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Abstract

We study the velocity of bubble walls in the electroweak phase transition. For several extensions of the
Standard Model, we estimate the friction and calculate the wall velocity, taking into account the hydro-
dynamics. We find that deflagrations are generally more likely than detonations. Nevertheless, for models
with extra bosons, which give a strongly first-order phase transition, the deflagration velocity is in general
quite high, 0.1 � vw � 0.6. Therefore, such phase transitions may produce an important signal of gravita-
tional waves. On the other hand, models with extra fermions which are strongly coupled to the Higgs boson
may provide a strongly first-order phase transition and small velocities, 10−2 � vw � 10−1, as required by
electroweak baryogenesis.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The electroweak phase transition may give rise to a variety of cosmological relics such as
the baryon asymmetry of the Universe, cosmic magnetic fields, inhomogeneities or gravitational
waves. To be observable, some of these relics depend on the strength of the phase transition. This
is the case, e.g., of the baryon asymmetry of the Universe (BAU) and gravitational waves (GWs).
Both can be generated in the electroweak phase transition, and both require a strongly first-order
phase transition. In a first-order phase transition, bubbles of the stable broken-symmetry phase
nucleate at a temperature Tn below the critical temperature Tc , and grow inside the supercooled
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symmetric phase. The expansion of bubbles provides the required departure from thermal equi-
librium.

Gravitational waves are generated by the collisions of bubble walls and by the turbulence
they produce [1,2]. As a consequence, bubble walls with higher velocities will generate GWs
of larger amplitudes. For electroweak baryogenesis [3], the violation of baryon number must be
suppressed in the broken-symmetry phase in order to avoid the wash-out of the generated BAU.
This puts a condition on the vacuum expectation value (VEV) of the Higgs field in that phase,
namely, 〈φ〉/T � 1. This quantity is the order parameter of the phase transition, and the above
condition implies that the phase transition must be strongly first-order. The amplitude of the
baryon asymmetry also depends on the wall velocity. However, unlike the case of gravitational
waves, the BAU has a maximum for wall velocities in the range vw ∼ 10−2–10−1, depending
on the model [4,5]. For higher velocities the sphaleron processes do not have enough time to
produce baryons, whereas for lower velocities equilibrium is restored and the generated baryon
number is washed-out. The low velocities required for baryogenesis seem to be too small to
generate observable gravitational radiation.

For baryogenesis calculations the wall velocity is often assumed to be of the form [4–10]

vw ≈ �p(T )/η, (1)

where �p is the net pressure acting on the wall, i.e., the pressure difference between the two
phases, and η is a friction coefficient. This approximation corresponds to the case of subsonic
walls, which propagate as deflagrations. In the context of gravitational waves, on the contrary,
the wall is generally assumed to propagate as a detonation [2,11–17]. Furthermore, a Jouguet
detonation is assumed, leading to a simple expression for the velocity [18],

vw =
√

1/3 + √
α2 + 2α/3

1 + α
, (2)

which depends only on the parameter α = L/ρrad, where L is the latent heat and ρrad is the energy
density of radiation. Eq. (2) does not depend on the friction, and the Jouguet velocity gives in
fact a lower bound for the detonation velocity [19,20]. In a recent paper [21] we investigated the
wall velocity as a function of L, η, and the supercooling temperature Tn. We found that Eq. (1)
is a good approximation for non-relativistic velocities, while Eq. (2) grossly underestimates the
actual detonation velocity.

The calculation of the friction coefficient η is involved. It depends on all the particle species
that are present in the plasma and their interactions. An accurate computation of η thus requires
considering the details of the particle content in each specific model (see e.g. [6,7]). To compare
different models it is more workable to consider approximations which depend on a few param-
eters. Such a simple approximation was obtained in Ref. [22] using previous results [4,6–9],

ηth =
∑ gih

4
i

Γi/T

(
logχi

2π2

)2
φ2σ

T
(3)

for particles with a thermal distribution, whereas infrared bosons contribute a term [10]

ηir =
∑

bosons

gim
2
DT

32πLw

log
(
mi(φ)Lw

)
. (4)

In these equations, gi is the number of degrees of freedom (d.o.f.) of species i with Higgs-
dependent mass mi = hiφ, Γi are interaction rates which are typically � 10−1T , χi = 2 for
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fermions and χi = mi(φ)/T for bosons, σ is the surface tension of the bubble wall, m2
D ∼ h2

i T
2

is the Debye mass squared, and Lw is the width of the bubble wall, Lw ≈ φ2/σ . The derivation of
Eqs. (3) and (4) involves expanding the distribution functions to lowest order in mi/T , and thus
they break down for mi/T � 1. In particular, for a squared mass of the form m2

i = μ2
i + h2

i φ
2,

with large μi , the particle density in the symmetric phase will be suppressed by a Boltzmann
factor exp(−μi/T ), and this species will not contribute to the friction.

In this paper we study the velocity of bubble walls in the electroweak phase transition for
several extensions of the Standard Model (SM). For that aim, we modify Eqs. (3) and (4) to take
into account more general masses mi(φ). We also take into account the effects of hydrodynamics
in order to consider both deflagration and detonation solutions. We consider several extensions
of the SM, including the Minimal Supersymmetric Standard Model and extensions with singlet
scalars and with heavy fermions. We also investigate the effect of cubic terms in the tree-level
potential.

The plan is the following. In Section 2 we review the dynamics of a first-order electroweak
phase transition. In Section 3 we find an approximation for the friction coefficient which is valid
for large as well as for small values of mi(φ)/T . In Section 4 we write down the equations for
the wall velocity, which we solve numerically. The result depends on several parameters, namely,
the critical temperature Tc, the nucleation temperature Tn, the latent heat L, and the friction co-
efficient η. We compute these parameters for several models in Section 5, and we calculate the
wall velocity. Finally, in Section 6 we discuss the implications of our results for baryogenesis
and gravitational wave production in the electroweak phase transition. Our conclusions are sum-
marized in Section 7.

2. Dynamics of the electroweak phase transition

In the SM, the electroweak phase transition is only a smooth crossover. However, many ex-
tensions of the model give a first-order phase transition. For simplicity we shall consider models
with a single Higgs field, or models for which considering a single Higgs provides a good ap-
proximation. Thus, our theory will consist of a tree-level potential

V0(φ) = −m2φ2 + λ

4
φ4, (5)

for a scalar field φ (the background Higgs field, defined by 〈H 0〉 ≡ φ/
√

2 ). The vacuum ex-
pectation value of the Higgs is given by v = √

2/λm = 246 GeV, and λ fixes the Higgs mass,
m2

H = 2λv2. Imposing the renormalization conditions that the minimum of the potential and
the mass of φ do not change with respect to their tree-level values [23], the one-loop zero-
temperature potential is given by V (φ) = V0(φ) + V1(φ), with

V1(φ) =
∑

i

±gi

64π2

[
m4

i (φ)

(
log

(
m2

i (φ)

m2
i (v)

)
− 3

2

)
+ 2m2

i (φ)m2
i (v)

]
+ c, (6)

where gi is the number of d.o.f. of each particle species, mi(φ) is the φ-dependent mass, and
the upper and lower signs correspond to bosons and fermions, respectively. We have added a
constant c such that V (v) = 0, so that the energy density vanishes in the true vacuum at zero
temperature. In the symmetric phase we will have a false vacuum energy density, given by ρΛ =
V (0), which contributes to the Hubble rate during the phase transition. For particle masses of the
form m2 = h2φ2 + μ2, we have
i i i
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ρΛ =
[
λ +

