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a b s t r a c t

We study an array of N units with FitzHugh–Nagumo dynamics linearly coupled. The
system is submitted to a subthreshold harmonic signal and independent Gaussian white
noises with a common intensity η. In the limit of adiabatic driving, we analytically
calculate the system’s nonequilibrium potential for arbitrary linear coupling. We illustrate
its applicability by investigating noise-induced effects in an excitable regular networkwith
extended antiphase coupling. In particular, the levels of noise for short-wavelength phase-
instability, network’s synchronization and depinning of ‘‘defects’’ (groups of contiguous
inhibited neurons on an antiphase background) are theoretically predicted andnumerically
confirmed. The origin of these collective effects and the dependence with parameters of
the most probable length of defects are explained in terms of the system’s nonequilibrium
potential.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The constructive effect of noise in the dynamics of complex systems is a subject of high interest and activity. Examples
of such a behavior are seen in phenomena like coherence resonance [1], stochastic resonance [2] or noise-induced
synchronization in nonlinear dynamical systems [3]. Of particular relevance is the study of synchronization processes in
populations of interacting nonlinear oscillators in order to understand some key issues in neuroscience, where a number of
modeling approaches have been based on the description of each single neuron as a relaxation oscillator [4–6].
A single neuron displays excitable behavior, in the sense that small perturbations to its quiescent state (stable stationary

state of the cross membrane potential) can lead to a large excursion of its potential. Excitable units usually appear
as constitutive elements of complex systems with nontrivial couplings and striking dynamics. For example, there are
many studies for excitable networks under external periodic stimuli, both experimentally and theoretically, which show
several behaviors including phase locking, synchronization and chaotic dynamics [7–11]. In particular, the problem of
synchronization in excitable systems with phase-repulsive or delayed coupling has been extensively considered [7,12–15].
In these systems, the oscillators tend to have a phase opposite to that of their nearest neighbors. Most of the previous
studies analyzing the influence of noise on excitable networks are based on numerical investigations [16–19], while the
development of theoretical tools are limited by the intrinsic difficulty to solve the related non-potential Fokker–Planck
equations, even at the level of an isolated cell [20].
In a previous study [21] we have characterized a noise-induced synchronization of a ring of autonomous units with

excitable FitzHugh–Nagumo (FHN) dynamics, coupled to first neighbors in a phase-repulsive way. Particularly, we have
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predicted and numerically confirmed the levels of noise for the system’s activation and synchronization. The analysis was
done in terms of the nonequilibrium potential (NEP). The NEP is the out of equilibrium analog of a free energy which brings
up a deep insight into the dynamical mechanisms leading to pattern formation and other phenomena where fluctuations
play a constructive role [22]. In particular, it is the appropriate Lyapunov functional of the deterministic dynamics that
provides information on the local and global properties of attractors. For example, it characterizes their linear and nonlinear
stability and also determines the height of barriers separating attraction basins, which in turn define the transition rates
among attractors [22]. For nonlinearmulticomponent systems, however, integrability conditions are a severe obstacle to the
analytical finding of the NEP. A recent review [23] summarizes the way where its knowledge for some reaction–diffusion
systems has allowed e.g. to explain system-size stochastic resonance without resorting to a mean-field approximation [24],
to predict the enhancement of the signal-to-noise ratio by an appropriate nonlinear diffusion coefficient [25], to go beyond
the reaction–diffusion approximation in a controlled way [26], etc.
The main purpose of this work is to extend the analysis of Ref. [21] to arbitrary-connected networks of FHN cells by

calculating the appropriates NEPs. The objective is to obtain an analytical expression of the NEP that can be used for a wide
range of linear couplings. The development of this theoretical tool results appropriated to discriminate between the effects
induced by the network topology from the effects induced by noise. To illustrate its applicability, we analyze the stochastic
dynamics of regular FHN’s networks with extended antiphase coupling. The observed dynamics is interpreted in terms
of the corresponding NEPs and the levels of noise for short-wavelength phase-instability, network’s synchronization, and
length and depinning of ‘‘defects’’ (groups of contiguous inhibited neurons on an antiphase background) are theoretically
determined and numerically confirmed.
The paper is organized as follows: Section 2 briefly reviews the dynamical equations of the model. Section 3 presents the

theoretical derivation of the NEP. In Section 4we give numerical evidence of noise-sustained activation and synchronization
for systems with extended antiphase coupling. We also present here the characterization of the dynamics in terms of the
corresponding NEP, while the conclusions are summarized in Section 5.

