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Matrix elements for the ground-state to ground-state 2νβ−β− decay of Te isotopes in a hybrid model

D. R. Bes1 and O. Civitarese2

1Department of Physics, Tandar Labratory, Centro Atomico Constituyentes-Comision Nacional de Energia Atomica Avda Gral Paz 1499,
1650 Gral San Martin, Argentina and

2Department of Physics, University of La Plata, Casilla de Correo 67 1900, La Plata, Argentina
(Received 18 August 2009; revised manuscript received 25 November 2009; published 28 January 2010)

Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-β-decay mode
(2νβ−β−gs → gs) of 128,130Te isotopes, are calculated within a formalism that describes interactions between
neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model
are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one,
because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental
data is presented.
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I. INTRODUCTION

The ultimate achievement of nuclear double-β-decay
(DBD) studies is to elucidate the nature of the neutrino [1,2].
To achieve this goal, one needs a set of reliable nuclear matrix
elements [3], which proved to be tougher than previously
thought [4]. In fact, about twenty years have elapsed since the
first results produced by systematical theoretical attempts were
published [5]. These treatments of the nuclear sector in DBD
processes have started from two basically different approaches:
(a) shell model calculations performed within a restricted
basis [6] and (b) calculations based on the proton-neutron
quasiparticle random-phase approximation [7–12]. In spite of
impressive improvements, in practice shell model calculations
are limited to the p-f shell and/or by the excitation energy of
the states involved. In particular, Gamow-Teller (GT) matrix
elements are renormalized through the presence of the GT
giant resonance (GTR), which should decrease (increase) their
absolute value if the energy difference between initial and final
states is smaller (larger) than the energy of the GTR. Shell
model calculations account only for the reduction by means of
a coefficient of about 0.7–0.8, multiplying the GT matrix ele-
ments. This general reduction also prevents the conservation of
the Ikeda sum rule. The proton-neutron quasiparticle random-
phase approximation (pnQRPA) is based on the superfluid
description of the single-particle motion (quasiparticle mean
field), plus a random-phase approximation (RPA) treatment
of residual proton-neutron interactions. The small size of the
Hilbert space is a handicap for the validity of this approach
to low- and intermediate-mass nuclei. Moreover, because GT
matrix elements imply transitions between neutron and proton
states belonging to the same shell, the available Hilbert space
is further reduced for particles whose orbits are close to the
beginning or the end of the shell. It is well known that quasi-
particle mean field (BCS) treatment of a few particles is not
advisable. Moreover, the backward contributions to the RPA
amplitudes may display relatively strong violations of the Pauli
principle.

In principle, one knows how to systematically correct
these diseases by means of perturbation expansions [13–16],
but such procedures become extremely cumbersome in all

orders of perturbation, except for the lowest possible one.
Alternatively, modifications of the RPA have been used (see
Ref. [17] for a review of such modifications of the pnQRPA).
However, some of these attempts are invalidated by the fact that
the Ikeda sum rule is violated. One may also describe paired
nucleons as phonons, which may annihilate, for instance, a
closed-shell system [14]. This version of the nuclear field
description is limited to nuclei in the vicinity of closed shells.
It has been recently applied to study spin-isospin excitations
in the region around A = 56 [18].

In the present article, we calculate DBD processes in Te
isotopes. Although the neutrons may be reasonably described
through a superfluid field approach, this is not the case for
two and four protons outside the close shell Z = 50, as in Te
and Xe nuclei, respectively. Therefore, we perform a hybrid
treatment that describes protons as one- or two-pairing-phonon
states while maintaining a superfluid picture for neutrons.

The article is organized as follows: The empirical informa-
tion supporting the formalism we use in this work is presented
in Sec. II, and the hybrid model is described in Sec. III. The
results are presented and discussed in Sec. IV. Conclusions
are drawn in Sec. V. Further details of the formalism and the
analysis of the data, corresponding to the assumptions made
in constructing the theory, are presented in the appendixes.

II. EMPIRICAL FRAMEWORK

In this section, we introduce the elementary degrees of
freedom of the model, both fermionic and bosonic, and the
essentials of the microscopic treatment of the pairing and GT
sectors of the theory.

A. Macroscopic description

We identify the vacuum state |0〉 as the proton closed
shell (Z = 50) and the BCS neutron vacuum (ASn). Fermion
excitations are created by proton creation b+

km or destruction
bhm operators and by neutron quasiparticle creation operators
α+

jm. Labels k, h, and j denote the quantum numbers specifying
single-particle states for the magnetic quantum number m.
Proton k (h) states lie above (below) the Fermi energy.
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Boson excitations belong to two different types:

(i) Rotations in gauge space: There is a rotational band
made up from the ground states of even Sn isotopes
with the same proton closed-shell configuration.

(ii) Vibrations: Pairs of protons give rise to a vibrational
pattern made by adding addition and removal phonons.

This description assumes independence between neutron
and proton motions, which is certainly not exactly verified.
For instance, the single-proton levels k = d5/2, g7/2 exchange
positions as the neutron number N increases. Nevertheless,
there is also evidence (see Appendix A) favoring the zeroth-
order description introduced previously.

The proton-neutron interaction manifests itself through
proton-neutron excitations (GT bosons) and the associated
ground-state correlations. These modes are excited and de-
excited in the 2νβ−β− process studied here, as we discuss
next.

B. Microscopic treatment

The Hamiltonian of the model includes the following
sectors: (a) neutron-neutron, (b) proton-proton, and (c) proton-
neutron interactions. The usual neutron-neutron interaction is
written

Hn = −gnP
+
n Pn, (1)

where the operator P +
n is

P +
n =

∑
j

ĵ [c+
j c+

j ]0 (2)

(with ĵ = √
j + 1/2). The operators c+

jm are the single-
neutron creation operators, which are transformed to quasineu-
tron operators α+

jm and αjm by means of the usual Bogoliubov
transformation:

c+
jm = Ujα

+
jm − Vj (−1)j+mαjm̄. (3)

The resulting quasiparticle orbits have quasiparticle energies
Ej and occupation amplitudes Uj and Vj .

The proton-proton operator has the form

P +
p =

∑
k

k̂[b+
k b+

k ]0 +
∑

h

ĥ[b+
h b+

h ]0, (4)

and the pairing interaction is written as

Hp = −gp P +
p Pp. (5)

This interaction is treated within the RPA. In particular, we are
interested in the properties of the �+

0 boson, which is the lowest
pairing addition phonon. Its energy and coupling strength are
denoted by ω0 and �0, respectively (see Appendix B).

