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Abstract

The concept of the topological derivative has been derived for several engi-
neering problems during the last years. In this chapter, the fundamentals and
the resulting closed formulae of topological derivative for some of the most clas-
sical problems are addressed. A brief review of the mathematical statements
used in the topological derivative concept is given. The programming strate-
gies regarding implementing the main routine for the topology optimization are
pointed out. Some numerical examples concerning classical applications are
introduced to demonstrate the application of the topological derivative concept
for topology problems.

1 Introduction
Topological sensitivity analysis was presented as a technique that allows obtain-

ing simultaneously the optimal shape and topology, being proposed originally by
(Schumacher [1996], Sokołowski and Żochowski [1997], Sokolowski and Zochowski
[1999], Garreau et al. [1998], Garreau et al. [2001]). This sensitivity calculation
results in a scalar function called a topological derivative (DT ). The DT provides
for each point in the domain the sensitivity of the cost function when creating
a small hole at that point.Garreau et al. [1998]), proposed the truncated domain
method to calculate the topological derivative. The proposed method was based
on some simplifying assumptions, the most severe of which consisted in the fact
that the cost function should not explicitly depend on the domain. The works of
Sokolowski and Zochowski [1999] and Céa et al. [2000] presented the calculation
of DT , via shape sensitivity analysis, particularized only for cases where the ho-
mogeneous Neumann boundary condition was prescribed in the holes. The other
boundary conditions, such as non-homogeneous Neumann, Dirichlet and Robin do
not validate their applicability in this calculation hypothesis. Novotny et al. [2003]
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precisely establish the concepts of derived topology and shape change sensitivity
analysis for isotropic materials. This last methodology does not present any limi-
tation regarding the cost function or the type of boundary condition prescribed in
the holes. Since then several classes of engineering and physics problems have been
solved by employing the DT concept, for instance, topology optimization ([Amstutz
and Novotny [2010], Novotny et al. [2007]]), inverse analysis ([Carpio and Rapún
[2008], Rocha and Novotny [2017]]), and image processing ([Hintermüller and Lau-
rain [2009], Larrabide et al. [2008]]). The DT was also computed using the Boundary
Element Method (BEM) for topology optimization of potential (Anflor [2007],An-
flor and Marczak [2009], Anflor et al. [2014]) and elasticity (Marczak [2008], Bertsch
et al. [2008], Anflor et al. [2018]) problems as an alternative to the Finite Element
Method (FEM) employed as the standard numerical solver. All advantages provided
by BEM as a boundary method were taken into account showing the efficiency of
the developed methodology for optimization problems. Another class of problem of
great interest concerns the damage identification in structures. The identification of
flaws by the inverse problem was generally solved by heuristic algorithms where the
information about sensitivity or gradient of the cost functional with respect to design
parameters are not needed. Despite the success of the use of these algorithms, the
computational cost was still high because a large number of direct problems has to
be evaluated and solved. The computational time can be drastically reduced by us-
ing the cost functional topological sensitivity instead of the full functional (Comino
et al. [2008]). In addition, the use of topological sensitivity coupled to heuristic
algorithms increases the accuracy for estimating the location and size of defects.
The concept of DT becomes naturally attractive and suitable for problems concern-
ing damage detection, once the DT measures the sensitivity of a functional shape
with respect to an infinitesimal singular domain perturbation. The perturbation
may be represented as damages in the structure in the shape of holes, inclusions,
sources terms, or even cracks. The topological sensitivity analysis was carried out
for the Laplace equation to identify arbitrary shaped cracks in two-dimensional do-
mains (Amstutz et al. [2005]). A method based on the multi-frequency DT was
developed as an alternative to standard guided-waves-based Structural Health Mon-
itoring (SHM) methods and used for locating the presence of flaws in thin plates
(Martinez Dominguez et al. [2018]). The damage identification based on the DT

method was addressed in (da Silva and Novotny [2022]) for problems governed by
the elastodynamic Kirchhoff and Reissner-Mindlin plate bending models in the fre-
quency domain. According to this brief review, the reader can have an idea about the
wide range of the use of DT in physical phenomena modeled by partial differential
equations. In the remainder of this chapter, the fundamentals on DT for classical
problems of topology optimization are introduced, and some numerical examples
are presented, showing the efficiency and applicability of this concept for generating
optimal geometries.
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2 Topological derivative considering the insertions
as voids

The theory behind the DT is the evaluation of a given cost function when a small
hole of radius is open inside the domain, as shown in 1.

Figure 1: The new concept of the topological derivative and the boundary
conditions

In this sense, the concept of DT consists of determining the sensitivity of a given
function cost (ψ) when this small hole is increased or decreased. The local value of
the DT at a point x̂ inside the domain for this case is given by eq. 1:

DT (x̂) = lim
ε→∞

ψ(ωε)− ψ(ω)

f(ε)
, (1)

where ψ(ω) and ψ(ωϵ) are the cost function evaluated for the original domain and
the perturbed domain, respectively, and (f) is a problem-dependent regularizing
function. It is important to highlight that it is not possible to establish an iso-
morphism between domains with different topologies using eq.1. A new concept
regarding the DT was introduced by Novotny et al. (2003) that allowed the non-
isomorphism between the original and the modified domains to be overcome. The
mathematical idea was based on the creation of a hole that can be accomplished by
a single perturbation to an existing hole with radius tending to zero. This allows
the restatement of the such a way that it is possible to establish a mapping between
them, as presented in eq.2:

DT (x̂) = lim
ε→∞

ψ(ωε+δϵ)− ψ(ωε)

f(Ωε+δε)− f(Ωε)
, (2)

where δ is a small perturbation of the hole’s radius. It’s worth mention that eq.2 is
a general definition for DT . This section introduces the DT particularized for some
of the classical engineering problems.
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2.1 Potential problems

In the case of isotropic linear heat transfer problems, the direct problem is stated
as: Find uε, such that