2. The model

The FitzHugh Nagumo model is one of the simplified modifications of the widely known Hodgkin–Huxley model. It
describes the dynamics of excitable systems in different fields, such as kinetics of chemical reaction and solid state physics
[1,16,27–29]. From a theoretical point of view, the FHN model is relatively easy to investigate, nevertheless many effects
observed in neural cells are qualitatively contained in it. For example, it has been extremely useful in understanding the
dynamics of some neural [30] and cardiac tissues [8], to cite a few examples of biomedical relevance.
In this work we study a network ofN identical excitable FHN elements with an arbitrary linear coupling in the activator’s

components. The cells are submitted to a common subthreshold signal and independent additive Gaussian white noises.
The set of dynamical equations for the model is

u̇i = b ui(1− u2i )− vi + S(t)+
N∑
j=1

Dij uj + r1 ξ
(u)
i (t)+ r2 ξ

(v)
i (t)

v̇i = ε(β ui − vi + C)+ r3 ξ
(u)
i (t)+ r4 ξ

(v)
i (t) (1)

where ui(t) is the fast variable whichmimics the action potential of cell (node) i and vi(t) is the slow – or recovery – variable
which is related to the time dependent conductance of the potassium channels in the membrane [31]. Here S = S0 sin(Ωt)
is the external signal, ε is the activator–inhibitor time scales ratio andDij are the couplingmatrix elementswhich defines the
network structure, i.e., the connections among the elements. Throughout the work the following values have been adopted:
N = 256, ε = β = 0.01, b = 0.035, C = 0.02, S0 = 0.011, Ω = 0.002, ε r1 = r3 = cos(0.05), ε r2 = r4 = sin(0.05)
and Dii = 0. The values of the parameters are not totally arbitrary. On one hand, Ω remains below the typical inverse
deterministic time (i.e. the turnaround time of a single spike), so that the signal can be regarded as an adiabatic perturbation.
On the other hand, some parameters were selected in such a way that they satisfy an integrability condition required by the
theoretical characterization of the dynamics (see next section). Finally, for the statistical properties of the Gaussian noises
ξ
(u,v)
i we assume 〈ξ (p)i (t)〉 = 0 and 〈ξ

(p)
i (t) ξ

(q)
j (t

′)〉 = 2η δi,j δp,q δ(t − t ′), where η is the common noise intensity and
p, q ∈ {u, v}. Note that the structure of the noise terms is the more general structure that the Langevin theory allows for a
single two-component neuron (system) subjected to additive noise [32]. Neurons are then linked to form a networkwithout
introduce additional randomness.
In the absence of driving, coupling and noise there is only one – uniform – steady state, determined by the rest state of

the isolated excitable cell. The external signal only induces small subthreshold oscillations around this state. Linear coupling
open the possibility to observe dephasing and antiphase phase locking in coupled excitable systems [33]. In particular, for
Dij = −D (δi,j+1 + δi,j−1) with D > 0, we have showed that networks can exhibit a noise-sustained synchronization of an
antiphase state with the external signal [21]. The observed dynamics was elucidated in terms of noise-induced transitions
among attractors, being a fundamental ingredient the changes in the relative stability, which are determined by the NEP. To
generalize those results to more general couplings, we first review the concept of nonequilibrium potential and we sketch
its derivation for Eq. (1).
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3. The nonequilibrium potential

For Langevin-type dynamics, Graham and collaborators have defined the NEP F in terms of the zero-noise limit of the
logarithm of the stationary probability density function (see references in Ref. [22]). For Eq. (1), the steady state distribution
takes the form

Ps({ui, vi}, η) = Z({ui, vi}) exp
[
−

F ({ui, vi})
η

+ O(η)

]
. (2)

Following Graham [22], equations forF ({ui, vi}) and Z({ui, vi}) are obtained from the stationary Fokker–Plank equation
corresponding to Eq. (1). In particular, the NEP satisfies the nonlinear first order partial differential equation

N∑
i=1

[
ϕui∂uiF + ϕvi∂viF +

1
2
λ1(∂uiF )

2
+ λ∂uiF ∂viF +

1
2
λ2(∂viF )

2
]
= 0, (3)

where

ϕui = b ui(1− u
2
i )− vi + S(t)−

N∑
j=1

Dij uj and

ϕvi = ε (β ui − vi + C) (4)

are the components of the deterministic phase-space flow in Eq. (1), and

λ1 = r21 + r
2
2 , (5)

