ae

,ef + Γ e
de, f Ad + Γ e

de Ad
, f + 2Γ e

ef Ad
,d

+ 3

2
Γ e

edΓ
a

af Ad
)

A f + 1

2

(
Ae

,e

)2
]

+ gbc, f A f Ae
;c
}
, (6)

where γ 2 = 2λ
5 .

2.2. 5D dynamics of the fields

The Euler–Lagrange equations give us the dynamics for Ab

∇ f ∇ f Ab − Rb
f A f − (1 − λ)∇b∇ f A f = 0. (7)

In particular, the choice λ = 1 is known as Feynman gauge, some-
how equivalent to a Lorentz gauge ∇ f A f = 0. In this Letter we
shall choose simultaneously both conditions. It is easy to show that
the 5-divergence of the field equation of motions satisfy the same
equation as in a Minkowski space, but changing ordinary partial
derivatives by the covariant derivative

∇a∇a
(∇ f A f ) = 0. (8)

Hence, the Lorentz gauge is satisfied for appropriate initial condi-
tions of ∇a Aa = 0. With such a choice the field Lagrangian density
L f = − 1

4 Q 2 is

L′
f = −1

2
∇a Ab∇a Ab = −1

2
∇μ Aν∇μ Aν − 1

2
∇4 Aν∇4 Aν

− 1

2
∇μ A4∇μ A4 − 1

2
∇4 A4∇4 A4. (9)

For 4D observers living in a hypersurface where the fifth compo-
nent of the vector field is normal to it, this extra dimensional field
will manifest separately, like an effective 4D vector field Aν and a
4D scalar field A4. In this sense we can identify kinetic terms for
both, scalar and vector fields, and the derivatives with respect to
the extra dimension may be interpreted as potential (or dynamical
sources) terms joined with massive terms for each of them.

The stress tensor in this gauge is

Tab = −∇a Ae∇b Ae − ∇e Aa∇e Ab − 2gc(b Aa)Γ
c

ef ∇e A f

+ 1

2
gab∇e A f ∇e A f − 2

g, f

g

[∇(a Ab) A f + ∇ f A(b Aa)

− A(a∇b) A f ] − [∇(a Ab) A f + ∇ f A(b Aa) − A(a∇b) A f ]
, f .

(10)

3. Special case: 5D generalization of a de Sitter spacetime

Because we are interested to study a cosmological scenario of
inflation from the context of the theory of Space–Time–Matter, we
shall consider the 5D Riemann-flat metric [10]

dS2 = ψ2 dN2 − ψ2e2N dr2 − dψ2, (11)
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where N is a time-like dimension related to the number of e-folds,
dr2 = dxiδi j dx j is the Euclidean line element in Cartesian coordi-
nates and ψ is the space-like extra dimension. This metric satisfies
the vacuum condition Gab = 0.

For this 5D metric the field equations, after taking Lorentz
gauge: ∇a Aa = ∂N A0 + 3A0 + ∂ψ A4 + 4ψ−1 A4 + ∂i Ai = 0, are{

∂2

∂N2
+ 5

∂

∂N
− e−2N∂2

r − ψ2
[

∂2

∂ψ2
+ 6

ψ

∂

∂ψ

]}
A0

+
[

2

ψ

∂

∂N
+ 2

∂

∂ψ
+ 8

ψ

]
A4 = 0, (12)

{
∂2

∂N2
+ 5

∂

∂N
− e−2N∂2

r − ψ2
[

∂2

∂ψ2
+ 6

ψ

∂

∂ψ

]}
A j

− 2∂ j
(

A0 + A4

ψ

)
= 0, (13)

{
∂2

∂N2
+ 3

∂

∂N
− e−2N∂2

r

− ψ2
[

∂2

∂ψ2
+ 6

ψ

∂

∂ψ
+ 12

ψ2

]}
A4 = 0. (14)

Notice that the (14) is decoupled after applying the Lorentz gauge.
However we see that it is not sufficient to decouple all the field
equations. This is because the non zero connections of the metric
(11) act in a non trivial manner in the vector fields derivatives.
There are 14 non zero Christoffel symbols