−k∇uε = b in Ω ,
uε = u on ΓD,

k∂nu = q on ΓN ,
k∂nuε = hε(uε − u∞) on ΓR,

h(α, β, γ) = 0 on Γε,

(3)

Γϵ stands for the holes boundary and

h(α, β, γ) = α(uε − ūε) + β(k
∂uε
∂n

+ q̄ε) + γ(k
∂uε
∂n

+ hc(u − ūε)), (4)

is a function which takes into account the type of boundary condition on the perime-
ter of holes to be created. In eq. 4, uϵ and duε

dn
= qϵ are the temperature and the

flux on the hole boundary, while uϵinf and hϵc are the holeâs internal convection pa-
rameters, respectively. Suitable choices of α, β and γ define the type of boundary
condition on the hole. One may impose α = 1 and β = γ = 0 in eq. 4 if the
Dirichlet b.c. is applied to the holes that are being opening during the iterative
process. Using asymptotic expansions to include the effects of a hole inserted in Ω
it is possible derive analytic expressions for Ψ(Ωε and Ψ(Ωε+δε), which are used to
generate the final expressions for eq.2.

A general form for the cost function can be written as the total potential energy
function,

Ψ(Ωτ ) =
1

2

∫
Ωτ

ϕΩτ (uτ )dΩτ +

∫
Γτ

ϕΓτ (uτ )dτ, (5)

where τ is a parameter associate to the shape change velocity, i.e., xτ (x) =
x + τv(x) . The sensitivity of the cost function with respect to τ can be derived
from the Gâteaux derivative as,

d

dτ
Ψ(Ωτ )τ=0 = lim

τ→0

Ψ(Ωτ − Ωτ=0)

τ
h(α, β, γ) = 0, (6)

In this case the problem can be re-stated as,

Evaluate: d
dτ
Ψ(Ωτ ) = 0

Subject to,

aτ (uτ , nτ ) = lτ (nτ ), ∀ nτ ∈ βτ and ∀ τ ≥ 0, (7)

where a is a continuous, coercive bilinear form, lτ is a continuous linear functional
and βτ is the space of the admissible perturbation functions for the perturbed domain
Ωτ . Using the total potential energy as a cost function (Ψτ (uτ ) := 1

2
aτ (uτ , uτ ) −

lτ (u(τ)), the aτ and lτ functional are written as:
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aε(uε, nε) :=

∫
Ωε

k∇uε · ∇ηε dΩ +

∫
Γε

hcuεηε dΓ +

∫
∂Λε

hεcuεηε d∂Λ (8)

lε(nε) :=

∫
Ωε

bnεdΩ−
∫
Γ

qηεdΓ−
∫
Γc

hcu∞ηεdΓ +

∫
∂Λεqε

ηεd∂Λ + γ

∫
∂Λε

hεcu∞ηεd∂Λ

(9)
Equation 7 can be derived and the DT particularized according to the boundary

condition prescribed on the holes.

Neumann Boundary condition

When considering Neumann boundary condition eq.4 is set as (α = 0, β = 1, γ =
0) and the DT is obtained by taking the limit as,

DT (x̂) = − lim
ε→0

1

2f ′(ε)

∫
∂Ωε

[k(
∂uε
∂t

)− k(
∂uε
∂n

)− 2buε −
2

ε
qεuε] dΩε, (10)

where the variables t and n stand for the tangencial and normal directions, respec-
tively.

In case of Neumann boundary conditions both cases can be considered, the ho-
mogeneous and non-homogeneous as introduced by eqs.11 and 12 , respectively

qε =
∂uε
∂n

|∂Ωε= 0 with f ′(ε) = −πε2, (11)

qε =
∂uε
∂n

|∂Ωε ̸= 0 with f ′(ε) = −2πε2. (12)

Dirichlet Boundary Condition

For this case eq.5 can be particularized by setting the variables as (α = 1, β =
0, γ = 0) and the DT is obtained by taking the limit as,

DT (x̂) = − lim
ε→0

1

2f ′(ε)

∫
∂Ωε

[k(
∂uε
∂t

)− k(
∂uε
∂n

)− 2buε] dΩε, (13)

being the conditions uε = uε and ∂uε

∂t
̸= 0, which are employed along with f ′(ε) =

− 2π
ε ln(ε)2

.

Robin Boundary Condition

In this case one has (α = 0, β = 0, γ = 1) and the DT is obtained taking the
limit as,

DT (x̂) = − lim
ε→0

1

2f ′(ε)

∫
∂Ωε

[k(
∂uε
∂t

)− k(
∂uε
∂n

)− 2buε −
2

ε
hεc(uε − 2uε∞)]dΩε (14)
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being the regularization function as f ′(ε) = −2πε.

The obtained closed formulae for the DT are summarized in Table 1, considering
the three classical cases of boundary conditions on the holes.

Table 1: Analytical expressions for DT depending on the b.c. applied on the holes
B. C. Type DT (x̂) x̂

Neumann (α = 0, β = 1, γ = 0) k∇u∇u− bu x̂ ∈ Ω ∪ Γ
−qεu x̂ ∈ Ω ∪ Γ

Dirichlet (α = 1, β = 0, γ = 0) −1
2
k(u− uε) x̂ ∈ Ω

k∇u∇u− buε x̂ ∈ Γ
Robin (α = 0, β = 0, γ = 1) hεc(uε − 2uε∞) x̂ ∈ Ω ∪ Γ

*It is important to take attention that DT is evaluated by different expressions
for interior and boundary points.
**Topological optimization considering anisotropic media for potential problems
were considered in Anflor and Marczak [2009].