λ2 = r23 + r
2
4 and (6)

λ = r1r3 + r2r4 (7)

are the system’s transport matrix elements of the associated Fokker–Planck Equation. In addition, the prefactor Z satisfies
the linear partial differential equation depending on F ({ui, vi})

N∑
i=1

[
(ϕui + λ1∂uiF + λ∂viF ) ∂uiZ + (ϕvi + λ∂uiF + λ2∂viF ) ∂viZ

+

(
∂uiϕui + ∂viϕvi +

λ1

2
∂2
u2i

F + λ∂2uiviF +
λ2

2
∂2
v2i

F

)
Z
]
= 0. (8)

Analytical expressions of F and Z have been obtained for some version of the isolated [20,34] and nearest-neighbor
spatially coupled FHN systems [21,35,36]. In order to solve Eq. (3), the deterministic phase-space flow is decomposed into a
sum of a dissipative ϕdui,vi and a conservative ϕ

c
ui,vi components, in such a way that {ϕ

c
ui , ϕ

c
vi
} conserves the potential F , i.e.

N∑
i=1

(ϕcui∂uiF + ϕ
c
vi
∂viF ) = 0. (9)

As in Ref. [20], we propose

ϕdui = −
1
2
(λ1∂uiF + λ∂viF )

ϕdvi = −
1
2
(λ∂uiF + λ2∂viF ) (10)

and

ϕcui = −
1
2
λ∂viF

ϕcvi =
1
2
λ∂uiF . (11)

With this election equation (9) is satisfied and the Lyapunov-functional property of F for the deterministic dynamics is
verified. Following the calculations of Ref. [21], we find

F ({uj, vj}) =
N∑
i=1

Fs(ui, vi)+
1
λ1

N∑
i=1

N∑
j=1

Dijuiuj, (12)
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where

Fs(ui, vi) =
ε

λ2
(v2i − 2β uivi − 2Cvi)+

2λε
λ1λ2

(β u2i + 2Cui)−
2
λ1

[
b
2
u2i −

b
4
u4i + S(t) ui

]
(13)

is the NEP of a single cell [20]. From Eq. (8) the prefactor Z results to be a constant which can be fixed by normalization.
Integrability conditions constrain the parameters to obey

βλ1 + λ2/ε = 2λ and (14)
Dij = Dji. (15)

For Eq. (1) relation (14) can be fulfilled for selected values of parameters, both in the excitable and the bistable regimes.
Note that {ri} does not determine the value of η but only the structure of the transport matrix in the 2N-dimensional
Fokker–Planck equation. In the same sense, the coupling matrix {Dij} is an arbitrary but symmetric matrix which originates
a non-local structure for both, the dissipative and the conservative components of the phase-space flow. In Eq. (12) we can
see that F has two contributions, the first one is given by the NEP of isolated cells, while the second one (the non-local
contribution) originates a u-quadratic form that take into account the topology of the network.
Finally, we remark the explicit dependence of F on t , caught up by each ui variable through its coupling to the external

signal. This is consistent with the NEP calculation only in the adiabatic limit, i.e. for Ω so small that the probability
distribution permanently accommodates into its stationary condition. In other words, the t-dependence ofF is parametric.

4. Networks with extended antiphase coupling

By extended antiphase coupling (EAC) wemean groups of neurons coupled among them in such away that the antiphase
configuration is globally favored. An EAC can be obtained in a ring through the linear coupling Dij = −D for 1 ≤ i ≤ N with
j increasing in step two into the range i− (2k− 1) ≤ j ≤ i+ (2k− 1), and Dij = 0 otherwise. Here k denotes the number of
one-sided coupled cells to the cell i, and 2k− 1 is the coupling’s range. Note that Dij couples only odd neighbors, in order to
enforce the antiphase configuration. The case k = 1 was considered in Ref. [21]. The proposed EAC is a generalization and
an appropriate benchmark in order to include non-local interactions that preserve the short-wavelength phase-instability.
Antiphase coupling in an experimental systemwas observed in studies of cultured human epileptic astrocytes and supported
by simulating the intracellular oscillation via FHN oscillators [15]. For modified Hodgkin–Huxley-type model, different
locking patterns in 2D where characterized in Ref. [37] by considering the effect induced by diagonal and non-diagonal
neighbors,while antiphase clustered solutionswere reported for (antiphase) globally coupled networks of FHNneurons [38].