To treat the proton-neutron system, we start by defining
the isoscalar pairing and GT operators. We denote by P +

νq

the pair-creation operator (ν = 1) and the pair-annihilation
operator (ν = 1̄),1 both carrying the isospin T = Tz = 0 and

1A bar on top denotes a minus sign (ν̄ = −ν, q̄ = −q, and so on).

angular momentum I = 1 with projection q:

P +
1q = 〈j1||σ ||j2〉√

3

(
b+

j1
c+
j2

)1
q

= 〈k||σ ||j 〉√
3

[
Uj (b+

k α+
j )1

q − Vj (b+
k αj )1

q

]
+ 〈j ||σ ||h〉√

3

[−Uj (α+
j b+

h )1
q + Vj (αjb

+
h )1

q

]
,

P +
1̄q

= (−1)1+q(P +
1q̄)+ = 〈j1||σ ||j2〉√

3

(
cj1bj2

)1
q

= 〈j ||σ ||h〉√
3

[
Vj (α+

j bh)1
q + Uj (αjbh)1

q

]
− 〈k||σ ||j 〉√

3

[
Vj (bkα

+
j )1

q + Uj (bkαj )1
q

]
. (6)

Similarly, we write the GT operators as Qνq , carrying isospin
T = 1 and increasing (decreasing) the isospin projection
by one unit if ν = 1 (ν = 1̄). They also carry the angular
momentum quantum numbers 1, q:

Q1q = −〈j1||σ ||j2〉√
3

(b+
j1
cj2 )1

q

= −〈k||σ ||j 〉√
3

[
Vj (b+

k α+
j )1

q + Uj (b+
k αj )1

q

]
+ 〈j ||σ ||h〉√

3

[
Uj (α+

j b+
h )1

q + Vj (αjb
+
h )1

q

]
,

Q1̄q = (−1)1+q(Q1q̄)+ = 〈j1||σ ||j2〉√
3

(
c+
j1
bj2

)1
q

= 〈j ||σ ||h〉√
3

[
Uj (α+

j bh)1
q − Vj (αjbh)1

q

]
+ 〈k||σ ||j 〉√

3

[
Vj (α+

j bk)1
q − Uj (αjbk)1

q

]
. (7)

Although P +
νq and Qνq have good isospin quantum numbers,

none of the four paired operators [b+
k α+

j ]1
q , [α+

j bh]1
q , [b+

k α+
j ]1

q ,
and [bkαj ]1

q do, because of the superfluid description of
neutrons. However, because both P +

νq and Qνq depend on these
same operators, we must include the two associated schematic
interactions in the proton-neutron Hamiltonian:

Hpn = −gpn

√
3[P +

1 P +
1̄ ]0 − g

√
3[Q1Q1̄]0. (8)

This Hamiltonian is explicitly treated within the RPA in
Appendix C. We denote by �+

νn,q the resulting phonon-creation
operators, where ν has been defined previously, and n =
1, 2, . . . orders the phonons according to increasing values of
their frequencies, ωνn. The corresponding coupling strengths
are denoted by �νn and �νn (see Appendix C).

A compact list of the parameters of the model follows:

(i) Proton single-particle levels: The most critical quan-
tities are the particle-hole energy spacing at the shell
closure Z = 50 (e7/2 + e9/2), and the particle-particle
spacing (e5/2 − e7/2). The other active hole and particle
states are obtained from the diagonalization of a Woods-
Saxon (WS) plus Coulomb central potential, with the
parameters given in Appendix B.
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(ii) Neutron single-quasiparticle levels are determined
from the BCS treatment of the pairing interaction (1)
for 50 � N � 126, in the single-particle orbits given
by the WS well. The coupling gn is fixed to reproduce
to the observed gaps.

(iii) The amplitudes and couplings of the pairing phonons
are fixed from the phenomenology (i.e., from binding
and excitation energies) and from the population of
states experimentally determined from data on (3He,n)
reactions.

(iv) The amplitudes and couplings of the GT phonons are
determined from the known data on the energy of the
GT resonance and from the measured ft values for
allowed GT single-β decays in the nuclei of interest.

(v) The value of the coupling constant gpn of Eq. (8) is
obtained from the value determined empirically for the
mass region A = 58, as explained in Appendix D.

We extract these parameters from empirical information
independent of the DBD process that we want to study.

III. HYBRID FORMALISM

The initial and final states of the 2νβ−β− process are
described by one proton-pairing phonon (Te isotopes) and
by two proton-pairing phonons (Xe isotopes). In both states,
neutrons are assumed to be in the same vacuum BCS state.2

The whole process is divided into two stages. In the first
one, the first electron-antineutrino pair is emitted. The nuclear
factor of the associated interaction is proportional to the GT
operator Q1q (7). It creates an intermediate state from which,
in the second stage, another GT operator acts, leading to the
final state.

The intermediate state must be treated as a final (initial)
state in the Nuclear Field Theory (NFT) sense [16], for the
first (second) stage of the process, respectively. Thus, every
pair of fermion lines should be eliminated from its graph-
ical representation and replaced by its phonon counterpart.
Therefore, the intermediate states populated (or depopulated)
through the lowest order diagrams are

|an, q〉 = �+
0 �+

1n,q |0〉,
(9)

|bn, q〉 = 1√
2

(�+
0 )2 �+

1̄n,q
|0〉.

They are represented by the diagrams shown in Fig. 1.
The lowest-order contributions representing each stage of

the process are given in Fig. 2. Graphs 1–3 correspond to
processes associated with the intermediate states |an, q〉, and
graphs 4–6 are associated with the intermediate state |bn, q〉.

Graph 1 represents the direct creation of the GT resonance
through the GT collective operator (Q+

νq)
coll

[see Eq. (C9)

2This is a reasonable assumption for systems that are sufficiently
degenerate and sufficiently away from closed shells. It may be
perturbatively corrected (see Chapter 7.2 of Ref. [15]). However,
the corrections imply the inclusion of diagrams of an order higher
than the one considered in the present work.