2.2 Linear elasticity

The direct problem for elasticity is stated as,

Find: {uϵ|divσε = b} on Ωε (15)

A general form for the cost function can be written as the total strain energy
function:

Ψ(uτ ) =
1

2

∫
Ωτ

C∇τuτ · ∇τuτdΩτ −
∫
b · uτdΩτ −

∫
Γ

t̄ · uτdτ =
1

2
aτ (uτ , uτ )− lτ (uτ ),

(16)
where τ is the perturbation form for the cost function with respect to the shape, C
is Hookeâs tensor, b is the body force, t̄ is the traction boundary condition, and uτ
denotes the displacement vector field. Equation (17) refers to the sensitivity of the
cost function with respect to τ and can be obtained from the Gâteaux derivative of
the perturbed configuration given by Equation (13):

d

dτ
Ψ(Ωτ )τ=0 = lim

τ→0

d

dτ
Ψ(Ωτ ). (17)

In the absence of body forces, the DT results:

DT (x̂) = − lim
ϵ→0

1

f ′(ε)

∫
Γε

1

2ρE
σtt
ε dΓε. (18)

If the limit of ε→ 0 in Equation 16, eq. 18 results:

DT (x̂) =
1

2ρE
[(σ1 + σ2)

2 + 2(σ1 − σ2)
2], (19)

Carvalho, Fernando S., et al. (2022) Topological Derivative concept & classical applications pp. 269-300

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 275



where σ1, σ2 are the principal stresses of the stress tensor σ|x̂ computed in x̂ ϵ ω.
The principal stresses are given by

σ1,2 =
1

2
[trσ ±

√
2σDσD], (20)

and σD is the deviatoric stress tensor:

σD = σ − 1

2
tr(σ)I. (21)

Computing σ1,σ2 using Equations 20 and 21 and substituting in Equation 19 results
in

DT (x̂) =
1

2ρE
[4σσ − (trσ)2]). (22)

After some algebraic manipulation using Equation (19) and the constitutive re-
lation, the DT for plane stress problems stands as

DT (x̂) =
2

1 + ν
σ · ε+ (3ν − 1)

2(1− ν2)
trσ trε (23)

In eq.23, σ and ϵ are computed in the original domain, i.e. without voids. For
the plane strain, the DT results as

DT (x̂) = 2(1− ν)σ · ε+ (1− ν)(4ν − 1)

2(1− 2ν)
trσ trε, (24)

where ν denotes the Poisson ratio, while trσ and trϵ stand for the trace of the stress
and strain tensors, respectively. A complete derivation for obtaining Equations 23
and 24 can be found in Novotny and Sokolowski [2013].

3 Topological Derivative considering the insertion
of inclusions

In this section, the mathematical models for the diffusive-convective-reactive
problem, Heat Exchanger, Eigenvalue of the Laplace problem, Kirchhoff Plate,
Reissner-Mindlin Plate and Compliance. The original unperturbed and topologi-
cally perturbed problems are stated as well as the topological derivatives associate
the shape functionals we are dealing with, are introduced.

3.1 Diffusive-Convective-Reactive Problem

The mathematical model for the diffusive-convective-reactive problem, as well as
the shape functionals we are dealing with, are introduced. The original unperturbed
and topologically perturbed problems are stated, together with arguments on the
existence of the associated topological derivative (see Carvalho [2020]).

The original unperturbed problem is stated as:

u ∈ H1
0 (Ω) :

∫
Ω

α∇u · ∇η +
∫
Ω

β(∇u · V )η +

∫
Ω

ρkuη =

∫
Ω

fη ∀η ∈ H1
0 (Ω), (25)
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where α, β, ρ and k are positive and bounded functions, f is a distributed source
and V is a given vector field, such that, div(V ) = 0 in Ω and V · n = 0 on ∂Ω.
The quantities α, β, ρ, k and f are assumed to be piecewise constant functions as
described in Table 2, with ω ⊂ Ω. Precise physical meaning of (25) is given in
Sections 3.1.2 and 3.1.3.

Table 2: Values of α, β, ρ and f

α β ρ f
Ω \ ω α0 β0 ρ0 f0
ω α1 β1 ρ1 f1

In Figure 2 is presented a scheme in which it is possible to remove or add material
according to the domain sensitivity.

Figure 2: scheme of adding/removal material

The auxiliaries shape functionals are defined by,

G(u) =
∫
Ω

ρku2 and J (u) =

∫
Ω

α∥∇u∥2. (26)

In order to simplify further analysis, we introduce the adjoint problems

q ∈ H1
0 (Ω) :

∫
Ω

α∇q · ∇η −
∫
Ω

β(∇q · V )η +

∫
Ω

ρkqη =

− 2

∫
Ω

ρkuη, ∀η ∈ H1
0 (Ω), (27)

p ∈ H1
0 (Ω) :

∫
Ω

α∇p · ∇η −
∫
Ω

β(∇p · V )η +

∫
Ω

ρkpη =

− 2

∫
Ω

α∇u · ∇η, ∀η ∈ H1
0 (Ω). (28)

3.1.1 Perturbed problem

The topological perturbation is defined according to Tables ?? and 4, where
Bε(x̂) = {∥x− x̂∥ < ε} for x̂ ∈ Ω and ω ⊂ Ω. From these elements, the topologically
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perturbed problem is stated as,

uε ∈ H1
0 (Ω) :

∫
Ω

αε∇uε · ∇η +
∫
Ω

βε(∇uε · V )η +

∫
Ω

ρεkuεη =∫
Ω

fεη ∀η ∈ H1
0 (Ω), (29)

with V · n = 0 on ∂Bε. The auxiliary shape functionals in perturbed domain are
defined by

Gε(uε) =

∫
Ω

ρεku
2
ε and Jε(uε) =

∫
Ω

αε∥∇uε∥2. (30)

The contrasts of materials in the perturbed domain are shown in the tables 3
and 4.

Table 3: Values of αε, βε, ρε and fε
αε βε ρε fε

Ω \Bε α β ρ f
Bε γαα γββ γρρ γff

Table 4: Values of γα, γβ, γρ and γf
γα γβ γρ γf

Ω \ ω α1/α0 β1/β0 ρ1/ρ0 f1/f0
ω α0/α1 β0/β1 ρ0/ρ1 f0/f1

Before stating the two main results, let us introduce the following second-order
polarization tensors

Pα =
1− γα
1 + γα

I and Pαβ =
1− γβ
1 + γα

I, (31)

associated with the contrast on the diffusive γα and convective γβ terms. From
the problems presented in (25) and (29) two results are formulated, related to the
topological derivative.