4.1. Spatiotemporal self-organization

As it is expected, numerical simulations of Eq. (1) show that the dynamics depends both, in the strength D and coupling’s
range. To have a global view of the dynamics, in Fig. 1 we present the {ui(t)} record of a large subset of neurons for some
values of D, k and η. The first row corresponds to D = 5 × 10−3 and k = 2 (case A). We can observe in Fig. 1A1 that for
vanishingly small noise intensities, there are only small-amplitude homogeneous subthreshold oscillations. These coherent
oscillations are induced by the adiabatic signal, and represent the ‘‘rest’’ state (RS), for which ui(t) ≈ uj(t). Fig. 1A2 shows
for η = 9 × 10−9 the transition from the rest state to an antiphase state (APS), where an alternated spatial configuration
is selected, forming an ‘‘. . . –activated–inhibited–activated–inhibited–. . . ’’ structure along the network [we call active those
cells i for which ui(t) exceeds some threshold value]. The resulting structure is shown as a stripe pattern. Note that in the
APS the activated state is macroscopically occupied and almost half of the neurons remain excited. In particular, this picture
shows that the transition to the activated state is not uniform for this level of noise, and a finer-scale analysis of the figure
confirms the numerical observation that the jumps take place locally, in groups of few cells which are the ‘‘seeds’’ that force
the neighbor to follow the activation process. A similar phenomenon was described for k = 1 in Ref. [21]. In Fig. 1A3 we
show the same transition to the APS, but now for η = 3 × 10−8. In this case the decay to the APS is macroscopic and this
kind of pattern (induced in principle by the spatial coupling) has ‘‘I-I . . . -I’’ defects (I≡ inhibited) that break the alternance.
Structure and defects are both persistent in time. In fact, we observe that the APS persists for some values of noise intensities.
Finally, in Fig. 1A4 we show the resulting evolution for a well-developed synchronized regime.
In the second and third rows we consider for D = 5× 10−3 the couplings with k = 3 (case B) and k = 5 (case C). In both

we see the existence of a static APS, whose alternance is broken by the presence of some defects. For small values of noise
intensity the defects remain fixed in the network, while showing a certain degree of mobility for higher noises, as illustrated
in Fig. 1B and C.
Finally, the fourth row shows the dynamics observed for D = 5 × 10−4 and k = 16 (case D). We can see another path

towards noise-sustained synchronization as η increases. Now, the system synchronizes from the RSwithout an intermediate
APS.
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Fig. 1. Time evolution of the u-component for a subset of 60 cells. Time runs on the vertical direction, for≈ 20 T . The ui values vary approximately between
−1.5 and 1.5. Intermediate values are represented in a linear scale of 256 gray levels (maximum in white). The considered cases are: (A) D = 5 × 10−3 ,
k = 2 and noises intensities (from left to right): η = 10−9 , 9× 10−9 , 3× 10−8 , 1.6× 10−7; (B) D = 5× 10−3 , k = 3 and η = 7× 10−9 , 5× 10−8 , 7× 10−8 ,
1.27×10−7; (C) D = 5×10−3 , k = 5 and η = 10−8 , 5×10−8 , 7.5×10−8 , 10−7; (D) D = 5×10−4 , k = 16 and η = 3×10−9 , 7×10−9 , 10−8 , 2.26×10−7 .

4.2. Theoretical description of the dynamics

A characterization of the dynamics can be done by exploiting the properties of the NEP during the time evolution. We
consider here, as in Ref. [21], a reduced two-neuron system of variables u1, u2, v1 and v2, which is a minimal description of
an ideal case where all the even nodes on one hand, and all the odd nodes on the other, have the same stochastic phase-
space trajectory. For this effective model, the non-local term in Eq. (1) takes the simple form−kDui(t) with i ∈ {1, 2}. The
nullclines of the effective system are useful to clarify different routes to synchronization. In the same sense, the values of
their NEP can be used to determine barrier’s heights separating attractors. Due to the characteristics of this approximation,
the present analysis does not take into account the defects, that will be considered in the next subsection.
Fig. 2 displays for case A the F –level curves in the (u1, u2) plane, in the absence of signal. In order to include the fixed