Γ
μ
μ4 = ψ−1, Γ i

i0 = 1, Γ 0
ii = e2N ,

Γ 4
00 = ψ, Γ 4

ii = −ψe2N . (15)

Therefore, in this Riemann-flat spacetime we obtain the D’Alam-
bertian of the Ab field

∇ f ∇ f Ab = 0, (16)

but, expressed in terms of the ordinary derivatives and the
Christoffel symbols we notice the coupling terms

g f h{∂ f ∂h Ab + 2Γ b
ef ∂h Ae + Γ b

he, f Ae − Γ e
f h∂e Ab

− Γ e
f hΓ

b
ed Ad + Γ b

ef Γ
e

hd Ad} = 0. (17)

In the Minkowskian limit (ψ0 → ∞) all of the connections van-
ish and so the field equations remain decoupled after the gauge
choice.

3.1. Dynamics of the 3D spatially isotropic background fields

We shall combine the field equations of motion for the classi-
cal homogeneous fields with the Einstein equations, the first ones
reduce to{

∂2

∂N2
+ 5

∂

∂N
− ψ2

[
∂2

∂ψ2
+ 6

ψ

∂

∂ψ

]}
Ā0

+
[

2

ψ

∂

∂N
+ 2

∂

∂ψ
+ 8

ψ

]
Ā4 = 0, (18)

{
∂2

∂N2
+ 5

∂

∂N
− ψ2

[
∂2

∂ψ2
+ 6

ψ

∂

∂ψ

]}
Ā j = 0, (19)

{
∂2

∂N2
+ 3

∂

∂N
− ψ2

[
∂2

∂ψ2
+ 6

ψ

∂

∂ψ
+ 12

ψ2

]}
Ā4 = 0. (20)

Notice that the equation for Ā0 is the unique coupled. Further-
more, once obtained Ā4, we can describe the dynamics of Ā0 in
(18), where Ā4 appears as a source.

4. Effective 4D dynamics of the fields

The remarkable property of the 5D metric (11) is that it is a
generator of 4D de Sitter spacetimes. This may be done when we
foliate the space (11) in a particular hypersurface ψ = ψ0. It is said
that for an observer moving with the penta velocity Uψ = 0, the
spacetime describes a de Sitter expansion. Then the effective 4D
hypersurface it has a scalar curvature (4)R = 12/ψ2

0 = 12H2
0, such

that the Hubble parameter is defined by the foliation H0 = ψ−1
0 . If

we consider the coordinate transformations

t = ψ0N, R = ψ0r, ψ = ψ0, (21)

we then arrive to the Ponce Leon metric [11]: dS2 = (
ψ
ψ0

)2[dt2 −
e2t/ψ0 dR2] − dψ2. If we foliate ψ = ψ0, we get the effective 4D
metric

dS2 → ds2 = dt2 − e2H0td�R2, (22)

which describes a 3D spatially flat, isotropic and homogeneous de
Sitter expanding universe with a constant Hubble parameter H0.

The dynamics of the fields being given by Eqs. (12), (13) and
(14), evaluated on the foliation ψ = ψ0 = 1/H0, with the trans-
formations (21). In the following subsections we shall study sep-
arately the dynamics of the classical 3D spatially isotropic fields:
Āμ(t,ψ0) and Ā4(t,ψ0), and the fluctuations of these fields:
δAμ(t, �R,ψ0) and δA4(t, �R,ψ0). Notice that now �R ≡ �R(Xi). To de-
scribe the dynamics of the fields we shall impose the effective 4D
Lorentz gauge: (4)∇μ Aμ = 0. It implies that the 5D Lorentz gauge
with the transformations (21) and evaluated on the foliation must
now be

∇a Aa|ψ0 = (4)∇μ Aμ(t, �R,ψ0) + (
∂ψ A4 + 4ψ−1 A4)∣∣

ψ0
= 0, (23)

where (4)∇μ Aμ denotes the covariant derivative on the effective
4D metric (22). Hence, in order to the effective 4D Lorentz gauge
to be fulfilled, we shall require(
∂ψ A4 + 4ψ−1 A4)∣∣