∑
i

∓gi

32π2

(
h4

i − 2h2
i

(
μi

v

)2

− 2

(
μi

v

)4

log

(
μi

v

)2)]
v4

4
. (7)

The free energy is given by the finite-temperature effective potential. To one-loop order, including
the resummed daisy diagrams, we have

F = V0(φ) + V1(φ) + F1(φ,T ), (8)

where the finite-temperature corrections are given by [24]

F1(φ,T ) =
∑

i

±giT
4

2π2

∞∫
0

dx x2 log
[
1 ∓ exp

(−√
x2 + m2

i (φ)/T 2
)]

+
∑

bosons

giT

12π

[
m3

i (φ) − M3
i (φ)

]
, (9)

where the upper sign stands for bosons, the lower sign stands for fermions, and M2
i (φ) =

m2
i (φ) + Πi(T ), where Πi(T ) are the thermal masses. The last term receives contributions from

all the bosonic species except the transverse polarizations of the gauge bosons.
At high temperature the symmetry is restored, and in a certain range of temperatures, the

symmetric minimum φ = 0 coexists with a symmetry-breaking minimum φm(T ). The free en-
ergy density of the unbroken-symmetry phase is given by Fu(T ) = F (0, T ), whereas that of the
broken-symmetry phase is given by Fb(T ) = F (φm(T ), T ). The critical temperature is that for
which Fu(Tc) = Fb(Tc). The energy density in each phase is given by ρ(T ) = F (T ) − T F ′(T )

(a prime indicates derivative of a function with respect to its variable), and the latent heat
L ≡ ρu(Tc) − ρb(Tc) is given by

L = Tc

(
F ′

b(Tc) − F ′
u(Tc)

)
. (10)

We define the thermal energy density ρ̃u by subtracting the vacuum energy density, ρ̃u = ρu−ρΛ.
In general, we have ρ̃u ≈ π2g∗T 4/30, where g∗ is the number of relativistic d.o.f. The hydro-
dynamics of the bubble wall will depend on the parameters αc = L/ρ̃u(Tc) and αn = L/ρ̃u(Tn),
where Tn is the nucleation temperature.

The nucleation of bubbles [25,26] is governed by the three-dimensional instanton action

S3 = 4π

∞∫
0

r2 dr

[
1

2

(
dφ

dr

)2

+ VT

(
φ(r)

)]
, (11)

where

VT (φ) ≡ F (φ,T ) − F (0, T ). (12)

The bounce solution of this action, which is obtained by extremizing S3, gives the radial config-
uration of the nucleated bubble, assumed to be spherically symmetric. The action of the bounce
coincides with the free energy of a critical bubble (i.e., a bubble in unstable equilibrium between
expansion and contraction). This solution obeys the equation

d2φ

dr2
+ 2

r

dφ

dr
= V ′

T (φ) (13)

with boundary conditions
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dφ

dr
(0) = 0, lim

r→∞φ(r) = 0. (14)

We will solve Eq. (13) iteratively by the overshoot–undershoot method.2 The thermal tunneling
probability for bubble nucleation per unit volume and time is [26]

Γn(T ) � A(T )e−S3(T )/T , (15)

with A(T ) = [S3(T )/(2πT )]3/2. The nucleation time tn is defined as that at which the probability
of finding a bubble in a causal volume is 1,

tn∫
tc

dt Γn(T )Vc = 1, (16)

where tc is the time at which the Universe reached the critical temperature Tc and, in the
radiation-dominated era, the causal volume is given by Vc ∼ (2t)3. The time–temperature re-
lation is given by

dT /dt = −HT, (17)

where H is the expansion rate, H = √
8πGρu(T )/3. Here, G is Newton’s constant. Using

Eq. (17) we can solve Eq. (16) for the temperature Tn at which the first bubbles are nucleated.
If ρu ≈ ρ̃u ≈ π2g∗T 4/30, then the time–temperature relation is given by the usual expression
t = ξMP /T 2, where MP is the Planck mass and ξ = √

45/(16π3g∗).
It is useful to consider the profile φ(r) of the critical bubble at T ≈ Tc. At the critical tem-

perature, the radius of the nucleated bubble diverges (and the nucleation rate vanishes). Hence,
for T ≈ Tc the second term in Eq. (13) can be neglected, since the wall is much thinner than the
radius. Thus, one obtains

dφ/dr = −
√

2VT

(
φ(r)

)
. (18)

Within this approximation, the wall is planar and its surface tension σ ≡ ∫ +∞
−∞ (dφ/dr)2 dr is

given by

σ =
φc∫

0

√
2VT (φ)dφ, (19)

where φc ≡ φm(Tc). We can also invert relation (18) to obtain the wall width Lw . If we define,
e.g., Lw = r(φ = 0.1φc) − r(φ = 0.9φc), we have

Lw =
0.9φc∫

0.1φc

dφ/
√

2VT (φ). (20)

Roughly, σ and Lw are related by σ ∼ φ2
c /Lw , and the wall width is given by Lw ∼ V ′′

T (0)−1/2.

2 See Ref. [27] for details.
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3. Microphysics

According to kinetic theory, for a planar wall in stationary motion along the z direction, the
friction force per unit area is given by [6]

friction =
∑

gi

+∞∫
−∞

dz

∫
d3p

(2π)3

dE

dm2

dm2
i

dφ

dφ

dz
δfi, (21)

where E = √
p2 + m2 and δfi is the departure from the equilibrium distribution f0(Ei/T ) for

each particle species, with

f0(x) = 1

ex ± 1
. (22)

The kinetic description is valid for particles with p � L−1
w , for which the background field

varies slowly and the semiclassical (WKB) approximation is valid. Since in general L−1
w � T ,

this condition is satisfied for all but the most infrared particles [6]. As usual, we will assume that
the friction is proportional to the wall velocity,

friction = ηvw, (23)

where the friction coefficient η is obtained by considering Eq. (21) to linear order in vw . The
deviations δfi can in principle be calculated by considering the Boltzmann equation for the dis-
tribution functions [4,6–9]. However, infrared excitations of bosonic fields should be treated clas-
sically and undergo overdamped evolution [10,28,29]. We shall refer to these fields as “infrared
bosons”, whereas we shall call “thermal particles” those which obey the Boltzmann equation.

3.1. Thermal particles

We begin by considering the case of thermal particles. It is usual to employ the ansatz f =
f0(E/T −μ/T +EδT/T 2 +pzv/T ) for the distribution functions [6,7]. In that case, a system of
equations for μ, δT and v for each particle species can be derived from the Boltzmann equation[

∂t + (∂pzE)∂z − (∂zE)∂pz

]
f = −C[f ], (24)

where C[f ] is the collision term. We need to simplify further the problem in order to obtain a
simple analytical expression which can be applied to different models. Therefore, we shall use
the ansatz f = f0(E/T − δ), which is equivalent to considering only the term μ/T . Hence, the
deviation from f0(E/T ) is δf = −f ′

0(E/T )δ, and the equation for δ is obtained by linearizing
the Boltzmann equation. Assuming stationary motion and making a momentum integration, one
obtains, for each particle species (see Ref. [22] for details),

c2vw

dδ

dz
− Γ δ = c1vw

2T 2

dm2

dz
, (25)

where Γ is an interaction rate arising from the collision integrals, and the coefficients c1 and c2
are defined by

c1 ≡ − 1
2

∫
d3p

3
f ′

0(E/T ), c2 ≡ − 1
3

∫
d3p

3
f ′

0(E/T ). (26)