points in the two-dimensional representation, the values of the vi have been adjusted to the slow manifolds vi = βui + C .
Both, the attractors and the saddles, can be obtained either from the intersection of the nullclines or by minimizing
F (u1, u2, v1, v2). Besides the uniform rest state (which lies along the line u1 = u2), we can appreciate two excited attractors
and two saddle points. Note that the fixed point distribution (in fact the NEP) is symmetric with respect to the u1 = u2
line, reflecting the u1–u2 permutation invariance of the dynamical equations in the two-neuron system. The complete
equivalence between symmetric points originates a degeneration in the excited (or antiphase) attractors (u1 activated, u2
inhibited or u2 activated, u1 inhibited).2We remark that the global stability of the attractors is given by the depth of eachwell
respect of the saddle level, and this difference depends on S(t). To illustrate this point, in Fig. 3 we showF as a function of S
for the uniform state – labeled by RS, for the saddles – indicated by SP, and the activated states – indicated by IE. Here |S| ≤ S0

2 Both attractors correspond to two different APSs in the original system, with the ‘‘opposite phase’’ in each node.
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Fig. 2. NEP landscape (in unit of 10−5) in the (u1, u2) plane along the vi = βui + C lines for the reduced two-neuron system, for k = 2, D = 5× 10−3 and
S = 0. The associated nullclines are shown in dotted and dashed lines. The level-line ticks indicate the F -gradient direction. The lines correspond to the
levels:−1.43,−1.4,−1.36,−1.2847,−1.2,−1.1,−1,−0.8,−0.6,−0.3,−0.1 and 0.1. Some of them are labeled in the figure.

Fig. 3. Value of NEP vs. constant signal for the saddle (SP), excited (IE) and uniform (RS) states for the two-neuron system with k = 2 and D = 5× 10−3 .
Both saddle points share the same value of F and the same stands for the excited states.

and there is no intersection between SP and RS lines (the small gap at S = S0 cannot be appreciated in the figure). For each
value of S, the global stable state corresponds to the attractor(s) with the lowest values ofF , while the other ones are either
metastable or unstable states. In particular, for S(t) = S0 the difference in F between SP and RS is ∆Fa ≈ 3 × 10−8. For
a noise level of this order, the whole system would climb the potential barrier and macroscopically transits to an activated
state (IE), that has a lower F value (see Fig. 1A3). The barrier to scape from the IE states goes from ∆F ≈ 37.7 × 10−7 at
S = S0 to ∆F = ∆Fs ≈ 1.6 × 10−7 at S = −S0. Hence, as S(t) varies the system remains confined in IE, which explains
the robustness of the activated state. Thus, η ∼ ∆Fs determines the lowest level of noise necessary to return to the uniform
state, so completing the cycle. This noise-induced decay is also associated with a decrease in F . Note that for η ∼ ∆Fs, the
barrier∆Fa is not significant and the system reaches an excited state during each oscillation of the external signal, namely,
it synchronizes (see Fig. 1A4).
For case B we can see an static APS, with some defects that break the alternance, which is macroscopically selected

(see Fig. 1B). The nullclines and the NEP levels of the effective system are showed in Figs. 4 and 5, respectively. It can be
appreciated that the IE states are present during the complete course of the signal as stable attractors while the SP and the
RS collapse at S ≈ 0.28 S0 and change the form of the nullcline. In particular, it is clear that the IE states have the lower
potential value, which explains its selection and robustness. A similar analysis can be done in case C, but now the nullclines
(not showed) are similar to that of solid line in Fig. 4 for any signal value, i.e., there is not a stable uniform attractor.
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Fig. 4. Nullclines in the (u1, u2) plane for the reduced two-neuron system along the vi = βui + C lines for k = 3 and D = 5 × 10−3 . The nullclines for
S = S0 and S = −S0 are shown in solid and dashed lines, respectively.

Fig. 5. Value of NEP vs. (constant) signal in the saddle (SP), excited (IE) and uniform (RS) states for the two-neuron system, corresponding to k = 3 and
D = 5× 10−3 .