Theorem 1 Let G(u) be the shape functional defined in (26)-left, then its associated
topological derivative is given by

DTG = −2αPα∇u · ∇q − 2β(Pαβ∇u · V )q − ρk(1− γρ)u(u+ q) + (1− γf )qf, (32)

where q is the adjoint state solution of (27).

Theorem 2 Let J (u) be the shape functional presented in (26)-right. Then, the
topological derivative of J is given by

DTJ = −2αPα∇u · ∇(u+ p)− 2β(Pαβ∇u · V )p− ρk(1− γρ)up+ (1− γf )pf, (33)

where p is the adjoint solution of problem (28).
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3.1.2 Heat Exchanger

We are interested in the diffusion-convection (Eq. (25) with k = 0) problem
which can be stated as: Find u, such that

−div(α∇u) + β(∇u · V ) = f in Ω ,
u = 0 on ΓD,

∂nu = 0 on ΓN .
(34)

Therefore, u represents the temperature field, whereas α is the diffusion coefficient,
β is the convection coefficient and V is a given velocity field.

Let us consider the following shape functional

F(u) = τ

∫
Ω

α∥∇u∥2 + (1− τ)

∫
Ω

ρ|u|2, (35)

with 0 ≤ τ ≤ 1 and u solution to (34). Then, its associated topological derivative,
by taking into account contrasts on α and ρ (and not on β as well as on f), is given
by (see Ruscheinsky et al. [2020b]),

DTF = −2αPα∇u · (τ∇u+∇p+∇q)− (1− τ)(1− γρ)ρ|u|2, (36)

where p and q are respectively solutions of the following adjoint problems

p ∈ U(Ω) :
∫
Ω

α∇p · ∇η −
∫
Ω

(∇p · V )η = −2τ

∫
Ω

α∇u · ∇η ∀η ∈ U(Ω), (37)

q ∈ U(Ω) :
∫
Ω

α∇q · ∇η −
∫
Ω

(∇q · V )η = −2(1− τ)

∫
Ω

ρuη ∀η ∈ U(Ω), (38)

with the space U(Ω) = {φ ∈ H1(Ω) : φ|ΓD
= 0}.

3.1.3 Eigenvalue of the Laplace problem

The eigenvalue of the Laplace problem modeling a membrane under free vibration
can be stated as: Find u and λ, such that{

−div(α∇u) = λρu in Ω,
u = 0 on ∂Ω,

(39)

so that u represents the transverse displacement field, α is the stiffness coefficient
and ρ is the density.

The associated first eigenvalue is defined as

λ1 =

∫
Ω
α∥∇u∥2∫
Ω
ρ|u|2

, (40)

with u solution of (39). The topological derivative for simple eigenvalues of the
Laplacian can be found in Ammari and Khelifi [2003]. The extension to multiple
eigenvalues and other types of singular domain perturbations has been derived in
Nazarov and Sokolowski [2008]. In particular, the topological derivative of

F(u) = λ−1
1 (41)
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is given by:

DTF =
2αPα∇u · ∇u− (1− γρ)ρλ1|u|2

λ21
∫
Ω
ρ|u|2

, (42)

which can be formally derived from Theorems 1 and 2. The rigorous justification for
this result can be found in the book by Novotny and Sokolowski [2013]. As observed
by Haftka and Gürdal [1992], standard sensitivities of eigenvalues hold only in the
case of distinct eigenvalues. According to Seyranian et al. [1994] symmetric and
complex structures that depend on many design parameters often present multiple
eigenvalues. A numerical method of solution was developed by the authors to de-
termine an ascent direction in the design space for the smallest eigenvalue. More
recently, a simple strategy proposed by Zhang et al. [2015] can be used in order to
deal with multiplicity of eigenmodes, which consists in select the closest eigenmode
to the current one. See also the paper by Torii and Rocha de Faria [2017] for more
sophisticated approach based on a smooth p-norm approximation for the smallest
eigenvalue.

3.2 Kirchhoff Plates

Before starting the main results of this section, let us introduce the following
fourth-order polarization tensor associated with the plate bending model

P = − 1− γα
1 + γαδ2

(
(1 + δ2)I+

1− γα
2

δ1 − δ2
1 + γαδ1

I⊗ I

)
, (43)

where constants δ1 and δ2 will be defined later according to the model problem we
are dealing with, namely Kirchhoff or Reissner-Mindlin. In (43), the symbols I and
I are used to denote the second and fourth order identity tensors, respectively

The theory of Kirchhoff bending plates is based on the following kinematic as-
sumption:

The normal fibers to the middle plane of the plate remain normal during
deformation and do not suffer variations in their length. Consequently,
both transversal shear and normal deformations are null.

Therefore, the original unperturbed problem can be stated as: Find u ∈ V(Ω),
such that ∫

Ω

αM(u) · ∇∇v +
∫
Ω

ρkuv =

∫
Ω

fv, ∀v ∈ V(Ω), (44)

where V(Ω) = H2
0 (Ω;R). The coefficients α, ρ and f are given in Table 5. In addi-

tion, M(u) = C∇∇u is the moment tensor, u : Ω 7→ R the transverse displacement
and k a positive function. The constitutive tensor C is given by

C =
Eh3

12(1− ν2)
((1− ν)I+ νI⊗ I) , (45)

being ν is the Poisson ratio, E is the Young modulus and h the plate thickness.
The L2 and energy norms shape functionals, we are dealing with, are respectively
defined as

G(u) =
∫
Ω

ρk|u|2 and J (u) =

∫
Ω

αM(u) · ∇∇u. (46)
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In order to simplify bluethe form of the topological derivatives, we introduce the
adjoint problems for displacements q and p, as

q ∈ V(Ω) :
∫
Ω

αM(q) · ∇∇v +
∫
Ω

ρkqv = −2

∫
Ω

ρkuv, ∀v ∈ V(Ω), (47)

p ∈ V(Ω) :
∫
Ω

αM(p) · ∇∇v +
∫
Ω

ρkpv = −2

∫
Ω

αM(u) · ∇∇v, ∀v ∈ V(Ω). (48)