T (2π) E T (2π)
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It is out of the scope of this work to calculate the collision integrals, which depend on the particle
content of each model. Numerically, the rates Γ are ∼ 10−2T [6], and we shall set Γ/T =
5 × 10−2. In the thick wall limit, the first term in Eq. (25) can be neglected, and we obtain

δ = − c1vw

2T 2Γ

dm2

dz
. (27)

We now insert δf = −f ′
0(E/T )δ in Eq. (21), with δ given by Eq. (27), with m2 = μ2

i +h2
i φ

2 for
each particle species i. Performing the momentum integration we obtain

η =
∑

i

gih
4
i

Γ

+∞∫
−∞

c2
1iφ

2φ′2 dz. (28)

For T ≈ Tc we can use the thin wall approximation3 φ′ = √
2VT (φ) in Eq. (28). Thus, the friction

caused by particles with thermal distributions is given by

ηth =
∑

i

gih
4
i

Γ

φc∫
0

c2
1i (φ)φ2

√
2VT dφ. (29)

Particles with larger couplings h give the main contributions to the friction force, since they have
stronger interactions with the bubble wall.

3.2. Infrared bosons

Infrared boson excitations must be treated classically [28] and undergo overdamped evolution
[29]. Relating the population function to the squared amplitude of the field [10], one obtains the
equation

πm2
D

8p

df

dt
= −E2δf, (30)

where m2
D is the squared Debye mass, m2

D = (11/6)g2T 2 for the W and Z bosons of the SM,
and m2

D = h2T 2/3 for a scalar singlet. Writing f = f0(E/T ) + δf we have, to first-order in vw ,

δf = − πm2
D

16pT E3
f ′

0
dm2

dφ
φ′vw. (31)

Inserting the departure from equilibrium (31) in Eq. (21) and doing the momentum integration,
we obtain

η =
∑

bosons

gi

πm2
D

8T 3
h4

+∞∫
−∞

bφ2φ′2 dz (32)

with

b = −T 2
∫

d3p

(2π)3pE4
f ′

0(E/T ). (33)

3 The wall is thick in comparison with T −1, but it is thin in comparison with the bubble radius.
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Fig. 1. The contribution of a complex singlet to the friction as a function of the coupling h for μ = 0 and mH = 125 GeV.

The integral in Eq. (32) will diverge if m(φ) vanishes. Indeed, for small m/T , the momentum
integral (33) is infrared dominated. Therefore, we can make the approximation f ′

0(x) � −1/x2,
and we obtain

b = T 4/
(
8π2m4). (34)

Hence, for μ = 0 the integral in Eq. (32) has a logarithmic divergence at φ = 0. However, the
kinetic description (21) breaks down for very infrared particles, which in the case m → 0 domi-
nate. The actual contribution of degrees of freedom with p � L−1

w is subdominant, because their
wavelength cannot resolve the thickness of the wall [10]. Thus, for small μ we will cut off the
integral at m(φ) = L−1

w , and we have

ηir =
∑

bosons

gi

πm2
D

8T 3
h4

φc∫
φ0

dφ φ2
√

2VT b(φ), (35)

with φ0 =
√

L−2
w − μ2/h for μ < L−1

w , and φ0 = 0 for μ > L−1
w . For a particle with small

enough h, we will have φ0 > φc . In such a case the particle will not contribute to the friction and
we shall set η = 0.

Since Eqs. (29) and (35) depend on the profile of the wall, the contribution of a particle species
to the friction depends on the whole particle content of the model. As an example, we consider
the case of the SM with an additional complex scalar field. Fig. 1 shows the contribution of the
extra singlet to the friction as a function of the coupling h. The dashed line corresponds to the
friction coefficient ηth given by Eq. (29), the dotted line to ηir given by Eq. (35), and the solid
line shows their sum. In Fig. 2 we fix h = 1 and vary μ. The coefficients ηth and ηir dominate
in different parameter regions, and we shall use η = ηth + ηir for applications in this paper. As
expected, ηir dominates for relatively small values of μ and h. We see that the friction increases
with h, as particles interact more strongly with the wall, and decreases with μ due to Boltzmann
suppression of the particle density.
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Fig. 2. The contribution of a complex singlet to the friction as a function of μ for h = 1 and mH = 125 GeV.

3.3. Limiting cases

In Section 5 we shall compute the friction coefficient for each species numerically. It is useful,
though, to consider here some limiting cases.

The coefficient c1 depends on m(φ). It is usual to consider only the lowest order in m/T . In
that limit we have

c1f = log 2/2π2, c1b = − log(m/T )/2π2, (36)

for fermions and bosons respectively. Since c1b depends only logarithmically on m, we may
replace m(φ) ≈ m(φc) in Eq. (36). The integral in Eq. (29) goes like φ2

c σ , and in the small m/T

limit we recover Eq. (3),

ηth ∼ gh4 φ2
c σ

Γ

(
logχ

2π2

)2

for m/T � 1, (37)

with χ = 2 for fermions and χ = √
h2φ2

c + μ2/T ∼ h for bosons. However, the approximation
(36) will break down whenever μ or hφ become large in comparison with the temperature. In
particular, particles with large h in a strong phase transition will have m ∼ hφ � T in the broken-
symmetry phase.

In the limit m/T � 1 we have

c1 = (m/T )1/2 exp(−m/T )/(2π)3/2. (38)

It is apparent that the contribution of a heavy particle to the friction is suppressed by a Boltz-
mann factor. In the case of small μ but hφc � T , we can estimate the integral in Eq. (29)
using a quartic approximation for the effective potential at T = Tc, VT (φ) ≈ Aφ2(φc − φ)2 with
A = V ′′

T (0)/(2φ2
c ). Since for small φ the integrand is suppressed by a factor φ3, we can use the

approximation (38) in Eq. (29). To leading order in hφc/Tc, we obtain

ηth ≈ 3g

√
V ′′

T (0)T 4
c

for hφc/Tc � 1. (39)

32π3 Γ
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We see that in the limit of a very strong phase transition the friction coefficient does not increase
like h4 as in Eq. (37). This is because the integrand in Eq. (29) is suppressed for hφ � T . Still,

η grows with the strength of the phase transition due to the factor
√

V ′′
T (0). For a heavy particle

with μ � T , the function c1 does not depend on φ, and the integral in Eq. (29) goes with c2
1φ

2
c σ .

Therefore, we have

ηth ∼ gh4

(2π)3

φ2
c σ

Γ

μ

T
e−2μ/T for μ/T � 1. (40)

This exponential suppression of the contribution to the friction is important, since the heavy par-
ticle will also be decoupled from the effective potential. For instance, as the value of μ for a
boson is increased, the phase transition becomes weaker. Consequently, there will be less su-
percooling and a smaller pressure difference at T = Tn. Nevertheless, the wall velocity will not
necessarily decrease, since the friction will also be smaller.