ψ0
= 0. (24)

4.1. 4D classical field dynamics

In order to solve Eqs. (18), (19) and (20) on an effective
4D de Sitter metric, we must evaluate these equations on the
particular foliation ψ = ψ0 = H−1

0 , r = Rψ0 and N = H0t . We
shall identify the effective scalar A4 with the inflaton field:
A4(t, �R,ψ0) ≡ φ(t, �R,ψ0) and we shall denote φ̄(t,ψ0) ∼
φ1(N)φ2(ψ)|N=H0t,ψ=ψ0=H−1

0
, as the 3D spatially isotropic and

homogeneous background field. In the same way we state for
the homogeneous component of the vector field the separation
Ā j(t,ψ0) ∼ S j

1(N)S j
2(ψ)|N=H0t,ψ=ψ0=H−1

0
, in the next we shall drop

the index j to label the functions S1(t) and S2(ψ0). Hence, we ob-
tain

φ̄(t,ψ0) ∼ φm(t, y0) = e− 3
2 H0t(a1eαH0t + a2e−αH0t),

α = 3

2

√
1 − 4m2

9
, (25)

where we have considered the condition (24), such that

−ψ2
[

∂2

∂ψ2
+ 3

ψ

∂

∂ψ

]
Ā4

∣∣∣∣
ψ0

= m2φ̄(t,ψ0). (26)

Furthermore, the general solution of Eq. (19) on the effective 4D
metric (22), is
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Ā j(t,ψ0) ∼ Sμ(t) = e− 5
2 H0t(c1eγ H0t + c2e−γ H0t),

γ = 5

2

√
1 − 4ν2

25
(27)

where

−ψ2
[

∂2

∂ψ2
+ 6

ψ

∂

∂ψ

]
Ā j

∣∣∣∣
ψ0

= ν2 Ā j(t,ψ0). (28)

A similar treatment can be done for Ā0, after making use of the
condition (24), the transformations (21) and the foliation ψ =
ψ0 = 1/H0. However, the difference with the other background
components of the field observed in Eq. (18) is that Ā4 ≡ φ̄(t,ψ0)

acts as a source of Ā0(t,ψ0).
As a particular choice we shall consider a 4D inflationary

universe, where the background fields are Āb = (0,0,0,0, φ̄), in
agreement with a global (de Sitter) accelerated expansion which is
3D spatially isotropic, flat and homogeneous.2 In this case, the rel-
evant components of the classical energy–momentum tensor, are

ρ ≡ 〈
T 0

0

〉 = 1

2
˙̄φ2 +

[
5

ψ2
φ̄2 + 1

2
φ̄′2 + 2

ψ
φ̄φ̄′

]
ψ=ψ0

, (29)

p ≡ 〈−T i
j

〉∣∣
i= j = 1

2
˙̄φ2 −

[
5

ψ2
φ̄2 + 1

2
φ̄′2 + 2

ψ
φ̄φ̄′

]
ψ=ψ0

, (30)

〈
T α

β

〉∣∣
α 
=β

= 0, (31)

where dots denote derivative with respect to the time which in our
case are zero: ˙̄φ|ψ0 = 0. Furthermore, from Eq. (29) we can make
the following identification for the background scalar potential:

V [φ̄] =
[

5

ψ2
φ̄2 + 1

2
φ̄′2 + 2

ψ
φ̄φ̄′

]
ψ=ψ0

. (32)

In our model, the hypersurface ψ = ψ0 defines a de Sitter ex-
pansion of the universe with a Hubble parameter H0 = ψ−1

0 . The
equation of state for this case is p = −ρ = −3/(8πGψ2

0 ). Then, it
is easy to see that the only compatible background solution for the
field evaluated on the hypersurface is the typical de Sitter solution
for a background scalar field: φ̄(t,ψ0) = φ̄0. This means that