The case D shows a different route to synchronization. From the nullclines (see Fig. 6) we can see that only the RS is
present – as an attractor – for the full course of the signal. This fact explains the selection of the RS for small noises. The IE
states appear only during a fraction of the signal period, and its occupation takes place at S(t) ∼ S0, where the barrier∆F
between the saddle and the RS is the smallest (see Fig. 7). As the noise increases, this transition becomesmore effective, and
for η ≈ ∆F = 2.26 × 10−7 the synchronization is complete (see Fig. 1D4). Note that as the signal decreases, the IE states
disappear, so the decay from the IE to the RS results deterministic.
As a consequence of the former analysis, the noise-sustained synchronization of systems for which the product of kD is

constant, it is expected to be qualitatively and quantitatively similar, at least in the regimes were there are well-developed
oscillating APSs. Numerical simulations of Eq. (1) confirm this prediction. We illustrate this point in Fig. 8, where we
show the Q -factor vs. η for three different networks that share the same effective system of that considered in Ref. [21]
(k = 1,D = 10−2). Note that the synchronization is basically the same and in good agreement with the noise intensity
predicted by the NEP analysis.3

4.3. Stability of defects

As follows from Fig. 1, in cases B and C exist defects that remain static in time for some values of noise, but they get
some ‘‘mobility’’ for larger values of η. We also note in simulations that the length L of defects grows as k increases. As in
Section 4.2, an exact analysis of the whole system involves a large number of cells. Analytical calculations are hard to do
in this context and some approximations are then necessary to extract useful information. In consequence, to model the

3 See Ref. [21] for definition of Q-factor.
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Fig. 6. Nullclines in the (u1, u2) plane for the reduced two-neuron system along the vi = βui + C lines for k = 16 and D = 5 × 10−4 . The nullclines for
S = S0 and S = −S0 are shown in solid and dashed lines, respectively.

Fig. 7. Value of NEP vs. (constant) signal in the saddle (SP), excited (IE) and uniform (RS) states, for the two-neuron system corresponding to k = 16 and
D = 5× 10−4 .

Fig. 8. Q–factor (averaged over 10 realizations) for k = 1 (solid line); k = 10 (dashed line) and k = 50 (dotted line).

defects we consider an idealized configuration with some consecutive inhibited cells, while the rest of the nearby nodes
remain in the APS (see scheme in Fig. 10). We approximate all the fixed cell’s states in terms of the IE coordinates in the
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two-neuron system, that depend on S. Besides, we only consider defects with even length L. In fact, ternary defects are not
observed in the simulations, as it is expected if we note that a ternary defect disappears if its central cell changes from
inhibited to excited (by minimizing the NEP value). Similar arguments hold for larger odd Ls.
In order to study first the L-dependence with parameters, we calculate the NEP for an L-ary defect in an APS background.

After some algebra we obtain

FD = −(L/2)∆Fs −
2uE
λ1
{θ∗(L/2− k)(L/2)kuI + θ(k− L/2)[k(k+ 1)uI − k(k+ 1− L/2)uE

+ (k2 − L2/4+ k+ L/2)u0]} +
2uI
λ1
{θ(k− L/2+ 1)[kuE(L/2− 1)− (L/2)(L/2− 1)u0]

+ θ∗(L/2− k− 1)[k(L/2− k− 1)uI + k2uE − k(k+ 1)u0]}, (16)

where we have excluded some terms which do not depend on L, because we are interested in NEP differences. Here

∆Fs = Fs(uE, βuE + C)− Fs(uI , βuI + C), (17)

u0 =
uE − uI
2

(18)

and θ(x) = 0 for x < 0 and 1 for x ≥ 0, while θ∗(−x) = 1− θ(x). In Fig. 11 we plot FD(L)− FD(Lm) at S = 0, for different
values of k and D. Here Lm is the defect’s length where each curve reaches its minimum – i.e. the most probable length Lm. It
can be obtained by minimizing the NEP in Eq. (16) resulting4

Lm = 2k
uE

uE − uI
+ λ1

∆Fs

(uE − uI)2
+ 1. (19)

For the considered parameters the second term result negligible and uE/(uE − uI) ≈ 1/2 for any signal value, therefore

Lm ≈ k+ 1. (20)

For example, for D = 10−2 and k = 1, it results Lm = 2 in agreement with the numerical observations in Ref. [21], the same
stands for D = 5× 10−3 and k = 3, where we get Lm = 4, as seen in Fig. 1B. In general, Lm depend on S, and a small interval
of allowed values of Lm are obtained. In this sense, note that basins of attraction of defects are determined by NEP landscape,
that also depend on S and a detailed NEP’s analysis must be done en each case.
For example, in case B quaternary defects are often observed breaking the alternance of the APS (see Fig. 1B), and from the

former analysis they appear as a metastable configuration for k = 3. We will estimate here the value of noise intensity for
which the defects becomemobile. In Fig. 10 we show an APS configuration with a quaternary defect (Fig. 10a) and the same
defect displaced two nodes towards the right (Fig. 10b). Note that the minimal displacement of a defect implies that it must
move two nodes (right or left) in the APS background, since one-node displacements would imply an exchange of a large
number of cells between the excited and the inhibited states (see Fig. 10). In particular, to have a two-node displacement,
it is enough that two cells (labeled by C1 and C4 in Fig. 10) change their state, while the rest of the nodes remain unaltered.
Under these approximations, we have calculated the NEP for a configuration with arbitrary value of cells C1 and C4, but for
fixed values (inhibited or excited, in agreement with Fig. 10) for the others nodes. Supposing that there is not another defect
at a distance minor than 2k, the NEP is