FIG. 1. Intermediate states |an, q〉 (left) and |bn, q〉 (right) of
Eq. (9). Proton-proton modes are represented by a double line with
an arrow, and the GT phonon is represented by a wavy line.

of Appendix C], whereas graphs 2 and 3 describe the
annihilation of this resonance. Note that graph 3 represents
a renormalization process of the fermion version of the GT
operator acting in graph 2. Both diagrams are of the same
order within the NFT formalism. The importance of including
the renormalization diagrams has been stressed in Ref. [18]
because they are essential, for instance, to preserve the Ikeda
sum rule. In Fig. 2, the initial pairing phonon acts like a
spectator. Its influence amounts to adding a factor of

√
2 to the

matrix elements corresponding to graphs 2 and 3 and graphs
4 and 5. As usual, all time orderings should be included. The
total contributions yield

〈�+
0 �+

1n,q |Q1q |�+
0 〉 = −�1n/g,

(10)〈
1√
2

(�+
0 )2|Q1q̄ |�+

0 �+
1n,q

〉
= (−1)1+q

√
2(A1n + B1n),

FIG. 2. Diagrams connecting the initial and final states with the
intermediate states |an, q〉 [cf. Eq. (10); first row, from left to right:
graphs 1–3] and with the intermediate states |bn, q〉 [cf. Eq. (12);
second row, from left to right: graphs 4–6]. Open circles represent
the transition operator, Q1q (or Q1q̄ ), and the dots represent the
interactions between particles and phonons. Single lines with an
arrow represent proton single-particle states and bare lines represent
quasineutron states.
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where

A1n = −�0

3

∑
j

[∑
k

(�1nUj − �1nVj )〈k||σ ||j 〉2

(ω0 − 2ek)(ω1n − ek − Ej )

−
∑

h

(�1nUj − �1nVj )〈j ||σ ||h〉2

(ω0 + 2eh)(ω1n − ω0 − eh − Ej )

]
f U

j (1n),

B1n = �0

3

∑
j

[∑
k

(�1nVj + �1nUj )〈k||σ ||j 〉2

(ω0 − 2ek)(ω0 − ω1n − ek − Ej )

+
∑

h

(�1nVj + �1nUj )〈j ||σ ||h〉2

(ω0 + 2eh)(ω1n + eh + Ej )

]
f V

j (1n). (11)

The first stage is the more complicated one for processes
associated with intermediate states |bn, q〉. It is described
by graphs 4 and 5, whereas the second stage is the simple
annihilation of the GT collective operator (see Appendix C).
Similar considerations, as in the previous paragraph, apply
here. The total contributions of these processes are given by
the expressions

〈
1√
2

(�+
0 )2�+

1̄n,q
|Q1q |�+

0

〉
=

√
2(A1̄n + B1̄n),

(12)〈
1√
2

(�+
0 )2|Q1q̄ | 1√

2
(�+

0 )2�+
1̄n,q

〉
= (−1)q�1̄n/g,

with

A1̄n = �0

3

∑
j

[∑
k

(�1̄nVj + �1̄nUj )〈k||σ ||j 〉2

(ω0 − 2ek)(ω0 + ω1̄n − ek + Ej )

−
∑

h

(�1̄nVj + �1̄nUj )〈j ||σ ||h〉2

(ω0 + 2eh)(ω1̄n − eh − Ej )

]
f V

j (1̄n),

B1̄n = �0

3

∑
j

[∑
k

(�1̄nUj − �1̄nVj )〈k||σ ||j 〉2

(ω0 − 2ek)(ω1̄n + ek + Ej )

−
∑

h

(�1̄nVj + �1̄nUj )〈j ||σ ||h〉2

(ω0 + 2eh)(ω0 + ω1̄n − eh − Ej )

]
f U

j (1̄n).

(13)

The factors f
U (V )
j (νn) in Refs. (11) and (13) include the

renormalization contribution. They read

f U
j (νn) = Uj − 1

g

∑
n′

(�νn′Vj + �νn′Uj )�νn′

(νω0 − ωνn − ωνn′ )

− 1

g

∑
n′

(�ν̄n′Vj + �ν̄n′Uj )�ν̄n′

(ν̄ω0 + ωνn − ων̄n′)
,

f V
j (νn) = Vj + 1

g

∑
n′

(�νn′Uj − �νn′Vj )�νn′

(νω0 − ωνn − ωνn′ )

+ 1

g

∑
n′

(�ν̄n′Uj − �ν̄n′Vj )�ν̄n′

(ν̄ω0 + ωνn − ων̄n′)
. (14)

IV. RESULTS AND DISCUSSIONS

To apply the previous formalism to the description of the
2νβ−β− (gs → gs) two-neutrino DBD transition in 128,130Te,
we have calculated the following elementary entries:

(i) Proton single-particle energies: The single-particle and
single-hole states, one shell below and one shell above
the closure at Z = 50, that is, eleven orbits from f7/2

to h9/2, have been calculated with the parameters given
in Eq. (B1) and in Appendix A (see Table VIII). The
observables, to which we have adjusted the parameters
of the standard WS plus Coulomb potential, are the
intershell energy distance e9/2 + e7/2 and the energy
distance e7/2 − e5/2, which in the present calculation
yield the values 4.22 and 0.53 MeV for A = 128 and
4.16 and 0.58 MeV for A = 130, respectively. These
values should be compared with the ones presented in
Appendix A (see Table VIII).

(ii) Neutron quasiparticle energies: Neutron single-particle
levels have been constructed, in the WS potential,
with the parameters given in Eq. (20). The resulting
eighteen orbits from g9/2 to i11/2 were treated in the
BCS approximation [see Eq. (1)] with gn = 0.17 MeV.
The calculated gaps are of the order of 	n = 1.21 MeV
(N = 76) and 1.19 MeV (N = 78), compared with the
experimentally extracted values of 	n = 1.25 (N =
76) and 1.20 MeV (N = 78), respectively.3 The calcu-
lated one-quasiparticle spectra, for the corresponding
odd Te nuclei, assumed to be pure one-quasiparticle
states, show a near degeneracy between the h11/2 and
d3/2 states, followed by the s1/2 state lying 1 MeV
(N = 77) or 0.6 MeV (N = 79) higher, respectively.

(iii) Proton-pairing vibrations: The information about the
calculated quantities is collected in Appendix B (see
Table IX). For the purpose of the present calcula-
tion, we adopted the values corresponding to bt =
80 MeV, that is, gp = 0.20 MeV, w0 = 1.67 MeV,
and �0 = 1.003 MeV (A = 128), and gp = 0.20 MeV,
w0 = 1.97 MeV, and �0 = 1.00 MeV (A = 130).
These values are supported by the evidence of the
experimental observation of features characteristic of
pairing-vibrational modes collected in Appendices A
and B.