For the coefficient b, we have the approximation (34) for m/T � 1. For small φ we also have
VT (φ) ≈ 1

2V ′′
T (0)φ2, and we obtain

η ≈
gm2

D

√
V ′′

T (0)Tc

64π

[
log

m(φc)

m(φ0)
− (m2(φc) − m2(φ0))μ

2

2m2(φc)m2(φ0)

]
for m/T � 1. (41)

The factor of h4 in (35) has disappeared, but a factor h2 still remains in m2
D . This is the general-

ization of Eq. (4) for small but non-vanishing μ. Notice that for μ < L−1
w we have m(φ0) = L−1

w ,

while for μ > L−1
w we have m(φ0) = μ. Thus, noting that

√
V ′′

T (0) ∼ L−1
w , we recover Eq. (4) in

the limit μ → 0. On the other hand, for μ �= 0 the friction is smaller.
In the limit of very large m/T , we have

b = e−m/T T 3/
(
2π2m3). (42)

Let us consider, e.g., the case μ = 0 and hφc � T . Since b is exponentially suppressed for m =
hφ � T , we cut off the integral in Eq. (35) at φ = T/h � φc and use the small m approximation
for b. Thus, we obtain

η ∼
gm2

D

√
V ′′

T (0)Tc

64π
log(T Lw) for hφc/Tc � 1. (43)

Due to the infrared behavior, the result is similar to the case μ = 0, hφc/Tc � 1. The only
difference is that the log is evaluated at T instead of m(φc). For a particle with large μ the
contribution is

η ∼ gh4

16π

m2
Dφ2

c σ

μ3
e−μ/T for μ/T � 1, (44)

which is exponentially suppressed, as expected.
In Fig. 3 we have plotted the total friction coefficient (including the contributions of the top

quark and gauge bosons) for the case of the SM with an additional singlet, as a function of the
coupling h of the extra singlet. The dashed line corresponds to using the approximations given
by Eqs. (3) and (4). Due to numerical factors in these rough approximations, this curve does
not match the solid line for small h. Apart from this fact, the behavior is similar. However, for
larger vales of h the dashed line grows faster and crosses the solid line. This is because the
approximation increases with h4, while the correct result does not, according to Eq. (39).
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Fig. 3. The friction coefficient for the SM with a complex singlet as a function of the coupling h for mH = 125 GeV and
μ = 0 is plotted in solid line. The dashed line corresponds to using the small m/T approximations.

We wish to emphasize the fact that the friction depends on the wall profile besides depend-
ing on the parameters g and h. For instance, in the case of small m/T , η is proportional to
φ2

c σ ∼ φ4
cL−1

w . Sometimes the wall width is estimated as Lw ≈ 1/T . However, Lw may change
significantly with the strength of the phase transition. We have computed Lw and σ numerically
using Eqs. (19) and (20). For the parameters used in Fig. 3 they vary from Lw ∼ 100/T and
σ ∼ 10−4T 3 for small h (weak phase transitions) to Lw ∼ 1/T and σ ∼ T 3 for large h (strong
phase transitions). This dependence will become particularly important if the strength of the
phase transition is varied without changing the particle content of the model (e.g., by changing
the tree-level potential).

4. The bubble wall velocity

If we ignore hydrodynamics, the steady state velocity of the bubble wall is obtained by equat-
ing the friction force (23) to the pressure difference between phases. We shall use subindexes
b and u for quantities in the broken and unbroken symmetry phase, respectively. Thus, ignor-
ing hydrodynamics, we have ηvw = pb(T ) − pu(T ). Here, the pressure difference �p(T ) =
pb(T ) − pu(T ) is given by the effective potential (12), �p(T ) = −V (φm(T ), T ). However, the
motion of the wall in the plasma causes variations of the temperature and velocity of the fluid,
and is in turn affected by these perturbations.

For hydrodynamic considerations (see, e.g., [30,31,33]) we can assume a thin wall, and the
temperature and fluid velocity turn out to be discontinuous at the interface. Thus, we have dif-
ferent temperatures Tu and Tb on each side of the wall. We assume a planar wall in stationary
motion in the z direction. In the rest frame of the wall, the continuity conditions for energy and
momentum fluxes give the relations [31]

wuγ
2
u vu = wbγ

2
b vb,

wuγ
2
u v2

u + pu = wbγ
2
b v2

b + pb, (45)

where v is the fluid velocity γ = 1/
√

1 − v2, and w = ρ + p is the enthalpy density. In Eq. (45)
we have, e.g., pu ≡ pu(Tu) (notice that the thermodynamical quantities have in general different
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values in each phase, even for Tu = Tb). To obtain a macroscopic equation involving the friction,
one can introduce a damping term of the form uμ∂μφ in the equation of motion for the Higgs
field. This equation must be integrated taking into account the temperature variation. Assuming
a thin wall, one obtains [21]

pu − pb − 1

2
(su + sb)(Tu − Tb) + η

2
(vuγu + vbγb) = 0, (46)

where s is the entropy density and η is the friction coefficient obtained from the microphysics
calculation, η = [�p(T )/vw]micro. The thermodynamical variables are related by an equation of
state (EOS), so Eqs. (45) and (46) have only four unknowns, namely, the velocities vu,b and
the temperatures Tu,b . Besides, the temperature Tu outside the bubble can be determined by
computing the nucleation temperature.

The velocities vu and vb of the fluid are measured in the reference frame of the wall. Equiva-
lently, |vu| and |vb| give the velocity of the wall with respect to the fluid on each side of the wall.
We want to calculate the wall velocity vw in the reference frame in which the fluid is at rest very
far in front of the wall and very far behind the wall (at the center of the bubble). We shall refer
to this reference frame as the laboratory frame.

The stationary motion of the wall admits two kinds of solutions, called detonations and de-
flagrations. For detonations we have |vb| < |vu| and |vu| > cs , where cs = 1/

√
3 is the speed of

sound in the relativistic fluid. Therefore, in this case the wall moves supersonically with respect
to the fluid in front of it. Hence, no information on the motion of the wall is transmitted into this
fluid, which can be assumed to be at rest in the laboratory frame. According to this boundary
condition, the detonation is supersonic, vw = −vu > cs , and the temperature Tu is the nucle-
ation temperature Tn. In the reference frame of the wall, the incoming flow is supersonic. The
outgoing flow inside the bubble has a lower velocity and could in principle be subsonic (strong
detonation). This possibility, however, is forbidden by the boundary condition at the center of the
bubble. Therefore a detonation can only be weak (|vb| > cs ) or Jouguet (|vb| = cs ). In general,
though, we will only have weak detonations [21].

For deflagrations we have |vb| > |vu| and |vu| < cs , so the wall is subsonic with respect to the
fluid in front of it. It turns out that a single front is not enough to satisfy the boundary conditions
in this case. Thus, the phase-transition front must be preceded by a shock front. In the laboratory
frame, the fluid between the two fronts has a finite velocity, and outside this region the fluid is at
rest. Therefore, we have vw = −vb, and the fluid in front of the wall moves in the direction of the
latter. In the frame of the wall, there is a subsonic flow coming from the symmetric phase, and an
outgoing flow with a larger velocity vw . In principle, the outgoing flow can be supersonic (strong
deflagration), although in general we will have vw < cs (weak deflagration). The case vw = cs is
called a Jouguet deflagration. In the deflagration case, the temperature Tu is higher than Tn, since
the fluid in the region between the bubble wall and the shock front is compressed and reheated.
The relation between Tu and Tn can be obtained by considering the fluid conditions (45) for the
shock front [31].

In order to solve Eqs. (45) and (46), it is convenient to use the bag equation of state

ρu(T ) = auT
4 + ε, pu(T ) = auT

4/3 − ε,

ρb(T ) = abT
4, pb(T ) = abT

4/3, (47)

which is the simplest EOS that keeps the essential features of a phase transition. The coefficients
au and ab must be different, since in this model we have ab/au = 1 − 3αc, with αc ≡ ε/(auT

4
c ).
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The constant ε is the false vacuum energy density of the high-temperature phase, and also deter-
mines the latent heat L ≡ ρu(Tc) − ρb(Tc) by4

L = 4ε. (48)

In the general case, the latent heat and the vacuum energy density will not have this simple
relation. In order to apply the results of this calculation to a general model, it is convenient to
rewrite the parameter αc as

αc = L

4ρ̃u(Tc)
, (49)

where ρ̃u(T ) = auT
4 is the thermal energy density in the high-temperature phase.