V [φ̄0] =
[

5

ψ2
φ̄2

0 + 1

2
φ̄′2 + 2

ψ
φ̄0φ̄

′
]

ψ=ψ0

= 3H2

8πG
. (33)

A particular solution of (33) is

(
φ̄′)2∣∣

ψ=ψ0=1/H = 5H2

4πG
, (34)

φ̄′ = −5Hφ̄. (35)

From Eqs. (34) and (35) we obtain

(φ̄)2
∣∣
ψ=ψ0=1/H = φ̄2

0 = 1

20πG
. (36)

2 One could consider, for instance, the case when the background field is Āb =
(Φ, Ā1,0,0,0), that defines an effective homogeneous component of the electric
field. However, we would obtain an anisotropic component of the stress tensor
T10, which is not compatible with our background, spatially flat, homogeneous and
isotropic (de Sitter) metric. In general this implies that for the background fields
to satisfy Einstein equations, the components Ā0; Ā1; Ā2; Ā3 are highly restricted.
In particular we have the following cases to choose: (i) Āi = 0, Ā0 = Φ̄(t,ψ0) and
Ā4 = φ̄(t,ψ0), (ii) Ā0 = Ā4 = 0 and Āi = Āi

0 constants. In what follows we shall an-
alyze a particular choice of the first case (with Ā0 = 0), because the other isn’t very
interesting in the physical sense.

4.2. 4D field fluctuations

Here we consider Eqs. (12), (13) and (14) to search for possible
electromagnetic fields generated through this model. In Section 4.1
we’ve seen that the Einstein equations for the background fields
exclude any possibility of homogeneous electromagnetic fields.

The equation for the effective scalar δA4(t, �R,ψ0) on the ef-
fective hypersurface (22) is decoupled from the dynamics of the 4-
vector. In contrast, the equations for δA0(t, �R,ψ0) and δAi(t, �R,ψ0)

remain coupled. By the use of our 5D Lorentz gauge evaluated on
the foliation ψ = ψ0 = H−1

0 : ∇a Aa|
ψ0=H−1

0
= 0, we can express the

inhomogeneous term for δA0 as only a function of δA4. The so-
lution will involve both, homogeneous and inhomogeneous parts.
Once obtained δA0 and δA4, we can finally search solutions for the
components δA j . These total solutions are necessary to deduce the
effective electric fields. In contrast, as we previously said, the equa-
tion of motion for pure magnetic fields may be obtained by just
applying the curl in the 3-space to Eq. (13). The last term in (13)
vanishes because is a 3-gradient, and so magnetic fields equations
are decoupled. To quantize the field fluctuations on the effective
4D de Sitter spacetime (22), we shall consider Eqs. (12), (13) and
(14), with condition (24), the transformations (21) and the folia-
tion ψ = ψ0 = 1/H0. The equal time canonical relations are

[
δAi(t, �R,ψ0),Π

j(t, �R ′,ψ0
)]∣∣

ψ0=1/H0

= −ig j
i e−3H0tδ(3)

(�R − �R ′), (37)

where gij are the space-like components of the tensor metric in
(22) and δ(3)(�R − �R ′) is the 3D Dirac’s function. Furthermore, the
canonical momentum is given by the electric field Π j ≡ E j =
∇ j A0 − ∇0 A j . Eqs. (12), (13) and (14) with the transformations
(21) can be evaluated on the foliation ψ = ψ0 = 1/H0 to give
the dynamics on the effective 4D spacetime (22). If we take into
account the conditions (24), the effective 4D dynamics of the fluc-
tuations describe an effective 4D Lorentz gauge, so that

∂2δA0

∂t2
+ 5H0

∂δA0

∂t
− H2

0e−2H0t∂2
RδA0 + ν2 H2

0δA0

= −2H2
0
∂δφ

∂t
, (38)

∂2δA j

∂t2
+ 5H0

∂δA j

∂t
− H2

0e−2H0t∂2
RδA j + ν2 H2

0δA j

= 2H2
0∂ j(δA0 + H0δφ

)
, (39)