(iv) Proton-neutron excitations in 128,130I: The calculations
have been performed in the space of proton-particle
(proton-hole)–neutron–quasiparticle Iπ = 1+ configu-
rations allowed by the states introduced in (1) and (2).
We have verified that the Ikeda sum rule was fulfilled
and that the calculated strength distributions, for al-
lowed GT 0+ → 1+ transitions, shows the expected
concentration of intensity around the position of the
GT resonance. We found about 80% of the strength for
β− transitions in the region 10 MeV � ω1n � 14 MeV
and about the same quantity, 70%, for β+ transitions in
the region 6 MeV � ω1̄n � 8 MeV, respectively. The

3These values are well in agreement with the empirical mass
dependence 	 = 11/

√
A MeV of Ref. [19].
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TABLE I. Two-neutrino DBD of Te isotopes. The mass of the isotope is given in the first column; the second
column shows the value of the half-life. The geochemical values [21,22] are given in the first two rows, and the
result of the direct measurement by the NEMO collaboration for 130Te [24,25] is given in the third row. Extracted
experimental values of the nuclear matrix element, M2ν

DGT, are shown in the last two columns for two values of gA. The
lepton phase-space integrals F0 are scaled consistently; that is, F0(gA) = ( gA

1.254 )4
F0(gA = 1.254), and they are given

in units of yrs−1. The values calculated for gA = 1.254 are listed in Ref. [17].

Mass T(2νββ)
1/2 (yrs) Ref. M

exp
DGT (gA = 1.254) M

exp
DGT (gA = 1.000)

128 2.5 ± 0.31024 [21,22] 0.021 ± 0.001 0.034 ± 0.002
130 0.9 ± 0.11021 [21,22] 0.015 ± 0.001 0.023 ± 0.002

7.6 ± 1.5 (stat.) ± 0.8 (syst.) 1020 [24,25] 0.016 ± 0.002 0.027 ± 0.004

theoretical log f0t values do compare well with the
available experimental values, which are equal to 4.57
(A = 128) and 4.91 (A = 130), respectively. These
values have been obtained by fixing the value of the
GT coupling constant at g = −0.14 MeV (A = 128)
and g = −0.12 MeV (A = 130).

In Appendix D, we discuss the scaling properties of the
coupling constants used in the calculations and list their values.
For completeness, the values used in the present case (A =
128, 130) are compared with known values extracted for the
A = 58 mass region. The arguments presented in Appendix D
are relevant, particularly to fix the value of the coupling gpn of
Eq. (8).

We are now in a position to calculate the nuclear matrix
elements for the desired transitions in Te isotopes. As dictated
by the second-order nature of the DBD transitions, we should
calculate the matrix elements of the first and second stages
for the same absorbed (emitted) GT phonon and sum over all
GT phonons. The corresponding expression, for the allowed
double-GT (DGT) matrix element, M2ν

DGT, reads [17]

M2ν
DGT =

∑
i,n,q

Q1q̄(in)Q1q(in)

[(Win + Qββ/2)/(mec2)] + 1
. (15)

The summation that appears in Eq. (15) runs on the allowed
values of q and on the intermediate states belonging to the sets
|an, q〉 and |bn, q〉, with energies Win = ω1n (if i = a) and
Win = ω0 + ω1̄n (if i = b), respectively. Q1q(in) and Q1q̄(in)
are the matrix elements given in Eqs. (10)–(12), Qββ is the
Q value of the ground-state to ground-state DBD transition
(in this case 128,130Te →128,130Xe), and mec

2 is the electron
mass.4

Current values for the half-lives of the DBD of 128,130Te,
obtained from geochemical determinations, are available in
Refs. [20–23]. The direct measurement of the two-neutrino
DBD of 130Te, reported by the NEMO collaboration, can
be found in Refs. [24,25]. The recommended values are
displayed in Table I. The values are taken from the analysis
of Barabash [24]. For the sake of completeness, in Table I,

4Note that M2ν
DGT of Eq. (15) is dimensionless; to express it in units

of inverse energy, one should divide it by the electron rest mass, mec
2.

Consequently, in computing the half-life (or in extracting empirical
values of the matrix element), one should use leptonic phase-space
factors consistent with the adopted units.

we show the values of the lepton phase-space factors, F0,
for each isotope [17]. To extract the experimental values
of the nuclear matrix elements M

exp
DGT, we make use of the

expression M
exp
DGT = (F0T

(2νββ)
1/2 )

−1/2
. In Table I, we show the

experimentally extracted values of the nuclear matrix elements
M

exp
DGT, to which we include the corresponding experimental

errors.
The theoretically calculated values of Ref. (15) are shown

in Table II. The second column of this table shows the values
obtained with gpn = 0, and the third column gives the values
of Ref. (15) corresponding to the calculation performed with
this coupling fixed at the value gpn = 0.08 MeV. Both sets
of results, for A = 128 and A = 130, show the suppression
of the DGT nuclear matrix elements [17]. To obtain this
suppression, which is systematically present in all measured
2νβ−β− decays [20], the use of a renormalized two-particle
proton-neutron interaction was advocated long time ago
[11,12] in the context of the pnQRPA formalism. As we have
pointed out before, the results of pnQRPA calculations may
be questioned in view of the theoretically induced isospin
violations and by the failure of the BCS approach in the
proximity of a shell closure. The use of the present formalism,
as illustrated by the results presented in Table II, produces
the observed suppression, once all the parameters involved
in the calculations are fixed from data. This feature may be
compared, for instance, with the adjustment procedure [17]
of the conventional pnQRPA approach. We believe that this
is a clear improvement of the theoretical description of the
2νβ−β− decay in Te isotopes, actually the only DBD emitters
with two protons outside the closed shell.

To illustrate the composition of the final calculated values
upon the energy of the GT phonons, we show in Tables III
and IV the partial contributions to the matrix element of
Eq. (15).

The comparison of the results obtained with the conven-
tional QRPA treatment and with the present hybrid formalism

TABLE II. Theoretical values of the nuclear matrix element M2ν
DGT

for two values of the coupling gpn of the Hamiltonian (8).

Mass Theory (gpn = 0) Theory (gpn = 0.08 MeV)

128 0.261 0.021
130 0.069 0.017
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TABLE III. Partial contributions to the DBD matrix element of
Eq. (15) for the decay of 128Te. Upper part of the table: the energy
of the GT phonon is given in the first column. The second and third
(fourth and fifth) columns give the values of the contributions coming
from the summation of neutron quasiparticles and proton-particle
states and neutron quasiparticles and proton-hole states of the quantity
A1n(B1n) of Eq. (11). The sixth column is the partial contribution of
the state ω1n [including the energy denominator appearing in Eq.(15)].
The same contributions to A1̄n(B1̄n) of Eq. (13) are shown in the lower
part of the table. The sum of the total contributions (from the upper
and lower parts of the table) yields the result given in Table II.