Using the EOS (47) in Eqs. (45) and (46), we eliminate Tb ,

Tb

Tu

=
[
au

ab

(
1 − αu

1 + vuvb

1/3 − vuvb

)]1/4

, (50)

where αu ≡ ε/(auT
4
u ), and we still have two equations for vu, vb and αu. One of them comes

from hydrodynamics alone [18],

vu =
1

6vb
+ vb

2 ±
√

( 1
6vb

+ vb

2 )2 + α2
u + 2

3αu − 1
3

1 + αu

, (51)

where the + and − signs in front of the square root correspond to detonations and deflagrations,
respectively. The second equation involves microphysics [21],

4vuvbαu

1 − 3vuvb

− 2

3

(
1 + sb

su

)(
1 − Tb

Tu

)
+ 2αuη

L

(|vu|γu + |vb|γb

) = 0, (52)

with sb/su = (ab/au)(Tb/Tu)
3. In the case of detonations, we can solve these equations for

|vu| = vw as a function of αu, since αu depends on Tu = Tn. In the case of deflagrations, we
have an additional equation relating Tu and Tn,

√
3(αn − αu)√

(3αn + αu)(3αu + αn)
= vu − vb

1 − vuvb

, (53)

where αn ≡ ε/(auT
4
n ), and we can solve for |vb| = vw . In any case, Tu can be eliminated, and

the result depends on

αn = L

4ρ̃u(Tn)
. (54)

These equations can be solved numerically [21], and the wall velocity finally depends on the
parameters αc and αn, and on the ratio η/L. Depending on the parameters, there may be only
deflagrations, only detonations, both, or none. The deflagration solution always exists if the fric-
tion is large enough or the supercooling is small enough. The detonation solution will exist if the
friction is small enough and the supercooling is large enough. In general, there is no detonation

4 A simpler model with a single coefficient au = ab = a is sometimes used. In that case we would have L = ε.
However, such a model is not suitable for a phase transition, since the critical temperature [for which p+(Tc) = p−(Tc)]
does not exist [21].
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solution when the deflagration velocity is smaller than ≈ 0.5. As the velocity approaches the
speed of sound, the detonation solution may appear. The deflagration solution disappears soon
after becoming supersonic. Analytical approximations were also found in Ref. [21] for both so-
lutions. In this paper we shall use the numerical results.

Notice that the definitions of αc and αn [Eqs. (49) and (54)] involve the thermal energy
densities at the temperatures Tc and Tn, but the latent heat is in both cases the energy density
discontinuity at T = Tc . These parameters arise as a consequence of the use of the simple bag
EOS, and their definitions must be respected in applications. As discussed in Ref. [21], if we
used for αn the energy density that is released at T = Tn, which is larger than L, we would be
overestimating the velocity, since this would be equivalent to considering a stronger supercooling
[i.e., a smaller value of ρ̃u(Tn)].

5. The electroweak wall velocity

In this section we calculate the value of the wall velocity in the electroweak phase transition.
For that aim, we compute the parameters αc, αn, and η/L for several models. The temperature
Tn is defined through Eq. (16), and is the temperature at which bubbles begin to nucleate. By the
time bubbles occupy all space, the temperature will be in general different. If the wall velocity
is relatively large, bubbles will not have time to interact with each other until they percolate. In
this case the temperature will just decrease due to the expansion of the Universe, and the velocity
will increase during the phase transition. In general, though, the transition will be short enough,
so that the velocity will not change significantly from vw(Tn) [32]. On the other hand, in the
case of slow deflagrations, the supersonic shock fronts preceding the walls will cause a reheating
during bubble expansion. Hence, the temperature will grow and the wall velocity will decrease
from vw(Tn). Depending on the amount of latent heat, the reheating temperature may be very
close to Tc [22,27,33]. In this case, the wall velocity will decrease significantly. We shall not take
into account this possibility in the present paper. We remark, though, that it may have important
consequences [33,34].

We shall consider several extensions of the SM. The relevant SM contributions to the one-loop
effective potential come from the Z and W bosons, the top quark, and the Higgs and Goldstone
bosons. It is usual to ignore the Higgs sector in the one-loop radiative corrections. This should
be a good approximation in extensions of the SM which include particles with strong couplings
to φ. The φ-dependent masses of the weak gauge bosons and top quark are of the form hiφ,
with hi = mi/v, where mi are the physical masses at zero temperature. We shall ignore, as usual,
the longitudinal components of the weak gauge bosons, which are screened by plasma effects.
Thus, the W and Z contribute corrections of the form (6,9) to the free energy (8), with 4 and 2
bosonic d.o.f., respectively. The top contributes with gt = 12 fermionic d.o.f. The rest of the SM
particles have hi � 1 and only contribute a φ-independent term −π2glightT

4/90, with glight ≈ 90.
To strengthen the electroweak phase transition, extra particles are usually added to the SM, with
strong couplings to φ.

5.1. SM extensions with scalars

It is well known that the easiest way of strengthening the phase transition is by extending the
scalar sector of the SM. The simplest extension consists of adding gauge singlet scalars [23,35].



A. Mégevand, A.D. Sánchez / Nuclear Physics B 825 (2010) 151–176 165
Fig. 4. The wall velocity as a function of the coupling h of the singlet, for several Higgs masses. All the curves correspond
to the case μ = 0, except for the doted line, which corresponds to μ = 100 GeV. The crosses indicate the case φn/Tn = 1.

5.1.1. A complex singlet
We shall first consider a model in which a single complex scalar S is added to the SM [36–

38]. The coupling to the Higgs is of the form 2h2S†SH†H , and the field S may have a SU(2) ×
U(1) invariant mass term μ2S†S and a quartic term λS(S†S)2. For simplicity, we will ignore the
possibility that cubic terms exist in the tree-level potential, and we will assume μ2 � 0. We notice
however that a negative value of μ2, as well as a cubic coupling, may enhance the strength of the
phase transition through tree-level effects [36]. We shall study the effect of a cubic term at the
end of this section. Hence, the field S gives contributions to the free energy of the form (6,9), with
g = 2 d.o.f. and a mass m2(φ) = h2φ2 + μ2. The thermal mass is given by Π = (h2 + λS)T 2/3
[37]. We shall take λS = 0 for our numerical calculations. We have checked that considering
λS �= 0 does not introduce qualitative differences in the results.

Fig. 4 shows the value of the wall velocity at the nucleation temperature Tn, as a function of
the coupling h for different values of the parameters. We have plotted both the deflagration and
the detonation solutions, when they exist, for the case μ = 0 (which maximizes the strength of
the phase transition) and Higgs masses mH = 100,125,150 and 175 GeV, and for the case μ =
100 GeV and mH = 125 GeV. For the same h, larger values of mH give weaker phase transitions
and, consequently, lower values of vw . The crosses indicate the points where φ(Tn)/Tn = 1. As
h is increased, the phase transition becomes stronger. As a consequence, the temperature Tn

decreases and the supercooling stage lasts longer. In this model, if h is too large the Higgs VEV
remains stuck in the symmetric phase, and the Universe enters a period of inflation. We are not
interested in such extreme cases, and we just plot the curves up to a value of h for which the time
required to get out of the supercooling stage becomes too long for the numerical computation.