∂2δφ

∂t2
+ 3H0

∂δφ

∂t
− H2

0e−2H0t∂2
Rδφ + m2 H2

0δφ = 0 (40)

describe the 4D dynamics of the fluctuations. A very important
fact is that the electromagnetic field fluctuations δAμ obey a Proca
equation with sources. The expansion of the field in temporal
modes is

δAμ(t, �R,ψ0) =
∫

d3 K

(2π)3

3∑
λ=1

εμ( �K , λ)
(
a( �K ,λ)e

−i �K ·�R S(K , t,ψ0)

+ a†
( �K ,λ)

ei �K ·�R S�(K , t,ψ0)
)
, (41)

where �K = H0�k (k is a dimensionless wavenumber). Furthermore,
εμ(�k, λ) are the polarizations,3 such that in the Lorentz gauge the
following expression holds:

3 Parenthesis denotes that sum do no run over these indices.
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3∑
λ=1

εα(�k, λ)εβ(�k, λ) = −
(

gαβ − H2
0

m2
eff

kαkβ

)
, (42)

where we have introduced the effective mass m2
eff = H2

0(ν2 − 25
4 )

of the redefined temporal modes UK (t) = e5H0t/2 S(K , t,ψ0), that
obey the harmonic equation ÜK + ω2

K (t)UK = 0. The time depen-
dent frequency is defined by the relation KμK μ = m2

eff

ω2
K (t) = [

m2
eff + (

e−H0t K
)2]

. (43)

Modes with ω2
K > 0 are stable, but those with ω2

K < 0 [i.e., with
k < (25/4−ν2)1/2eH0t ], are unstable. In the small wavelength limit
these behave like plane waves in Minkowski space. Furthermore,
the annihilation and creation operators a(K ,λ) and a†

(K ,λ) , comply
with the commutation relations[
a
( �K ,λ)

,a†
( �K ′,λ′)

] = (2π)3 gλλ′δ(3)
( �K − �K ′). (44)

The time dependent modes for the contravariant vector δAμ are

S(K , t,ψ0) = e−5H0t/2{c1H(1)
σ

[
x(t)

] + c2H(2)
σ

[
x(t)

]}
,

σ =
√

25

4
− ν2, x(t) = K

H0
e−H0t . (45)

We can also obtain the temporal modes for the covariant δAμ

which are related to the contravariant ones: TK (t) = e2H0t S ×
(K , t,ψ0). The commutation relations (37) yield the following con-
ditions over these modes

TK Ṫ �
K − T �

K ṪK = −ie−H0t, (46)

TK T �
K = e−H0t

2w K (t)
, (47)

which are only valid on short wavelength modes for which ω2
K > 0.

Eqs. (46) and (47) give us the normalization conditions for the
modes of δAμ . On the other hand, these modes are unstable on
cosmological scales: ω2

K < 0, and the expression (46) tends to
zero. To apply these conditions we take the small wavelength
limit for the Hankel functions x(t) � |σ 2 − 1

4 |. These means that
K/H0e−H0t � m2

eff , so that w K (t) � K e−H0t . In this limit the con-
ditions (46) and (47) become dependent one of the another. If we
choose c1 = 0, the solution for the modes is

TK (t) = e− 1
2 H0t

√
π

4H0
H(2)

σ

[
x(t)

]
, (48)

where H(2)
σ [x(t)] is the second kind Hankel function.

4.2.1. 4D electromagnetic fluctuations
The electric field for a observer in 4D is defined by its 4-

velocity Eν = Fνλuλ . If we choose the particular co-moving frame
uν = [(H0ψ0)

−1, �0], we obtain

E0 = 0,

Ei = ∂

∂ Xi
δA0 − e2H0t ∂

∂t
δAi − 2H0e2H0tδAi . (49)

The magnetic fields are defined by Bν = 1
2 ενλαβuλ F αβ , where

ενλαβ = √|(4) g|Aνλαβ is the totally antisymmetric Levi-Civita ten-
sor and Aνλαβ is a totally antisymmetric symbol with A0123 = −1.
Then for a co-moving observer we will have a magnetic field,