ω1n (MeV) Term Term Term Term Partial
A (jk) A (jh) B (jk) B (jh)

6.539 0.022 −0.009 0.015 −0.014 0.003
7.007 0.122 −0.032 0.017 −0.067 0.014
8.351 0.007 −0.003 0.003 −0.005 0.002
8.683 0.012 −0.010 0.003 −0.017 −0.002
8.863 0.014 −0.004 −0.005 −0.007 <0.001
9.352 0.054 −0.019 0.018 −0.032 0.008

11.152 0.028 −0.009 0.007 −0.014 0.002
12.957 0.028 −0.017 −0.019 −0.018 0.006
15.677 0.057 −0.035 0.018 −0.056 −0.008
Total 0.023
3.444 −0.015 <0.001 −0.005 −0.042 0.003
7.254 0.550 −0.283 −0.114 −1.924 −0.005
Total −0.002

may also be illustrated by the cumulative contributions to the
two-neutrino DBD [Ref. (15)]. Figure 3 shows the results
for the decay of 128Te, assuming the same values for the
parameters entering in both calculations. As seen from these
results, the fine structure of the cumulative sums differs
from one method to another. They do indeed agree in the
suppression obtained for gpn > 0, but both the size and the
distribution of the partial contributions are clearly different.
These results may be directly confronted with data when they
would become available [26]. A similar trend is observed for

TABLE IV. Partial contributions to the DBD matrix element of
Eq. (15) for the decay of 130Te. The meaning of the quantities is
explained in the captions to Table III.

ω1n (MeV) Term Term Term Term Partial
A (jk) A (jh) B (jk) B (jh)

6.720 0.037 −0.010 0.017 −0.016 0.006
7.811 <0.001 0.002 −0.007 −0.001 0.001
8.476 0.069 −0.002 0.004 −0.036 0.003
8.706 0.013 −0.004 0.001 −0.007 <0.001
9.059 0.041 −0.013 0.004 −0.020 0.003
9.699 0.044 −0.016 −0.002 −0.023 0.001
11.160 0.025 −0.010 0.011 −0.015 0.002
12.673 0.179 −0.031 −0.004 −0.062 −0.004
15.681 0.052 −0.029 0.019 −0.041 <0.001
Total 0.011
2.965 −0.025 0.001 −0.004 −0.063 0.004
7.560 −0.246 0.065 0.027 −0.689 0.002
Total 0.006
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FIG. 3. Cumulative values of the matrix element in Eq. (15), as a
function of the energy of the intermediate states. In the upper sector of
the figure, clockwise from the left, are the contributions calculated in
the conventional pnQRPA method, for gpn = 0 and gpn = 0.08 MeV,
respectively. In the lower sector of the figure, clockwise from the left,
are the contributions calculated in the hybrid model with the same
values of gpn. All other parameters entering in both the pnQRPA and
hybrid models are the same.

the case of the system with A = 130. To add more information
about the differences between the results of the conventional
proton-neutron QRPA formalism (as we have said before, in
the conventional pnQRPA approach the protons are treated in
the BCS phase) and the present model (where the occupation
of the proton single-particle states are given by the amplitudes
of the pairing phonon, because we are treating them in the
normal phase), we show in Figs. 4 and 5 the fraction of the GT
transition from the ground state of Te to the excited states of I.
The values correspond to the point where the matrix element of
the two-neutrino mode is better reproduced in the pnQRPA (by
adjusting gpn) and by the hybrid model (with the parameters
given in the text and in the caption to Fig. 3. Like in the case of
the contributions to the matrix element of the two-neutrino
mode, we see differences also here in the single-β-decay
transition.

V. CONCLUSIONS

To summarize, we have presented results of the calculations
of nuclear matrix elements for the two-neutrino mode of Te
isotopes, which are very close to the experimentally extracted
nuclear matrix elements (or to their recommended values
[24]). Although similar statements of correctness, based on
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FIG. 4. Fraction of the single-β-decay intensity for the decay of
128Te. Inset (a) (left-hand side of the figure) shows the results obtained
with the conventional proton-neutron QRPA approximation at the
point where the matrix element of the two-neutrino DBD mode is
reproduced. Inset (b) (right-hand side of the figure) shows the results
obtained in the present model.

the agreement with data, have been claimed by a broad
spectrum of models [17], the present one exhibits some
advantages:

(i) The protons are treated in a normal phase and in the
isovector pairing vibrational model. This procedure is
theoretically more appropriate than the standard BCS
approach, which is less justified in view of the proximity
of the pairing phase transition.

(ii) All parameters entering the calculations have been fixed
empirically.

The present work is along the line of recently reported
experimental [27] and theoretical [28] efforts to elucidate
the role of pairing correlations on the matrix elements for
DBD transitions. In fact, our picture can be further verified
experimentally by performing additional transfer and charge-
exchange reactions on Sn and Te isotopes.

Further studies are in progress concerning the calculation,
within the present formalism, of nuclear matrix elements for
the neutrinoless decay mode of Te isotopes, currently being
measured by the NEMO and COBRA collaborations [25,29].
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FIG. 5. Fraction of the single-β-decay intensity, for the decay of
130Te, in the manner explained in the captions to Fig. 4.
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APPENDIX A: EMPIRICAL EVIDENCE FOR THE
ASSUMED COUPLING SCHEMES

Because the states that become relevant within the presently
applied model belong to different nuclei, their empirical energy
must be corrected by subtracting effects that are alien to the
model. In particular, the volume, surface, Coulomb, and part
of the isospin contributions should be eliminated. Thus, the
corrected ground-state experimental energies are be given by

εA,Z (ωA,Z) = Be
A0,50 − Be

A,Z − Bw
A0,50 + Bw

A,Z, (A1)

where εA,Z (ωA,Z) is used for odd (even) systems. In the
case of excited states, experimental excitation energies should
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be added to both sides of Ref. [16]. Here Be
A,Z denotes

the experimental binding energy [30], and Bw
A,Z denotes the

Weizsäcker mass formula. All energies are in MeV.

Bw
A,Z = 15.5A − 17A2/3 − btT (T + 1)/A

− 0.7Z(Z − 1)(1 − 0.76/Z2/3)/A1/3. (A2)

The strength bt of the isospin term has been reduced from
the usual value 100 MeV, because there is a contribution
of the model to such term. Note that the model energies
εA,Z, ωA,Z represent excitation energies relative to a vacuum
state corresponding to the ground state of the A0 Sn isotope. In
particular, the ground state of A0+2Te (A0−2Cd) is represented
by one proton pair addition (removal) mode with frequency
ωa = ω(A0+2),54(ωr = ω(A0−2),48). For the relevant cases in our
calculation (A0 = 126, 128), these two frequencies appear to
be positive in the interval 75 MeV < bt < 90 MeV and about
equal for the strength bt = 80 MeV of the isospin term, which
is the adopted value (see also Appendix B, Table IX and further
comments, about the adopted value of the parameters).