F4 = Fs(u1, v1)+ Fs(u4, v4)+
2D
λ1
{u1u4 + (u1 + u4)[(k+ 1)uI + (k− 2)uE]}, (21)

where the terms that are independent of u1, v1, u4, and v4 are not included. The first two terms in F4 correspond to the
potentials of isolated nodes C1 and C4, while the last term corresponds to the connections of these cells among them and
with the rest of the network.
The analysis of the level curves of F4 allows us to identify maxima, minimums and saddles, which determine the

structures of the defects on the APS background. Note that this potential depends on the instantaneous value of the signal
S(t). For S = −S0 there are three minima, one symmetrical II and two IE, each one separated by a saddle from the II state
(see Fig. 12a). For S = 0 a new EE state appears as a metastable minimum and the number of saddles duplicates from 2 to 4
by separating the attractor basins. Simultaneously, a symmetric maximum appears between the saddles by attenuating the
transitions between II and EE, and among the IEs. Finally, for S = S0 the II state and the maximum disappear (see Fig. 12c).
Note that II states correspond to 6-defects, IE states to quaternary defects, while EE states correspond to binary defects (see
Fig. 10).
To quantify the relative stability, in Fig. 13 we show the values of NEP for each fixed point as a function of the signal

amplitude. Depending on the instantaneous values of S(t), the minimum of F4 can be states IE, II or EE, but the last two
states do not persist for any value of signal and finally the system evolves to one of the IE states (i.e., to a quaternary defect).
Without noise or for small η, the defect remains in this configuration (see Fig. 1B). However, for η ∼ ∆FD = 1.27× 10−7 –

4 The true length is the even number that, being one of the two nearest to Lm given by (19), it has the smallest FD value.
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Fig. 9. Time evolution of two defects. (a) k = 3, D = 5× 10−3 and η = 1.27× 10−7 in a fine scale. Binary, quaternary and 6-ary defects can be observed.
Note that quaternary defects are the more frequent, in agreement with theoretical prediction (see also Fig. 1B). (b) Time evolution of the whole system for
k = 10, D = 5× 10−4 and η = 7× 10−8 .

a

b

Fig. 10. Scheme of a quaternary defect in an antiphase background. Only nodes C1 and C4 change their states when the defect (a) move two cell towards
right (b).

NEP difference between SP and IE states at S = S(0) – the system can jump the barrier towards the EE state. As we can see
in Fig. 13, this state eventually disappears at S ≈ −0.8 S0 and the system can then decay to the same IE state (i.e., it returns
to the departure state), or can decay to the other IE state (i.e., it moves two nodes) or can decay to the II state (by forming
a 6-defect).5 In the same way, the II state disappears at S ≈ 0.44 S0, by allowing new transitions towards states IE or EE.
This scenario corresponds to a defect that expands and narrows, following a winding trajectory (see Fig. 9a). This behavior
is observed in simulations, even for larger values of k, as we illustrated in Fig. 9b for a case with k = 10. We remark that the
numerical simulations confirm this scenario in general, and the noise levels predicted by the NEP analysis, in particular.

5. Conclusions

In this work we have analytically calculated the nonequilibrium potential for linearly coupled networks of FitzHugh–
Nagumo cells, externally forced by an adiabatic subthreshold harmonic signal and submitted to additive and independent

5 In fact, the transitions can be also observed before the collapse of attractor EE, for the paths over the maximum which are allowed – for appropriated
values of the signal – for η ≈ ∆FD .
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Fig. 11. FD(L)−FD(Lm) for S = 0. The values of k and D are indicated in the figure. Note that L = 0 corresponds to a defect with two consecutive excited
cells.