B0 = 0,

B j =
√|(4)g|

2
A j0klu

0 F kl.

From the last expression we can arrive to another that will be use-
ful to obtain an equation of motion for the magnetic fields, we
first define the Levi-Civita symbol in the 3-flat space using the co-
moving frame: ε jkl = A j0kl (we note that ε123 = 1). Hence

B j =
√∣∣(4)g

∣∣gkk′
u0ε jkl∂k′ Al. (50)

For our particular case we obtain

e−H0t B j = [
δkk′

ε jkl∂k′
]

Al. (51)

The differential operator between square brackets commutes with
the one applied to A j in Eq. (13), so that in the equation of motion
for B j = e−H0t B j there are no sources. We can express the field in
Fourier components of the δA j field

B j(t, �R,ψ0) =
∫

d3 K

(2π)3

3∑
λ=1

εl( �K , λ)ε jnl[a( �K ,λ)Vn(K , t,ψ0)ei �K ·�R

+ a†
( �K ,λ)

V�
n (K , t,ψ0)e−i �K ·�R]

. (52)

Here V j(K , t,ψ0) = −iK j S1(K , t,ψ0) are the temporal modes with
their complex conjugate V�

j (K , t,ψ0) = iK j S�(K , t,ψ0). We per-
form the vacuum expectation value of the B-fields quadratic
amplitude, defined by the invariant product 〈B2〉 ≡ 〈0|Bα Bα |0〉.
For comoving observers B0 = 0 and so we have B2 = B j B j =
e−2H0t ∑

j B j
2 = ∑

j B j
2. Then

〈
B2〉 = ∫

d3 K

(2π)3

(
2e2H0t K 2)S(K , t,ψ0)S�(K , t,ψ0). (53)

We will cut the above integral up to wavelengths that remain well
outside the horizon wavenumber kH = 5

2 eH0t . In this limit we use
the asymptotic limit of the Hankel functions for the long wave-
length limit ke−H0t � √

σ + 1. The power spectra is then

PB(k) = 22σ Γ 2(σ )H4
0

4π3
e(2σ−3)H0tk5−2σ , (54)

if we ask for an almost scale invariant spectrum, then σ = 5
2 + ε ,

ε = − ν2

5 and ν2 � 1. The quadratic amplitude is then

〈
B2〉 = 45H4

0

4π2ν2
e2H0t

(
5θ

2

)−2ε

, (55)

where θ � 1 is a control parameter, such that we stay with super
Hubble wavelenghts: k < θkH .

Using the homogeneous solutions of Eqs. (38), (39) and (40) we
can deduce their contribution for electric fields on the infrared (IR)
sector, we obtain for comoving observers 〈E2〉IR = 〈E2

A + E2
B + E2

C 〉IR ,
where

〈
E2

A

〉
IR � −H5

0
e−4H0t

(ν2 − 25
4 )

θkH∫
0

dk

2π2
k6|Tk|2, (56)

〈
E2

B

〉
IR � −H5

0e−2H0t

θkH∫
0

dk

2π2

(
3e2H0t + H2

0k2

m2
eff

)
|Ṫk|2, (57)

〈
E2

C

〉
IR � H5

0e−2H0t

θkH∫
0

dk

2π2

×
∑

j

H2
0k0k j

m2
eff

(−iH0k j)
(
TkṪ �

k − T �
k Ṫk

)
. (58)
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If we choose σ = 5
2 + ε, ε = − ν2

5 and ν2 � 1, we get

〈
E2

A

〉
IR �

(
3

2π

)2

H4
0e2H0tθ2, (59)

〈
E2

B

〉
IR � 3

(
9

5π

)2

H4
0e2H0tθ−2, (60)

〈
E2

C

〉
IR � 0, (61)

on cosmological scales. Notice that 〈E2〉 is not scale invariant. Then
we can say that on very large scales the amplitude of electromag-
netic fields are