The empirical evidence for describing the motion of neu-
trons in Sn isotopes as a superfluid system is well documented
in the literature. The main features of this description are as
follows:

(i) Nuclear masses vary smoothly but for the odd-even
pairing effect. See, for instance, Figure 2.5 of Ref. [19].
The energies associated with the ground state of even
superfluid systems may be grouped together in terms of
rotations in gauge space. In Fig. 6, we have reinterpreted
Fig. 3 of Ref. [31] using Eq. (A1). The ground-state
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FIG. 6. The ground-state energy of even Sn isotopes, as a function
of the number of neutrons N . The solid line shows the values
corresponding to the (even) number of neutrons, as given by the
parametrization of Eq. (A3). Horizontal lines are the experimental
values.

TABLE V. Energies of the proton-pairing phonon and of the
pairing vibrations as a function of the number of neutrons.

N ωA+2,Z+2 ωA−2,Z−2 ω
(pv)
A,Z ω

(exp)
A,Z

52 1.74
54 1.51 1.26 2.77
56 1.49 1.10 2.59
58 1.19 0.91 2.10 3.49
60 1.55 0.98 2.53
62 1.36 1.11 2.47 2.88
64 1.30 1.24 2.54 2.90
66 1.41 1.26 2.67 3.02
68 1.32 1.20 2.53 2.58
70 1.30 1.21 2.51
72 1.33 1.37 2.70
74 1.46 1.52 2.98
76 1.67 1.96 3.63
78 1.94 2.33 4.27
80 2.21 2.88 5.09

energies of the even Sn isotopes yield the parabola

ωA,50 = −24.188 + 0.0328 (N − 70.640)2 MeV,

(A3)

with a standard deviation σ = 0.14 MeV.
(ii) The enhanced, specific operators for superfluid systems

are the two-body transfer operators P +(P ) of Eq. (2).
These operators may be realized by means of (t, p)
or (p, t) reactions.5 Because fluctuations are small, the
expectation value of P + (P ) may be approximated by
the gap 	n divided by the coupling constant gn.

The ground-state to ground-state transitions are expected to
stay fairly constant along the rotational band and to be much
larger than the transitions to excited Iπ = 0+ states (see, for
instance, Fig. 3 of Ref. [31]).

A vibrational coupling scheme is assumed for protons. As
is well known in the case of quadrupole surface vibrations, the
evidence favoring the harmonic description is generally based
on the properties of the two-phonon states relative to those of
one-phonon states. This model has been tested experimentally
in Refs. [32–34]. The main features of the data, upon which
the model has been built, are the following:

(i) Energetics: The excitation energy of the so-called
pairing vibrational state in Sn nuclei (fourth column
in Table V) should be given by the sum of the energies
associated with addition and removal modes (second
and third columns). The centroid of excited states
populated through (3He,n) reactions on Cd isotopes
is presented in the fifth column. These centroides are
obtained as weighted averages of Iπ = 0+ states pop-
ulated in the interval 0–5 MeV (Table 3 of Ref. [32]).
There are between two and four such states. The

5However, this realization is somewhat marred by the fact that in the
operator associated with these reactions, j states with larger numbers
of radial nodes are favored relative to Ref. (2).
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TABLE VI. Energies or the two identical phonon states and their
ratio with the corresponding single-phonon state as a function of the
number of neutrons.

N ωA+4,Z+4
ωA+4,Z+4
ωA+2,Z+2

ωA−4,Z−4
ωA−4,Z−4
ωA−2,Z−2

52 3.14 1.80
54 2.41 1.91
56 2.65 1.78 2.14 1.95
58 2.44 2.06 1.97 2.16
60 2.29 1.47 2.01 2.05
62 2.25 1.66 2.02 1.82
64 2.16 1.66 1.99 1.60
66 2.01 1.43 1.93 1.53
68 1.87 1.42 1.92 1.60
70 1.88 1.45 2.00 1.65
72 2.19 1.64 2.48 1.81
74 2.36 1.61 3.31 2.18
76 2.81 1.68 3.73 1.93
78 3.36 1.73
80 3.90 1.77
82 4.85 1.80

agreement improves as N increases, which favors the
applicability of the model in our region of interest. The
ground-state energy of the A+4Xe isotope should be
twice the energy of the A+2Te isotope. The same ratio
should appear for the case of A−4Pd and A−2Cd isotopes
(columns 4 and 5 of Table VI). Although somewhat
smaller by the middle of the shell, these ratios are closer
to 2, improving again for the heavier isotopes.

(ii) Population of states: Distorted wave calculations relate
the experimental cross sections to the predicted ones.
As in Ref. [34], we write(

dσ

d�

)
exp

= ε C2 S

(
dσ

d�

)
code

, (A4)

where C is an isospin Clebsch-Gordan coefficient
and S is the two-proton spectroscopic factor. The
enhancement factor ε is adjusted to reproduce the data.

It is inherent to the vibrational description that the population
of the pairing vibrational state of ASn should be identical to the
transition populating the ground state of A+2Te. The second
column of Table VII shows the ratio between the sum of the εi

values corresponding to the population of each of the (excited)
states into which the pairing vibrational state splits and the ε

TABLE VII. Experimental ratios of the factor ε of Eq. (A4). The
data listed in the second and third columns are taken from Ref. [32],
and those in the fifth column are from Ref. [34].

N
∑

εi

ε[Te(gs)]
ε(A−4Pd→ A−2Cd)
ε(A−2Cd→ ASn)

N ε(A+2Te→ A+4Xe)
ε(ASn→ A+2Te)

58 0.95 1.4 70 1.7
62 0.75 1.4 72
64 0.85 1.9 74 2.1
66 1.23
68 1.11

associated with the transition to the ground state of Te. The
value of this ratio should be 1.

Another consequence of the model is that strengths of
ground-state to ground-state transitions induced by 3He,n
reactions should be proportional to the number of bosons in the
initial state for removal phonons and to the number of bosons in
the final state for addition phonons. Thus, the measured ratios
listed in in the third and fifth columns of Table VII should
all have the value 2. Although the experimental values are
generally smaller, the situation improves again for the upper
values of N .