The topologically perturbed counterpart of problem (44) is written as: Find
uε ∈ V(Ω), such that∫

Ω

αεM(uε) · ∇∇v +
∫
Ω

ρεkuεv =

∫
Ω

fεv, ∀v ∈ V(Ω), (49)

where the coefficients αε, ρε and fε are defined through Table 3 and Table 4. The
associated shape functionals are then defined as

Gε(uε) =

∫
Ω

ρεk|uε|2 and Jε(uε) =

∫
Ω

αεM(uε) · ∇∇uε. (50)

3.2.1 Topological sensitivities

By setting the constants δ1 and δ2 in the definition of the polarization tensor
(43) as follows

δ1 =
1 + ν

1− ν
and δ2 =

1− ν

3 + ν
, (51)

we can state the two main results of this Section, whose proofs are completely
analogous to the presented by Amstutz and Novotny [2011]:

Theorem 3 Let G(u) be the shape functional defined by (46)-left, then its associated
topological derivative is given by

DTG = αPM(u) · ∇∇q − (1− γρ)ρku(u+ q) + (1− γf )fq a.e. in Ω (52)

where q is the adjoint state solution of (47).

Theorem 4 Let J (u) be the shape functional presented in (46)-right, then its topo-
logical derivative is given by

DTJ = αPM(u) · ∇∇(u+ p)− (1− γρ)ρkup+ (1− γf )fp a.e. in Ω (53)

where p is the adjoint solution of problem (48).

The eigenvalue problem for the Kirchhoff model of a clamped thin plate under
free vibration can be stated as: Find u and λ, such that{

div div(αM(u)) = λρu in Ω,
u = ∂nu = 0 on ∂Ω.

(54)
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The associated first eigenvalue can be defined as

λ1 =

∫
Ω
αM(u) · ∇∇u∫

Ω
ρ|u|2

, (55)

being u solution of (54). The topological derivative of J(D) := λ−1
1 is given by (see

Carvalho et al. [2020]),

DTJ = −αPM(u) · ∇∇u+ (1− γρ)ρλ1|u|2

λ21
∫
Ω
ρ|u|2

. (56)

3.3 Reissner-Mindlin Plates

The theory of Reissner-Mindlin bending plates is based on the following kine-
matic assumption:

The normal fibers to the middle plane of the plate remain straight dur-
ing the deformation process and do not suffer variations in their length,
but they do not necessarily remain normal to the middle plane. Con-
sequently, the transversal shear deformations are not negligible and the
normal deformations are null.

Therefore, the unperturbed problem is stated as: Find (θ, u) ∈ H(Ω), such that∫
Ω

αM(θ)·(∇η)s+
∫
Ω

βQ(θ, u)·(η−∇v)+
∫
Ω

ρkuv =

∫
Ω

fv, ∀ (η, v) ∈ H(Ω), (57)

where H(Ω) = H1
0 (Ω;R

2) × H1
0 (Ω;R). The coefficients α, β, ρ and f are given

in Table 2. In addition, θ : Ω 7→ R2 is the rotation, u : Ω 7→ R is the transver-
sal displacement, M(θ) = C(∇θ)s is the generalized bending moment tensor and
Q(θ, u) = D(θ − ∇u) is the generalized shear tensor. The constitutive tensor C is
defined by (45) whereas the second order tensor D is given by

D =
σEh

2(1 + ν)
I, (58)

with shear correction factor σ = 5/6. The L2 and energy norms shape functionals,
we are dealing with, are defined as

G(θ, u) =
∫
Ω

ρk|u|2 and J (θ, u) =

∫
Ω

(αM(θ) · (∇θ)s + βQ(θ, u) · (θ −∇u)).(59)

In order to simplify bluethe form of the topological derivatives, we introduce the
adjoint problems for displacements (q, p) and the rotations (φ, ϕ), as

(φ, q) ∈ H(Ω) :

∫
Ω

αM(φ) · (∇η)s +
∫
Ω

βQ(φ, q) · (η −∇v) +
∫
Ω

ρkqv =

− 2

∫
Ω

ρkuv, ∀(η, v) ∈ H(Ω), (60)

Carvalho, Fernando S., et al. (2022) Topological Derivative concept & classical applications pp. 269-300

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 282



(ϕ, p) ∈ H(Ω) :

∫
Ω

αM(ϕ) · (∇η)s +
∫
Ω

βQ(ϕ, p) · (η −∇v) +
∫
Ω

ρkpv =

− 2

∫
Ω

(αM(θ) · (∇η)s + βQ(θ, u) · (η −∇v)), ∀(η, v) ∈ H(Ω). (61)

The topologically perturbed counterpart of problem (57) is written as: Find
(θε, uε) ∈ H(Ω), such that∫
Ω

αεM(θε)·(∇η)s+
∫
Ω

βεQ(θε, uε)·(η−∇v)+
∫
Ω

ρεkuεv =

∫
Ω

fεv, ∀ (η, v) ∈ H(Ω),

(62)
where the coefficients αε, βε, ρε and fε are reported in Tables ?? and 4. The
associated shape functionals are then defined as

Gε(θε, uε) =

∫
Ω

ρεk|uε|2 and (63)

Jε(θε, uε) =

∫
Ω

(αεM(θε) · (∇θε)s + βεQ(θε, uε) · (θε −∇uε)). (64)

3.3.1 Topological sensitivities

Let us introduce the following second-order tensor

P = −2
1− γβ
1 + γβ

I. (65)

Now, by setting the constants δ1 and δ2 in the definition of the polarization tensor
(43) as follows

δ1 =
1 + ν

1− ν
and δ2 =

3− ν

1 + ν
, (66)

we can state the two main results of this section, whose proofs are completely anal-
ogous to the paper by Sales et al. [2015]:

Theorem 5 Let G(θ, u) be the shape functional defined by (59)-left, then its asso-
ciated topological derivative is given by

DTG = αPM(θ) · (∇φ)s + βPQ(θ, u) · (φ−∇q)
− (1− γρ)ρku(u+ q) + (1− γf )fq a.e. in Ω (67)

where (φ, q) is the adjoint state solution of (60).