〈
B2〉1/2

IR � 3
√

5

2πν
H2

0eH0t
(

5θ

2

)ν2/5

,

〈
E2〉1/2

IR � 35/2

5π
H2

0eH0tθ−1. (62)

4.2.2. 4D inflaton fluctuations
For the fluctuations of the inflaton field we can make a similar

treatment. The Fourier expansion is

δφ(t, �R,ψ0) =
∫

d3 K

(2π)3

[
α( �K )φ(K , t,ψ0)ei �K ·�R

+ α
†
( �K )

φ∗(K , t,ψ0)e−i �K ·�R]
, (63)

such that the annihilation and creation operators α(K ,λ) and α
†
(K ,λ) ,

comply with the commutation relations[
α( �K ),α

†
( �K ′)

] = (2π)3δ(3)
( �K − �K ′). (64)

The solutions for the modes φ(K , t,ψ0), are

φ(K , t,ψ0) = e−3H0t/2{c1 Jμ
[
x(t)

] + c2Yμ

[
x(t)

]}
,

μ =
√

9

4
− m2. (65)

The nearly invariant spectrum of the scalar perturbations is ob-
tained for small values of the effective mass: m � 1. After nor-
malization of the modes, we obtain the standard result (see, for
instance [12]) on cosmological scales

〈
δφ2〉

IR � Γ 2(μ)

π3(3 − 2μ)

(
2

θμ

)2μ−3

H2
0, (66)

which is divergent for an exactly scale invariant power spectrum
corresponding to a null value of m.

5. Final comments

We have shown how primordial electromagnetic fields and in-
flaton fluctuations can be generated jointly during inflation using a
semiclassical approach to GEMI. The difference with respect other
previous works is that, in this one, we have used a Lorentz gauge
(rather than a Coulomb gauge). One of the important facts is that
our formalism is naturally not conformal invariant on the effective
4D metric (22), which make possible the super adiabatic amplifi-
cation of the modes of the electromagnetic fields during inflation
in a comoving frame on cosmological (super Hubble) scales.

In this Letter we have analyzed the simplest nontrivial con-
figuration field: Āb = [0,0,0,0, φ̄(t,ψ0)]. For these configuration
background fields to satisfy the Einstein equations in a de Sitter
expansion, the background inflaton field must be a constant on
the metric (22): φ̄(t,ψ0) = φ̄0. Then, in the model here developed,

the expansion of the universe is driven by the background infla-
ton field φ̄0 and background electromagnetic fields are excluded to
preserve global isotropy. Notice that back reaction effects are not
included in the semiclassical approach here used for the treatment
of the Einstein equations. These effects should be included jointly
with vectorial metric fluctuations and are the subject of a future
work.

To describe the dynamics of the fields, we impose the effective
4D Lorentz gauge (4)∇μ Aμ = 0, given simultaneously by conditions
(23) and (24). Therefore, the origin of the generation of the seed
of electromagnetic fields and the inflaton field fluctuations during
inflation can be jointly studied. The dynamics of δAμ on the ef-
fective 4D metric (22) obey a Proca equation with sources where
the effective mass of the electromagnetic field fluctuations is in-
duced by the foliation ψ = ψ0 = 1/H0. From the point of view of a
relativistic observer this foliation imply that the component of the
penta-velocity Uψ = dψ

dS = 0.
Finally, we obtain for small values of the mass ν a nearly

scale-invariant long wavelengths power spectrum for 〈B2〉, which
grows as a2 during inflation. After inflation these fields decreases
as a−2 to take the present day values on cosmological scales:
〈B2〉1/2|Now < 10−9 Gauss [13]. On the other hand, using the
homogeneous solutions for Tk(t), we obtained that 〈E2〉IR also
grows as a2 but has a scale dependent power spectrum that
goes as A1(t)k2 + A2(t)k−2; the first term means that (for a
given time), electric fields become more important on shorten
scales and the second one become more important on very large
scales. In what respect to the inflaton field fluctuations 〈δφ2〉, they
are scale invariant on cosmological scales, but the amplitude is
frozen in agreement with the predictions of standard 4D infla-
tion.
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