APPENDIX B: ADOPTED VALUE OF THE PARAMETERS

1. Single-particle energies

Equations (A1) and (A2) may be also used to fix the gap
between two adjacent nuclear shells. In particular, the proton
single-particle distance6 e7/2 + e9/2 is obtained using the
binding energies of the A+1Sb and A−1In isotopes. Empirical
single-proton distances for the lowest excitation energy e5/2 −
e7/2 are taken from Ref. [35] (see Table VIII). Because these
two distances are the most relevant parameters in determining
the properties of the phonon �+

0 , an element that is crucial for
our description, we have reproduce them, within a ±50 keV
tolerance, by adjusting the strengths of the spin-orbit term and
the surface thickness of the WS potential (Table VIII). The
remaining parameters are taken from Ref. [19]:

V = −5 MeV protons

V = (−51 + 66 T/A) MeV neutrons
(B1)

Vls = −0.44 V neutrons

R = r0 A1/3 ; r0 = 1.27 fm protons and neutrons

a = 0.67 fm neutrons

2. Properties of the lowest proton-pairing phonon �+
0

and of the GT phonons

The properties of the proton-phonon are determined
through the usual RPA dispersion relations. It is reassuring
to verify that they are weakly dependent on the strength
of the isospin term bt in the Weizsäcker mass formula
(A2). Table IX lists, as a function bt , the addition ωa and
removal ωr frequencies, their sum, the RPA strength �0, and
the strength gp of the proton-pairing force. What matters
for determining the strength is the ratio between the sums
ωa + ωr and twice the single-particle gap, e7/2 + e9/2. This

6Here e7/2 = ε(A+1),51 and e9/2 = ε(A−1),49 [see Ref. (A1)].

TABLE VIII. Empirical single-proton energy distances and the
adjusted WS parameters.

N e7/2 + e9/2 e5/2 − e7/2 Vls/V a

76 4.18 0.491 −0.37 0.58
78 4.28 0.645 −0.37 0.58
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TABLE IX. The dependence of the proton-pairing phonon �+
0 on the isospin strength bt (in units of MeV) in the Weizsäcker mass formula.

This table has been constructed with the single-proton spectrum obtained with the parameters given in Eq. (B1) but for the intershell distance
(e7/2 + e9/2). This energy distance is obtained from Eq. (A1) as a function of the strength bt of the isospin term (the relative distance between
the upper shell levels is not changed). The energies (ωa, ωr, ej ) and the couplings (�0, g0) are given in units of MeV. The factors ηj , of the
last column, are the amplitudes of the pair of proton states in the g7/2 and d5/2 single-particle states, as they are given by the RPA treatment of
protons in the pairing normal phase (see the text).

bt ωa ωr (ωa + ωr ) (e7/2 + e9/2) �0 gp η7/2 η5/2

70 −0.59 4.45 3.86 4.24 0.974 0.199 0.877 0.527
75 0.54 3.21 3.75 4.21 0.988 0.199 0.879 0.530
80 1.67 1.96 3.63 4.18 1.003 0.199 0.881 0.533
85 2.80 0.72 3.52 4.15 1.018 0.200 0.883 0.536
90 3.92 −0.53 3.39 4.12 1.035 0.200 0.886 0.540
95 5.05 −1.77 3.28 4.10 1.050 0.200 0.889 0.544

ratio is largely independent of the value of bt , even for
cases such that boson frequencies become negative. In the
last two columns of Table IX, we have also represented the
relevant amplitudes ηk = −�0k̂/(ω0 − 2ek) (k = g7/2, d5/2),
which stay practically constant over the explored range of
bt values. This verification has been performed for the case
N = 76.

The parameters of the GT bosons, for A = 130, are listed
in Table X. The formalism to obtain these values is explained
in Appendix C.

APPENDIX C: RPA CALCULATIONS FOR THE HYBRID
PROTON-NEUTRON SYSTEM

Two of the coupled operators appearing in Eqs. (6) and (7)
behave as boson creation operators, namely

γ +
kjq = −[b+

k α+
j ]1

q ; γ +
jhq = [α+

j bh]1
q . (C1)

Therefore, the collective version of the GT operators in Eqs. (6)
and (7) is given by

(P +
1q)coll = −〈k||σ ||j 〉√

3
Ujγ

+
kjq + (−1)1+q 〈j ||σ ||h〉√

3
Vjγjhq̄ ,

(P +
1̄q

)coll = 〈j ||σ ||h〉√
3

Vjγ
+
jhq + (−1)q

〈k||σ ||j 〉√
3

Ujγkjq̄ ,

TABLE X. Properties of the GT bosons [see Eq. (C6)]. As an
example, we show the eigenvalues and vertex functions for A = 130.
All quantities are given in units of MeV.

n ω1n �1n �1n ω1̄n �1̄n �1̄n

1 6.720 0.029 0.101 2.965 0.246 −0.019
2 7.811 0.009 −0.069 7.560 0.163 −0.001
3 8.476 0.098 0.081
4 8.706 0.194 0.015
5 9.059 0.047 0.139
6 9.699 0.056 0.174
7 11.160 0.037 0.140
8 12.670 0.249 −0.039
9 15.680 0.132 0.454

(Q1q)coll = 〈k||σ ||j 〉√
3

Vjγ
+
kjq + (−1)1+q 〈j ||σ ||h〉√

3
Ujγjhq̄ ,

(Q1̄q)coll = 〈j ||σ ||h〉√
3

Ujγ
+
jhq + (−1)1+q 〈k||σ ||j 〉√

3
Vjγkjq̄ .

(C2)

The RPA version of the interaction (8) is given by

(Hpn)RPA = −gpn

√
3[(P +

1 )coll(P
+
1̄ )coll]

0

− g
√

3[(Q1)coll(Q1̄)coll]
0, (C3)

and the independent particle Hamiltonian is approximated by

(Hsp)RPA = εkj γ +
kjqγkjq + εjh γ +

jhqγjhq, (C4)

where εkj = ek + Ej , εjh = eh + Ej . The decoupling of the
boson operators in the RPA Hamiltonian is performed as usual
by means of the transformations

�+
1nq = λkjnγ

+
kjq + (−1)qµjhnγjhq̄ ,

(C5)
�+

1̄nq
= λjhnγ

+
jhq + (−1)qµkjnγkjn.

The linearization condition yields the frequencies ωνn as
solutions of the secular equations det(ωn) = 0, where det(ωn)
is the determinant of the system of equations

0 =
(

1

gp

+ Xνn

)
�νn − νZνn �νn,

(C6)

0 = −νZνn �νn +
(

1

g
+ Yνn

)
�νn,

where

Xνn = −〈k||σ ||j 〉2

3

U 2
j

εkj − νωνn

− 〈j ||σ ||h〉2

3

V 2
j

εjh + νωνn

,

Yνn = −〈k||σ ||j 〉2

3

V 2
j

εkj − νωνn

− 〈j ||σ ||h〉2

3

U 2
j

εjh + νωνn

,

Zνn = −〈k||σ ||j 〉2

3

νUjVj

εkj − νωνn

+ 〈j ||σ ||h〉2

3

νUjVj

εjh + νωνn

.