Theorem 6 Let J (θ, u) be the shape functional presented in (59)-right, then its
associated topological derivative is given by

DTJ = αPM(θ) · (∇(θ + ϕ))s + βPQ(θ, u) · ((θ + ϕ)−∇(u+ p))

− (1− γρ)ρkup+ (1− γf )fp a.e. in Ω (68)

where (ϕ, p) is the adjoint solution of problem (61).
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the eigenvalue problem of a Reissner-Mindlin model of a clamped thick plate
under free vibration can be stated as: Find (θ, u) and λ, such that

−div(αM(θ)) + βQ(θ, u) = 0 in Ω ,
div(βQ(θ, u)) = ρλu in Ω ,

θ = 0, u = 0 on ∂Ω .
(69)

The associated first eigenvalue is defined as

λ1 =

∫
Ω
(αM(θ) · (∇θ)s + βQ(θ, u) · (θ −∇u))∫

Ω
ρ|u|2

, (70)

being (θ, u) solution of (69). The topological derivative of J(D) = λ−1
1 is given by

(see Carvalho et al. [2020]),

DTJ = −αPM(θ) · (∇θ)s + βPQ(θ, u) · (θ −∇u) + (1− γρ)ρλ1|u|2

λ21
∫
Ω
ρ|u|2

. (71)

3.4 Compliance Problem

The compliance of the plate under bending effects is obtained as the sum of
the shape functionals given by (46) for Kirchhoff problem and by (59) for Reissner-
Mindlin problem. The zero order term in both problems (see eqs. (44) and (57)) can
be interpreted as an elastic support, so that we define the quantity s = ρk, where s
represents the stiffness of the support. The transverse load f is assumed to be fixed,
so that its associated contrast γf = 1.

In the case of Kirchhoff plate bending problem, the shape functional to be mini-
mized is defined as J(D) := J (u) + G(u), with J (u) and G(u) given by (46), where
u is the solution to: Find u, such that{

div div(αM(u)) + su = f in Ω,
u = ∂nu = 0 on ∂Ω.

(72)

Therefore, from Theorem 3 and Theorem 4, we have that the associated topological
derivative of the compliance shape functional J(D) is given by (see, Carvalho et al.
[2020]),

DTJ = −αPM(u) · ∇∇u+ (1− γρ)s|u|2. (73)

Analogously, in the case of Reissner-Mindlin plate bending problem, the shape
functional to be minimized is defined as J(D) := J (θ, u)+G(θ, u), with J (θ, u) and
G(θ, u) given by (59), where (θ, u) are the solutions to: Find (θ, u), such that

−div(αM(θ)) + βQ(θ, u) = 0 in Ω ,
div(βQ(θ, u)) + su = f in Ω ,

θ = 0, u = 0 on ∂Ω .
(74)

Thus, from Theorem 5 and Theorem 6, we have that the associated topological
derivative of the compliance shape functional J(D) is given by

DTJ = −αPM(θ) · (∇θ)s − βPQ(θ, u) · (θ −∇u) + (1− γρ)s|u|2. (75)
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4 Numerical strategy framework
In this section the illustrative scheme presented in fig. 3 shows the numerical

strategy implemented for the methodology aforementioned. The steps of implemen-
tation can be listed as,

• Step 1 - Generates the geometry, boundary conditions, and set the mechanical
properties;

• Step 2 - Solves the direct problem using the chosen numerical solver (FEM,
BEM, or other);

• Step 3 - Applies the respective DT closed formula to the problem under con-
sideration to get the domain’s sensitivity;

• Step 4 - Select those points with low efficiency (low DT ) for being removed.
Remark: The user must set the percentage of volume to be removed per iter-
ation;

• Step 5 - Applies an auxiliary routine for material removal at the candidate
internal points. Remark: This routine is based on pure geometry depending
on the numerical method employed and must be able to detect new frontiers
reapplying the b.c. as well as to detect the possible detached material (islands)
from the main domain (mainly for BEM).

Figure 3: Numerical methodology scheme for implementation

It is important to highlight that the strategy of material removal depends on
the numerical approach and the methodology employed by the user to deal with
the geometry. In the case of FEM, generally, one can set the domain fixed and
suppress (in case of voids) or impose different values of mechanical properties (in
case of inclusion insertion) to those elements with low sensitivities. In this kind
of approach, no concerns with the boundary conditions or even islands arising up
are needed, because the elements are not rearranged, see for instance the work
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of Ruscheinsky et al. [2020a]. It is also important to reinforce that the concept
of DT is derived considering the singular perturbation as voids or inclusions. In
this sense, one must have attention to using the appropriate DT closed formula to
implement the strategy of removal/add material accordingly. When considering the
BEM, one can deal with a fixed domain or moving frontiers. The first strategy
is similar to the FEM procedure but in this case the technique of multiple regions
must be considered, as implemented in Anflor et al. [2014]. For the moving frontiers,
special treatment must be given in attention to the new geometry resulted from the
previous iteration. When considering moving frontiers, the material is removed and
new elements are added to redesign the domain needing the rearrangement on the
discretization process. At this point, islands may arise (fig. 4 and the subroutine
developed for Step 5, must be able to detect and discard them.

Figure 4: Detail of island detection, deletion and the renumbering of the
elements

Additionally, several resources such as offset of internal points (switch off the
entire grid of internal points), shape and size of stamps used to remove material
are examples of strategies to improve in fast and efficiency of the iterative process
when using BEM (fig.5). Further details about these strategies can be consulted in
Marczak [2008] and Anflor et al. [2018].