Although the amount of supercooling grows with h, so does the friction and the behavior of
the wall velocity is rather unpredictable. As can be seen in Fig. 4, the velocity in general increases
with h. However, for larger values of mH (e.g., the case mH = 175 GeV), the velocity eventually
decreases for large h. This is because larger values of h are required to achieve a phase transition
of the same strength, and the friction becomes important. Only the cases mH = 100 and 125 GeV
have detonations (the short curves which lie above the speed of sound). Notice that there is a
small range of h for which there are neither deflagrations nor detonations, i.e., no stationary
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Fig. 5. The wall velocity as a function of μ, for mH = 125 GeV and three values of h.

solution for the wall velocity. In such a case, the steady state will not be reached, and the wall
will accelerate until the end of the phase transition. The case in which the wall velocity gets
close to the speed of light may have important implications for gravitational wave generation.
Such ultrarelativistic velocities have been considered recently [39] for the SM extension with
singlet scalar fields, finding that “runaway” solutions exist for very strong phase transitions.

For μ �= 0 the phase transition is weaker and the amount of supercooling is lower, but the
friction is lower too. As an example, consider the case mH = 125 GeV and μ = 100 GeV (dotted
line in Fig. 4). We see that for small h the velocity is lower than in the case of μ = 0, while for
large h the velocity is higher. In Fig. 5 we have plotted the wall velocity as a function of μ for
mH = 125 GeV and h = 1.4, 1.6 and 1.8. We see that for small μ the wall velocity increases
with μ, indicating that the friction decreases faster than the strength of the phase transition. For
large μ the velocity eventually decreases, as the extra boson decouples from the thermal plasma.
For the cases h = 1.4 and h = 1.6 there are only deflagrations. The crosses in the curves indicate
a phase transition with φ(Tn)/Tn = 1. To the right of this point the phase transition is weaker.
The value h = 1.8 is quite large, and there are detonations for a long range of values of μ. In this
case, deflagrations appear only for μ � 170 GeV. We see that there is a range of parameters for
which there exist both kinds of solution for the wall propagation, and also a range in which there
is no solution.

5.1.2. A hidden sector
Recently, an extension of the SM with several real singlets Si has been considered [40]. These

bosons constitute a hidden sector which couples only to the SM Higgs doublet through a term
h2H †H

∑
S2

i (for simplicity, universal couplings hi = h are assumed). Following Ref. [40], we
assume there are no linear, cubic, or quartic terms in the hidden-sector scalar fields. Therefore,
this case is similar to the previous one, with m2(φ) = h2φ2 + μ2 and g d.o.f., where g is the
number of singlets. We shall take g = 12, as in Ref. [40]. If the fields Si do not have mass
terms, so that they only get a mass from electroweak breaking, the phase transition can be made
exceedingly strong. Interestingly, this model allows to consider the classically conformal case,
corresponding to m2 = 0 in Eq. (5). The loop corrections break conformal invariance, and a mass
scale appears via dimensional transmutation. Imposing appropriate renormalization conditions,
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Fig. 6. The wall velocity for g = 12 real scalars with μ = 0.

for a given Higgs mass the classically conformal case occurs for a fixed value of h. Since we are
interested in the variation of the strength of the phase transition as a function of the parameters,
we shall not give special attention to this particular case.

Fig. 6 shows the velocity vw(Tn) as a function of the coupling h for μ = 0 and different
values of mH in the range 100–200 GeV. Since this model has more d.o.f. than the previous one,
the phase transition becomes strongly first-order for lower values of h. As a consequence, the
wall velocity grows more quickly with h. However, we see that in all the cases the nucleation
stage becomes too long before detonations can exist. For μ �= 0 the phase transition weakens
and higher values of h can be considered. We have found that detonations appear in the range
μ ∼ 50–150 GeV for low values of mH and extreme values of h. For most values of h there are
only deflagrations, and the behavior with μ is similar to that of the lower curves of Fig. 5.

5.2. The MSSM

The Minimal Supersymmetric Standard Model (MSSM) has been extensively investigated in
connection to electroweak baryogenesis [41], since it may provide a strong phase transition and
sources of CP violation. The MSSM contains two complex Higgs doublets H1 and H2. We define
the vacuum expectation values v1 ≡ 〈H 0

1 〉 and v2 ≡ 〈H 0
2 〉. It is customary to simplify the problem

by considering the limit in which the CP-odd Higgs mass is large (mA � mZ). In this limit the
low energy theory contains a single Higgs doublet Φ , and the masses and couplings depend on
tanβ ≡ v2/v1. Thus, calling φ/

√
2 the background of the real neutral component of Φ , the tree-

level potential is of the form (5), with the quartic coupling given by λ = (g2 + g′2) cos2(2β)/8.
Therefore, the tree-level Higgs mass is bounded by m2

H < m2
Z . However, this tree-level relation

is spoiled by radiative corrections (see e.g. [42]) and we shall consider mH as a free parameter.
In this model, the relevant SM field-dependent masses are those of the gauge bosons,

m2
W = g2φ2/4 ≡ h2

Wφ2, m2
Z = (

g2 + g′2)φ2/4 ≡ h2
Zφ2, (55)

and top quark,
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m2
t (φ) = h2

t sin2 β

2
φ2 ≡ h̄2

t φ
2, (56)

where ht is the Yukawa coupling to H 0
2 . We shall work in the limit in which the left-handed stop

is heavy (mQ � 500 GeV). In this case, the one-loop correction to the SM is dominated by the
right-handed top squark contribution, with the field-dependent mass given by

m2
t̃
(φ) ≈ m2

U + h2
t̃
φ2, (57)

where

h2
t̃
= 0.15h2

Z cos 2β + h̄2
t

(
1 − Ã2

t

m2
Q

)
, (58)

m2
U and m2

Q are soft breaking parameters, and Ãt is the stop mixing parameter. If the mass of the
right-handed stop is of the order of the top mass or below, the one-loop effective potential (12)
admits the high-temperature expansion [43]

V (φ,T ) = D
(
T 2 − T 2

0

)
φ2 − T

(
ESMφ3 + 6

Mt̃ (φ)3

12π

)
+ λ(T )

4
φ4, (59)

where D = m2
H /(8v2) + 5h2

W/12 + 5h2
Z/24 + h2

t /2 [15], T 2
0 = m2

H /(4D), ESM is the cubic-
term coefficient in the high-temperature expansion for the SM effective potential, ESM ≈ (2h3

w +
h3

z)/6π , and M2
t̃
(φ) = m2

t̃
(φ) + Πt̃(T ). The thermal mass is given by [43]

Πt̃(T ) =
[

4g2
s

9
+ h2

t

6

(
1 + sin2 β

(
1 − Ã2

t

m2
Q

))
+

(
1

3
− | cos 2β|

18

)
g′2

]
T 2, (60)

where gs is the strong gauge coupling. Following Ref. [15], we shall set Ãt = 0 for simplicity in
the numerical calculation. We shall also take sin2 β = 0.8.