Gaussian white noises of the same intensity η. For arbitrary symmetric linear coupling in the activator’s variables, we have
showed that the nonequilibriumpotential is the sumof two terms, the first one is determined by the potential of the isolated
nodes – a local component that includes the driving – while the second one (non-local) is determined by the topology of
the network and results to be a quadratic form in the activator network’s variables, with the coupling matrix elements
as coefficients. As a consequence of this structure, conservative and non-conservative components of the flux in the phase-
space acquire a non-local character, also determined by the couplingmatrix. Integrability conditions – arising from theNEP’s
derivation – restricts the range of validity of the NEP’s expression. Particularly, the linear coupling – arbitrary in principle
– is restricted to be symmetric. Nevertheless, we remark that bistable and excitable dynamics can be reached within the
aforementioned restriction for arbitrary bidirectional coupling.
The analytical expression for the NEP provide us a way to distinguish the effects produced by the network’s topology

from the effect induced by the noise. With this theoretical tool at hand, we have investigated the noise-induced dynamics
in a regular network with an extended antiphase coupling, where each neuron is symmetrically coupled with its first 2k
odd-neighbor nodes by means of a negative (antiphase) linear coupling D in the activator’s variables.
Twomain scenarios were numerically observed. In the first one, the macroscopic activity synchronizes with the external

signal for appropriates values of the noise intensity, while in the second one a macroscopic stationary antiphase state is
selected. A theoretical characterization of both regimes was done in terms of an effective model with two-coupled cells. In
particular, we have showed that the effective NEP determines the levels of noise for global activation and synchronization.
On the one hand, in the first scenario two routes to noise-sustained synchronization were characterized, depending

on the state which is stable for null or small noise intensities. In the first route, the synchronization takes place from the
antiphase state and all the transitions result noise-sustained, while in the second one the synchronization emerges from the
rest state, being the activation noise-sustained, but the decay to the rest state, deterministic. For both routes the dynamics
was interpreted in terms of transitions among attractors that change their relative stability (determined by the NEP) due
to the driving. As a consequence of the NEP’s analysis, the synchronization of regular networks with the same value of the
product kD it is expected to be similar, at least for regimes where there are well-developed oscillating states. This fact was
numerically confirmed for several networks, in terms of the Q -factors, for both routes of synchronization.
On the other hand, in the second scenario a macroscopic stationary antiphase state is selected. The robustness and

stability of the observed structure were explained in terms of the corresponding NEP of the reduced two-neuron system,
that identify the selected configuration as the stable attractor. Numerical simulations have showed that the antiphase states
present groups of inhibited neurons – defects – that break the alternance. They remain static for small noise intensity but
they become mobiles for larger values of noise. By means of the NEP’s analysis, we have first determined its most probable
length Lm, and then the levels of noise that break the defect’s pinning. Lmwas estimated by calculating theNEP of an idealized
isolated defect. Despite the simplification used, the resulting behavior L ≈ k + 1 fit accurately the observed values in
the numerical simulations. The NEP’s analysis has also showed that odd-L defects are unstable while some even-L defect
can be expected for small noises. In particular, we have showed that the adiabatic signal changes the landscape of the
nonequilibrium potential that confine the defects. For small noise, Lm-defects are expected to be the more frequent, while a
number of transitions to another metastable defect’s configuration are allowed and can be obtained for appropriate levels
of noise.
As we have seen, the NEP provides a powerful framework to study the relation between the network architecture and

the effects induced by noise. In particular, it quantifies the levels of noise and determines in each case which transitions
are allowed or not, depending on the NEP topology. However, in most realistic systems the analysis is mainly limited by
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a

b

c

Fig. 12. F4 landscape in the (u1, u4) plane along the vi = βui + C lines. Here (a) S = −S0 , (b) S = 0 and (c) S = S0 . The level-line ticks indicate the
F4–gradient direction. Some levels of F4/10−5 are labeled in the figure.

the intrinsic difficulty to obtain the corresponding NEP. In this sense, the characterization of nonequilibrium potentials in
complex networks is an open question, and we hope that our results can be extended to more general (i.e., non-symmetric)
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Fig. 13. F4 from Eq. (21) for the minima (II, IE, EE), saddles (SP) and maximum (M). Neither II nor EE states are present in whole range of signal values.
The length of defect in each attractor is indicated between parenthesis.

couplings and systems. Finally, note that the NEP’s expression is valid for bidirectional complex networks, for positive as
well as for negative spatial coupling and the same approach would be useful for analyzing other kinds of synchronization in
networks and continuous systems.
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