Figure 5: Strategies based on the BEM particularities

5 Numerical examples
This section presents some numerical examples in the context of topological

optimization for classical problems of engineering, such as: Potential Problem,
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Linear Elasticity, Heat Exchanger, Maximization of the First Eigenvalue in Mem-
brane, Plates (Kirchhoff and Reissner-Mindlin) and the Compliance for Kirchhoff
and Reissner-Mindlin problem. The algorithm based on the DT is implemented
using BEM for the first two examples and FEM for the remaining examples. The
resulting analytical formulae (see formulas (36), (42), (56),(71), (73), (75)) are used
together with a level-set domain representation method to devise a simple topology
design algorithm (for more details see Amstutz and Andrä [2006]). The obtained
final topologies show the efficiency of the topological derivative method.

5.1 Potential Problem: Printed Circuit Board

This example concerns to a printed circuit board (PCB) substrate. The charac-
teristics of of good PCB designs is the efficiency to dissipate the maximum amount
of thermal energy with the minimum possible volume of material. In this sense
the topology optimization becomes attractive for this class of problem. Figure 6
introduces the initial layout for this case, where four heat sources are used to simu-
late the heat generated by major electronic components mounted on the PCB. The
hatched areas are not allowed changes because they are used for clamping the PCB.
The domain is discretized with 32 linear boundary elements (BEs) and the holes
opened during the optimization process with 6 linear BEs. All the cavities opened
as the iterative process evolves have prescribed Neumann homogeneous as bound-
ary condition. For this problem the optimization procedure is halted was halted
when a volume ratio of 70% between the final and the original designs is achieved.
The domain’s sensitivity was computed using the first equation introduced in Table
1. The evolution history is introduced according Fig. 7. It is worth mentioning
that in the PCB case, new cavities are created during the process near the corners,
characterizing truly topological changes in the domain.

Figure 6: Initial design for the PCB
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Figure 7: Topology evolution for the PCB

5.2 Linear Elasticity

This example consists of a traditional beam, as shown in 8. A rectangle with
dimensions of 5 units x 10 units is subjected to a total vertical load P = 1 kN applied
at the middle of the bottom side. The first and the last element of the bottom side are
pinned and bolted, respectively. The radius of the holes was set to 0.013125a. The
stop criterion was set as the final volume reaching approximately 54% of the initial
volume and the domain’s sensitivity was computed using eq.23. The percentages
of internal points selected to be removed during the optimization procedure are
presented in Table 1. As can be seen, the amount of material removed during the
iterative process is variable, based on the domain’s sensitivity. As a comparison, the
amount of material removed using linear and quadratic BEs is also presented. Figure
6 shows the evolution of the iterative process using quadratic elements, where the
final topology results after only six iterations. The final topology results for linear
and quadratic BEs are quite similar, as expected. The main difference is that with
increasing accuracy of the BE solutions, the domain sensitivity isolines become more
evident, allowing the removal of a greater amount of material per iteration.

It is important to highlight that the final topology resulted in the shape of a
truss structure, as shown in Figure 9. Using a mirror-image effect procedure on this
final topology (iteration 6), the result is a geometry similar to a wheel with radial
supports (Figure 11). Based on the literature, a resulting shape of a wheel ensures
that the developed optimization routine is capable of generating feasible topologies.
In Figure 10 it is possible to observe the amount of material being removed, taking
into account the linear and quadratic BEs, as the iterative process evolves.
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Figure 8: Beam boundary conditions

Figure 9: Beam topology evolution: a) linear and b) quadratic boundary
elements
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Figure 10: Volume x number of iterations history

Figure 11: Final topology after a mirror-image effect

5.3 Heat Exchanger Design

The hold-all domain D is given by a unit square of size (0, 1) × (0, 1) with a
distributed uniform heat generation of intensity f = 104W over the domain. All
the boundary are thermally insulated, with exception of the regions TL and TH of
lengths 0.2. The temperature at TL is prescribed as u = 273K and TH is prescribed
as u = 373K. Fig. 12 shows the initial domain and the initial temperature map.
The penalty parameter is set as µ = 4, the weight as t = 1 and α = 1. During the
optimization procedure two material are used, the first one is the aluminum (α =
205W/mK) and the second one is a material with low thermal conductivity γα ≪ α.
The initial domain consists of aluminum only (Ω = D). As the optimization process
iterativelly evolves the aluminum is replaced by the second material. The domain’s
sensitivity is computed according to eq.36. Figures 13a-d show the evolution of
topologies in the jth iteration. In the j=56 iteration, we have the optimized topology.
Figure 14, illustrates the shape function. The final topology (see Fig. 13(d)) has
60% volume of high thermal conductivity material.
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Figure 12: initial domain (left) and the initial temperature map (right)

Figure 13: Topologies evolution (jth) iteration (a)-(d) and Final topology
(d)
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Figure 14: Shape function history

5.4 Membrane Problem: First eigenvalue maximization

The membrane is clamped in the four vertices and free in the rest of the contour.
The non-structural concentrated mass m is applied at the plate’s center (0.5, 0.5),
as depicted in Figure 15. Four cases are considered, namely, cases M1, M2, M3
and M4. The values of the penalty parameters µ and the non-structural mass m as
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depicted in table 5. The domain’s sensitivity is computed according to eq. 42.

Figure 15: Initial domain

Table 5: Penalty values and concentrated mass
Case M1 Case M2 Case M3 Case M4

µ 0.4 0.2 0.1 0.4
m 0.02 0.03 0.04 0.7

The final topologies for each case are presented in Figures 16a-d. Fig. 17 intro-
duces the normalized first eigenvalue history λ1/λ0 (where λ10 is its initial value) as
the iterative process has evolved. The normalized first eigenvalues history λ1/λ2 are
introduced in figure 18. Note that they are completely separated, so that multiple
eigenvalues phenomenon was not observed in this particular example. The evolution
histories for the volume fraction and shape funcion are presented in Fig. 19 and 20,
respectively. The initial domain is discretized by using linear triangular finite ele-
ments resulting in an initial uniform mesh with 10,000 elements and 5,101 nodes. In
order to increase the accuracy as well as the topology smoothness 4 steps of mesh
refinement during the iterative process are allowed. After the fourth refinement the
resulting mesh presents 2,560,000 elements and 1,281,601 nodes.