The phase transition strength is maximized for negative values of the soft mass squared m2
U ≈

−Πt̃(T ) [44], for which the contribution of the term M3
t̃

in (59) is of the form −EMSSMT φ3,
with a coefficient EMSSM that may be one order of magnitude larger than that of the SM. This
would make the phase transition sufficiently strong for baryogenesis for Higgs masses as large as
100 GeV. However, such large negative values of m2

U may induce the presence of color breaking
minima at zero or finite temperature [45]. Demanding the absence of such dangerous minima
constrains the Higgs mass to unrealistic values. Nevertheless, the two-loop corrections are very
important and can make the phase transition strongly first-order even for mU ≈ 0 [46]. The most
important two-loop corrections are of the form φ2 logφ and are induced by the SM weak gauge
bosons, as well as by stop and gluon loops [46,47]. In the case of a heavy left-handed stop we
have [43]

V2(φ,T ) ≈ φ2T 2

32π2

[
51

16
g2 − 3

(
2h̄2

t

(
1 − Ã2

t

m2
Q

))2

+ 8g2
s 2h̄2

t

(
1 − Ã2

t

m2
Q

)]
log

(
ΛH

φ

)
,

(61)

where the scale ΛH depends on the finite corrections and is of order 100 GeV. Following [15], we
will set ΛH = 100 GeV for the numerical computation, given the slight logarithmic dependence
of V2 on ΛH .

The phase transition takes place at some temperature between the critical temperature Tc and
the temperature at which the barrier between minima disappears. The latter is approximately



A. Mégevand, A.D. Sánchez / Nuclear Physics B 825 (2010) 151–176 169
Fig. 7. The wall velocity as a function of the stop mass for several Higgs masses. The cross in the lower curve marks the
point of φn/Tn = 1.

given by the parameter T0 in Eq. (59). In order to avoid the presence of color-breaking minima,
we only consider values of m2

U for which m2
U + Πt̃(T0) > 0 [15]. For the computation of the

temperature Tn we used the high-temperature approximation (59) for the one-loop effective po-
tential, together with the two-loop correction (61). Therefore, for the friction coefficient we also
used the high-temperature approximation, given by Eqs. (3) and (4). For the stop contribution we
have mD ∼ mt̃ ∼ ht̃T .

Fig. 7 shows the wall velocity as a function of the stop mass for Higgs masses mH =
100,110,120,130 and 140 GeV. In the lower curve (mH = 140 GeV), the cross marks the case
φn/Tn = 1. To the right of the cross the phase transition is weak. As can be seen, for this model
the velocity is not very sensitive to the stop and Higgs masses. We only obtain deflagrations, with
velocities in the range vw ∼ 0.3–0.45.

5.3. TeV fermions

So far we have considered extensions of the SM for which the relevant contributions to the ef-
fective potential came from new scalars. In Ref. [48], it was shown that in extensions with extra
fermions strongly coupled to the Higgs field, the phase transition may be sufficiently strong
to avoid erasure of the baryon asymmetry in the broken-symmetry phase. Strongly coupled
fermions, however, make the vacuum unstable unless the Higgs is heavy. In the model con-
sidered in Ref. [48], this problem was solved by adding heavy bosons with similar couplings
and number of degrees of freedom, but with a large φ-independent mass term, so that they are
decoupled from the dynamics at T ∼ v. The model can be considered as a particular realization
of split supersymmetry, where the standard relations between the Yukawa and gauge couplings
are not fulfilled. Therefore, the fermions are higgsinos and gauginos, with a total of 16 d.o.f.

Depending on the values of the Yukawa couplings and of the mass parameters, the mass
eigenvalues can be rather cumbersome. In the simplest case, only g = 12 d.o.f. are coupled to
the SM Higgs, with degenerate eigenvalues of the form m2

f (φ) = μ2 + h2φ2. One can assume
for simplicity that the bosonic stabilizing fields have the same number of d.o.f., and a dispersion
relation m2 (φ) = μ2 + h2φ2. We shall also assume, as in Ref. [48], that ΠS = 0. The maximum
S S



170 A. Mégevand, A.D. Sánchez / Nuclear Physics B 825 (2010) 151–176
Fig. 8. The wall velocity as a function of h, for g = 12 and μ = 0. The points to the right of the crosses correspond to
phase transitions with φn/Tn > 1.

value of μS consistent with stability is obtained by requiring the quartic term in Eq. (6) to be
positive at scales much larger than v. Taking into account only the radiative corrections associated
with the strongly coupled fields, one finds that μ2

S must be below the value

μ2
S = exp

(
m2

H 8π2

gh4v2

)
m2

f (v) − h2v2. (62)

In order to minimize the effect of the stabilizing bosons on the strength of the phase transition,
we will set μS to this maximum value. Notice, however, that we have μS � μ only for small h,
so in general the stabilizing bosons are not completely decoupled from the thermal plasma.

In Fig. 8 we have plotted the wall velocity for μf = 0 and different values of mH . The parts
of the curves on the right of the crosses correspond to φ(Tn)/Tn > 1. To obtain a strongly first-
order phase transition with extra fermions, large values of the Yukawa coupling h are needed.
Therefore, the friction coefficient is in general larger than in models in which the strength of the
transition is enhanced with extra bosons. As a consequence, the wall velocity is smaller. We find
velocities vw � 0.25, and as small as vw = 0.05 for strongly first-order phase transitions. This
makes this model interesting for baryogenesis, since the generated baryon asymmetry peaks for
vw � 1 [4,5]. Fig. 9 shows the case μ �= 0, for mH = 125 GeV and different values of h. In the
lower curves, the phase transition is weak on the right of the crosses. We see that the wall velocity
can either grow or decrease as the invariant mass of the extra particles is increased. Nevertheless,
vw is still in the range 0.05 � vw � 0.25 for strongly first-order transitions.

5.4. Other extensions

Given the large variety of extensions of the SM, it is not feasible to consider all the models. For
many models, the strength of the phase transition depends only on the particle content. Generally,
adding bosons to the SM makes the phase transition more strongly first-order, whereas fermions
make it weaker. To one-loop order, the magnitude of this effect depends on the coupling of the
extra particles to the Higgs boson, as well as on their number of degrees of freedom. The friction
also depends on these parameters, increasing with the addition of either bosons or fermions.
The previous examples correspond to such models, in which the extra-SM sector was dominated
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Fig. 9. The wall velocity as a function of h, for g = 12 and mH = 125 GeV. For the points to the right of the crosses the
phase transition is weak (φn/Tn < 1).

either by bosons or by fermions. For an intermediate model in which bosons and fermions have
the same values of g, h, and μ, we have obtained intermediate values of the velocity, namely,
only deflagrations with vw ∼ 0.15–0.35 for phase transitions with φn/Tn > 1.

On the other hand, the strength of the phase transition may be changed without directly
changing the particle content of the model. This is what happens, e.g., in the MSSM when
the two-loop contribution (61) is taken into account. Another possibility is the introduction of
a non-renormalizable dimension-six term of the form (Φ†Φ − v2/2)3/Λ2 in the Higgs potential,
which allows to consider a negative quartic coupling [49]. Adding a real singlet field S to the
SM allows for the possibility of cubic terms of the form (H †H)S or S3 in the tree-level poten-
tial, which cannot be constructed with Higgs doublets. The presence of cubic terms already at
zero temperature makes it easier to get a strongly first-order electroweak phase transition [36].
This possibility exists also in the Next to Minimal Supersymmetric Standard Model (NMSSM),
which consists of adding a gauge singlet to the MSSM. In this model the cubic terms arise as
supersymmetry-breaking soft terms. Since the strength of the transition is dominated by the cu-
bic terms in the tree-level potential, it is not necessary to rely on loop corrections or to consider
a light stop [50].