(C7)
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TABLE XI. Strength parameters for A = 58 [18] and A = 128.
The coupling constants are given in units of MeV.

gs gs(58) gs(128) gs (128)
gs (58)

gn 0.39 0.17 0.44
gp 0.39 0.20 0.50
g −0.27 −0.14 0.51
gpn 0.171 0.08 0.47

The amplitudes λ and µ of Eq. (C5) are

λkjn = 〈k||σ ||j 〉√
3

(�1nUj − �1nVj )

εkj − ω1n

,

µjhn = −〈j ||σ ||h〉√
3

(�1nVj + �1nUj )

εjh + ωin

,

(C8)
λjhn = −〈j ||σ ||h〉√

3

(�1̄nVj + �1̄nUj )

εjh − ω1̄n

,

µkjn = 〈k||σ ||j 〉√
3

σkj (�1̄nUj − �1̄nVj )

εkj + ω1̄n

.

The ratio �νn/�νn is obtained from either one of Eqs. (C6),
and the absolute value of �νn is given by the normalization
condition of the �+

νn operators.
Inversion of Eq. (C5) yields the final version of the

collective GT operators [Eq. (C2)],

(P +
νq)coll = 1

gp

[−�νn�
+
νnq + (−1)q�ν̄n�ν̄nq̄],

(C9)
(Q+

νq)coll = 1

g
[−�νn�

+
νnq + (−1)q�ν̄n�ν̄nq̄],

TABLE XII. Neutron quasiparticle (BCS) states considered in the
calculations for A = 128. The value of the pairing coupling constant
is given in the text. The single-particle energies have been calculated
as explained in the text. The numbers given in columns, from left to
right, are the principal quantum number, the orbital quantum number,
the angular momentum, and the quasiparticle energy, respectively.

N l j vj uj Eqp (MeV)

6 6 5.5 0.99928 0.03799 15.82671
6 4 3.5 0.99921 0.03984 15.09468
6 2 1.5 0.99912 0.04184 14.37493
6 0 0.5 0.99903 0.04405 13.65566
6 2 2.5 0.99891 0.04662 12.90317
6 4 4.5 0.99863 0.05226 11.51384
6 6 6.5 0.99692 0.07846 7.68237
5 1 0.5 0.99662 0.08215 7.33964
5 1 1.5 0.99541 0.09573 6.30590
5 3 2.5 0.99671 0.08106 7.43704
5 5 4.5 0.99558 0.09395 6.42422
5 3 3.5 0.99087 0.13482 4.49807
5 5 5.5 0.66034 0.75097 1.21171
4 2 1.5 0.38483 0.92299 1.69171
4 0 0.5 0.29668 0.95498 2.12086
4 4 3.5 0.18448 0.98284 3.31405
4 2 2.5 0.16110 0.98694 3.77930
4 4 4.5 0.07919 0.99686 7.61155

TABLE XIII. Neutron quasiparticle (BCS) states considered in
the calculations for A = 130. The value of the pairing coupling
constant is given in the text. The single-particle energies have been
calculated as explained in the text. The numbers given in columns,
from left to right, are the principal quantum number, the orbital
quantum number, the angular momentum, and the quasiparticle
energy, respectively.

N l j vj uj Eqp [MeV]

6 6 5.5 0.99925 0.03876 15.45957
6 4 3.5 0.99917 0.04069 14.72763
6 2 1.5 0.99908 0.04278 14.00799
6 0 0.5 0.99898 0.04510 13.28884
6 2 2.5 0.99886 0.04782 12.53651
6 4 4.5 0.99855 0.05379 11.14755
6 6 6.5 0.99662 0.08209 7.31853
5 1 0.5 0.99628 0.08615 6.97624
5 1 1.5 0.99486 0.10125 5.94430
5 3 2.5 0.99638 0.08496 7.07350
5 5 4.5 0.99506 0.09926 6.06237
5 3 3.5 0.98927 0.14607 4.14348
5 5 5.5 0.54765 0.83671 1.30670
4 2 1.5 0.32174 0.94683 1.96549
4 0 0.5 0.25472 0.96702 2.43086
4 4 3.5 0.16599 0.98613 3.65796
4 2 2.5 0.14661 0.98919 4.12852
4 4 4.5 0.07530 0.99716 7.97441

and the particle-vibration Hamiltonian vertices,

Hpv = −gpn

√
3{[(P +

1 )coll P
+
1̄ ]0 + [P +

1 (P +
1̄ )coll]

0}
− g

√
3{[(Q1)coll Q1̄]0 + [Q1 (Q1̄)coll]

0}. (C10)

APPENDIX D: STRENGTH OF THE ISOSCALAR PAIRING
INTERACTION

A general statement can be made concerning the depen-
dence of the strengths of different effective forces on the mass
number A [36–38]. It is based on the fact that effects associated
with such forces coexist with the shell model along the
whole of the periodic table. The single-particle level-bunching
energy is of the order of the shell spacing h̄ω times the shell
degeneracy O (A2/3):

O (A−1/3) × O (A2/3) = O (A1/3). (D1)

Let us repeat the argument used in Ref. [38] for the isovector
pairing strength. One defines the pairing momentum as∑

ν

UνVν = O (A2/3) × O (1) = O (A2/3), (D2)

where the factor of O (1) is a typical product UνVν(� 1) of
the factors appearing in the quasiparticle transformation [Eq.
(3)]. The energy associated with the isovector pairing force is
of the form

−gn(p)

(∑
lm

UlmVlm

)2

= −gn(p) O (A4/3). (D3)
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Therefore, the expected dependence A1/3 [see Eq. (D1)] of the
pairing energy is consistent with the estimates

gn(p) ∝ A−1. (D4)

A similar estimate can be made in cases of the isoscalar
pairing and GT interactions. The corresponding momenta
can be written as in the right-hand side of Eq. (D1),
with the factor of O (1) representing a (spin) matrix
element of the Pauli operator �σ . Therefore, we also
obtain

gnp ∝ A−1, g ∝ A−1. (D5)

This dependence can be verified for the isovector pairing and
GT interactions through the ratio of respective strengths in

the regions A = 58 [18] and A = 128 (Appendix B). These
ratios are close to the number 58/128 = 0.45. Note that the
values listed in the first three rows of Table XI have been
obtained independently of Eqs. (D3) and (D5). We conclude
that the value of gpn adopted in the calculation is physically
justified.

APPENDIX E: BCS SOLUTIONS FOR NEUTRONS

For the sake of completeness, we present here the results
of the conventional BCS calculation for neutrons (Tables XII
and XIII). The single-particle states and the strength of the
isovector coupling are explained in the text and in the previous
appendices.
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