Figure 16: Optimized topologies for Cases M1, M2, M3 and M4
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Figure 17: Normalized first eigenvalue λ1/λ01 history

Figure 18: Normalized first eigenvalue λ1/λ2 history

Figure 19: Shape Function history

Figure 20: Volume Fraction history

5.5 Kirchhoff and Reissner-Mindlin Plates: First Eigenvalue
Maximization

For the eigenvalue problem we will also consider for both problems (Kirchhoff
and Reissner-Mindlin) a hold-all domain Ω given by a clamped square on the left
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and right sides and simply supported on the top and bottom sides of dimensions
(0, 1) × (0, 1)m2. The non-structural concentrated mass is represented by black
dot (see Figure 25). The Young modulus is E = 210GPa, Poisson ratio ν = 0.3
and the plate thickness is h = 0.05m. The contrasts are given by γα = γρ =
10−3 and the penalty parameter is set as µ = 1.2. The domain’s sensitivity is
computed using eq. 56 for Kirchoff plate and eq. 71 for Reissner-Mindlin plate.
The experiments are labeled as Cases E1 and E2 for Reissner-Mindlin and Kirchhoff
plates, respectively. The final topologies are presented in Fig. 22(a)-(b). Finally, the
history of the normalized first eigenvalue λ1/λ10 (with λ10 = 311.38 and λ10 = 286.52
for Kirchhoff and Reissner-Mindlin cases, respectively), volume fraction and shape
function obtained during the iterative process are presented in Fig. 23 to Fig. 24.
The domain is discretized by using linear triangular finite elements resulting in an
initial uniform mesh with 10, 000 elements and 5, 101 nodes. In order to increase
the accuracy as well as the topology smoothness 3 steps of uniform mesh refinement
during the iterative process are allowed, leading to a mesh with 640, 000 elements
and 320, 801 nodes.

Figure 21: Initial domain for the Kirchhoff and Reissner-Mindlin plates

In Reissner-Mindlin case (Fig. 22(b)) it is observed the presence of small struc-
tures due to the numerical artefacts. The mesh refinement isn’t enough to overcome
this issue even if a higher mesh resolution is imposed. It is well-know that there is a
lack of sufficient optimality conditions for such shape optimization problems, so that
thin components like those pointed out may appear. In spite of the presence of small
structures a local minimum has been reached up to a small numerical tolerance.

(a) Kirchhoff (b) Reissner-Mindlin

Figure 22: Final Topologies
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Figure 23: Eigenvalue λ1/λ10 (a) and Volume Fraction history (b)
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Figure 24: Shape Function history

5.6 Compliance Minimization

In the numerical experiment we consider for both problems (Kirchhoff and Reissner-
Mindlin) a hold-all domain Ω given by a clamped square of dimensions (0, 1) ×
(0, 1)m2 submitted to concentrated forces, perpendicular to the plane of the plate,
of values f = −1MN located at the centre of plate. A circular elastic support of
radius 0.2m and center at (0.50, 0.50) is also considered (see sketch in Fig. 25(a)-(b).
The concentrated loads is represented by black dot whereas the support is repre-
sented by a hatched circular area in grey color. The Young modulus is E = 210GPa,
Poisson ratio ν = 0.3, the stiffness of the elastic support is s = 10−2E and the plate
thickness is h = 0.05m. The contrasts are given by γα = γρ = 10−4 and the penalty
parameter is set as µ = 1.7. The domain’s sensitivity is computed using eq. 73 for
Kirchoff plate and eq. 75 for Reissner-Mindlin plate. The experiments are labeled as
Cases C1 and C3 for Reissner-Mindlin with and without support, respectively and
Cases C2 and C4 for Kirchhoff with and without support, respectively. The final
topologies are presented in Fig. 26(b)-(d) and Fig. 26(a)-(c) for Kirchhoff (Cases
C2 and C4) and Reissner-Mindlin (Cases C1 and C3) plates, respectively. Finally,
the history of the compliance, volume fraction and shape function obtained during
the iterative process are presented in Fig. 27 to Fig. 29.

In addition, the domain is discretized by using linear triangular finite elements
resulting in an initial uniform mesh with 14, 400 elements and 7, 321 nodes. In order
to increase the accuracy as well as the topology smoothness 3 steps of uniform mesh
refinement during the iterative process are allowed, leading to a mesh with 921, 600
elements and 461, 761 nodes.

Carvalho, Fernando S., et al. (2022) Topological Derivative concept & classical applications pp. 269-300

In Jorge, Ariosto B., et al. (Eds.) Model-Based and Signal-Based Inverse Methods, Vol. 1, UnB 295



Figure 25: Initial domain with support (a) and without support (b).
The concentrated loads are represented by black dots whereas the elastic
support is represented by a hatched circular area in grey color

(a) with support: Case C1 (b) with support: Case C2

(c) without support: Case C3 (d) without support: Case C4

Figure 26: Final Topologies

6 Final remarks
In this chapter the DT concept was introduced for classic problems of topology

optimization.This methodology can be also extended to other applications as inverse
problems and image processing. The DT measures the sensitive of a domain when
a singular perturbation is inserted inside the domain. According to this statement
it is possible to glimpse that this methodology becomes suitable for detecting the
presence of damage in structures. The presence of holes, cracks, or inclusions are
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Figure 29: Shape Function history

typical examples of damages that can be evaluated by employing the appropriate
DT closed formulae to map those problematic regions. Based on this approach,
the inverse problem can also be addressed by coupling the appropriate topological
derivative to probabilistic optimizations methods. Furthermore, there are no con-
straint restrictions in the use of the present methodology with numerical methods
for the direct problem, such as the finite element method, the boundary element
method, or any other numerical method used for the discretization of the quantity
of interest in the domain.
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