In these modifications of the SM, the phase transition can be made strongly first-order without
increasing the friction. In order to explore the effect of such a tree-level modification on the wall
velocity, we shall consider the addition of cubic terms. Considering the full potential makes the
model considerably more complicated than those we have studied so far, since one has to deal
with more than one scalar and several free parameters. Instead, we shall consider a toy model
which consists of adding a term −Aφ3 to the tree-level potential (5) for the SM, where A is a
free parameter with mass dimensions. In this model the parameters of the potential are related to
the physical Higgs VEV and mass by 2m2 = λv2 − 3Av, m2

H = 2λv2 − 3Av. We shall use the
high-temperature potential

V (φ,T ) = DSM
(
T 2 − T 2

0

)
φ2 − (T ESM + A)φ3 + λ

4
φ4, (63)

with the SM values given by DSM = (2h2
W + 2h2

t + h2
Z)/8, ESM = (2h3

W + h3
Z)/6π , and T 2

0 =
m2/DSM.
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Fig. 10. The wall velocity for the SM with a cubic term −Aφ3.

We show the results in Fig. 10. We have considered values of the parameters for which
htφ/T � 1, so that the high-temperature expansion (63) is valid. The strength of the phase tran-
sition increases very quickly with A, and this is reflected in the behavior of the wall velocity.
Notice that, although in this case the particle content does not change, the friction coefficient
increases with the strength of the transition due to its dependence on the surface tension. Even-
tually, the wall velocity stops growing. There is also a strong dependence on mH . For smaller
values of mH (mH = 100 and 200 GeV) the strengthening with A is so fast that the deflagra-
tion solution quickly becomes supersonic and disappears. In these cases, the detonation solution
does not appear before the phase transition ceases to occur. Interestingly, detonations appear for
weaker phase transitions (higher values of mH ).

6. Gravitational waves and baryogenesis

The generation of gravitational waves and of the baryon asymmetry of the Universe in the
electroweak phase transition seem to be mutually exclusive, since baryogenesis requires small
wall velocities while GW production requires large velocities. In this section we discuss which
of them is more likely in the various extensions of the SM we have considered.

Both detonations and deflagrations generate gravitational waves [1,2,11–17,51,52]. However,
higher velocities give stronger signals, and Jouguet detonations are often assumed for studying
GW generation. As shown in Ref. [21], the Jouguet velocity is not a good approximation and
detonations, when they exist, are weak detonations. Furthermore, as we have seen, in the case
of the electroweak phase transition detonations exist only in some of the extensions of the SM,
and for extreme values of the parameters, namely, small Higgs masses and large coupling h.
(Interestingly, a non-vanishing mass parameter μ may favor the appearance of detonations, as can
be seen in Fig. 4.) In any case, detonations are more likely in models in which the strength of the
transition is enhanced by tree-level effects, as shown in Fig. 10. On the other hand, deflagrations
with vw � 0.1 may also produce a signal of GWs observable by LISA [52]. We remark that
the usual assumption that detonations are a stronger source of GWs than deflagrations may be
wrong. Weak detonations have larger velocities than Jouguet detonations, but cause a smaller
disturbance in the fluid. On the other hand, deflagrations with velocities close to cs may cause
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important perturbations. For most of the models we have considered, there is a wide range of
parameters for which the deflagration velocity is quite large. Extensions of the SM with strongly
coupled fermions constitute the only exception.

For the baryon asymmetry of the Universe to be produced at the electroweak phase transition,
the latter must be strong enough, i.e., the condition φ/T > 1 must be fulfilled. On the other hand,
the generated BAU is maximized for velocities vw � 10−1, and is strongly suppressed for higher
velocities. This condition demands a weak enough phase transition, how weak depending on the
friction. These two conditions may restrict significantly the parameters of the theory. Models
with extra bosons which are strongly coupled to the Higgs have been extensively considered,
since they easily give strongly first-order phase transitions. However, in our examples we have
seen that these models also tend to give quite large wall velocities. For extensions with scalar
singlets, we obtained in all the cases vw � 0.2 for φn/Tn � 1, and even larger (vw � 0.5) if
tree-level cubic terms are allowed. For the MSSM with a light stop we also obtained rather large
velocities, vw � 0.35. On the other hand, extensions with fermions are not usually taken into
account because they tend to weaken the phase transition. However, models with fermions can
give strong enough phase transitions, as shown in Ref. [48] for the case of fermions with large
Yukawa coupling h and heavier stabilizing bosons. For this model, with μS given by Eq. (62),
we see that the wall velocity can be as small as vw = 5 × 10−2 for φn/Tn = 1 (see Figs. 8 and 9).

Due to the approximations used in the calculation of the friction coefficient, the error in the
wall velocity is an O(1) factor. With a larger friction, extensions with bosons may give velocities
vw � 0.1 for φn/Tn = 1. In any case, it is clear that values of φn/Tn and vw which are appropriate
for baryogenesis are more easily obtained in models in which the dynamics is dominated by
fermions. If the friction is smaller than our estimate, we will have higher velocities, which favors
the generation of GWs. For instance, in the MSSM, if we consider a friction coefficient a factor
of 3 smaller we obtain deflagrations with vw ≈ cs and detonations with vw ≈ 0.85 for mH =
120 GeV.

7. Conclusions

We have studied the velocity of bubble walls in the electroweak phase transition. We have
estimated the friction on the wall due to particles with dispersion relation m2 = μ2 + h2φ2, for
arbitrary values of the parameters μ and h. We have discussed analytically the cases of small and
large μ/T and hφ/T . We have solved numerically the equations for the wall velocity, taking
into account the friction and the hydrodynamics, and we have computed the electroweak wall
velocity for several extensions of the Standard Model. We have also discussed the implications
of our results for baryogenesis and gravitational wave generation.

The friction coefficient, as well as the amount of supercooling, have a strong, nontrivial de-
pendence on the coupling h of the particles to the Higgs. Furthermore, the friction depends on the
bubble wall profile, and thus on the strength of the phase transition. Therefore, the wall velocity
is not related to the strength of the transition in a simple way, and the behavior depends on the
model. We have found that in general the velocity increases with the coupling h, but it can also
decrease (see, e.g., Fig. 4). As we increase the mass parameter μ, the friction tends to increase
for small μ and to decrease for large μ.

As we have seen, detonations exist only for high values of h and low values of mH , except in
the case in which the strength of the phase transition is due to tree-level effects rather than to loop
contributions of extra particles. We stress that there may be O(1) errors in our estimate of the
friction coefficient. For non-relativistic velocities this will not introduce qualitative differences.
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However, if a model has deflagrations with velocity close to the speed of sound, a lower friction
may cause the detonation solution to exist and the deflagration to disappear. In particular, the
interaction rates Γ need to be calculated accurately in each model.

We have also seen that it is difficult to obtain small velocities in phase transitions with
φn/Tn � 1. For instance, the MSSM gives velocities in the range 0.35 � vw � 0.45, a hidden
sector of scalar singlets gives velocities ranging from vw � 0.1 up to supersonic values, and a
tree-level cubic term causes velocities vw � 0.5. In these models the wall velocity is rather large
for baryogenesis. On the other hand, such high velocities (either detonations or deflagrations)
may produce an observable signal of GWs. In contrast, the presence of fermions causes smaller
velocities, since they increase the friction without increasing the phase transition strength. Thus,
baryogenesis is more likely in models with fermions. In particular, for the model considered in
Ref. [48], which contains fermions with large Yukawa couplings h, we have found velocities in
the range 0.05 � vw � 0.25 for φn/Tn � 1.
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