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Maŕıa Etchechoury

Laboratorio de Electrónica Industrial, Control e Instrumentación
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Abstract. A ball having two of its three moments of inertia equal and whose

center of mass coincides with its geometric center is called a symmetric ball.

The free dynamics of a symmetric ball rolling without sliding or spinning on
a horizontal plate has been studied in detail in a previous work by two of the

authors, where it was shown that the equations of motion are equivalent to
an ODE on the 3-manifold S2 × S1. In this paper we present an approach to

the impulsive control of the position and orientation of the ball and study the

speed of convergence of the algorithm. As an example we apply this approach
to the solutions of the isoparallel problem.

1. Dynamics of the symmetric ball. We define a material ball of radius r and
mass M to be symmetric if its center of mass coincides with its geometric center
and its principal moments of inertia I1, I2, I3 satisfy I1 = I2. Using a geometric
approach, two of the authors perform in [5] a complete study of the dynamics of a
symmetric ball rolling on a horizontal plate without sliding or spinning, including
a precise description of all equilibrium points and closed orbits. In particular, it
is shown that the system is equivalent to an ODE on S2 × S1. All the trajectories
on S2 × S1 are closed orbits and all of them, including equilibrium points, are
stable. From this, one can deduce that the trajectory x(t) of the contact point
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on the horizontal plate is the superposition of a periodic motion and a uniform
translation. In the next paragraphs we explain all this in detail.

Description of the model. We refer to [5] for a more detailed description. In the
bibliography we give a list, which is by no means exhaustive, of general references
on nonholonomic systems and control, including impulsive control, relevant to the
present paper.

Let A(t) ∈ SO(3) be the time-dependent rotation describing the orientation of
the ball at time t, which means, by definition, that (A(t)e1, A(t)e2, A(t)e3) coincides
with the moving frame formed by the principal axes of inertia of the ball for all t.
Here (e1, e2, e3) is the canonical basis of R3, which we assume to represent an inertial
frame. The ball rolls on the plane (e1, e2), which is assumed to be horizontal. We
denote x(t) = (x1(t), x2(t)) the contact point of the ball on the plate. We sometimes
regard x(t) as an element (x1(t), x2(t), x3(t)) of R3 with null third component,
x3(t) = 0. Let z(t) ∈ S2 be given by z(t) = A(t)e3. The spatial angular velocity can
be written as ω = v0z+z× ż, so v0 = 〈ω, z〉 is its component along z (see Figure 1).
The nonholonomic constraints [8] are given by the no sliding condition ω×re3 = ẋ,
along with the no spinning condition [21] given by ω3 ≡ 〈ω, e3〉 = 0. The reduced
Lagrangian is given by

(
I1ż

2 + I3v
2
0 +Mẋ2

)
/2. Using the nonholonomic constraints

we can conclude that the kinetic energy of the actual motion of the symmetric ball
is given by

E =
1

2
(I1 +Mr2)ż2 +

1

2
(I3 +Mr2)v2

0 ,

which is a preserved quantity.

z

u = ż × z

ω

v0z

ż

z × ż

ω

S2

TzS
2

e3

Figure 1. Some quantities involved in the model. Vectors drawn
with a thick line are tangent to the sphere.

Equations of motion. We introduce the dimensionless quantities α = I3/I1 and
β = Mr2/I1. Moreover, we will normalize the problem so that I1 = I2 = 1 and
r = 1, and thus α represents I3 and β represents M .

The time derivative of the angular momentum, A(IΩ̇−IΩ×Ω), where Ω = A−1ω
is the body angular velocity, must be compensated by the torque due to the forces of
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the constraints. For the case of the torque induced by the nonholonomic constraints
described before we obtain the equation of motion

A(IΩ̇− IΩ× Ω)× e3 = −β(ω̇ × e3). (1)

We refer the reader to [18] for further information on the dynamics of the rigid body
and rolling constraints.

For a symmetric ball the condition I1 = I2 leads to a simplification of equation
(1). First of all, the angular momentum vector is

I1Ω1Ae1 + I1Ω2Ae2 + I3Ω3Ae3 = I1ω + (I3 − I1)Ω3z.

Equating the time derivative of this quantity to the torque of the constraint forces
one obtains, using the fact that v0 = Ω3,

I1ω̇ + (I3 − I1)(v0z)̇ = −Mr2ω̇,

which is the equation of balance of forces of inertia and forces of the constraint,
written in terms of the spatial angular velocity ω and its component along z, that
is v0 = 〈ω, z〉. The normalized version of this equation is

ω̇ + (α− 1)(v0z)̇ = −βω̇, (2)

which can be written using the expression ω = v0z + z × ż as

αω̇ + (1− α)(z × z̈) = −βω̇,

which only involves z and ω. Then equation (1) is equivalent to

α(ω̇ × e3) + (1− α)(z × z̈)× e3 = −β(ω̇ × e3). (3)

Remark. Another proof, more involved, using equation (1) directly, goes as follows.
This time, we shall use the normalization of I1 = I2 = 1, I3 = α, Mr2 = β at
the outset. First write IΩ = (Ω1,Ω2, αΩ3) ≡ (Ω1,Ω2, αv0) = Ω − (1 − α)v0e3,

from which we obtain IΩ̇ = Ω̇ − (1 − α)v̇0e3. Then we have A(IΩ̇ − IΩ × Ω) =
ω̇−(1−α)v̇0z+(1−α)v0z×(v0z+z× ż), where we have used the equalities ω = AΩ,

ω̇ = AΩ̇, ω = v0z + z × ż. Finally, we get A(IΩ̇− IΩ×Ω) = ω̇ − (1− α)(v0z)̇, and
since ω̇ − (1− α)(v0z)̇ = αω̇ + (1− α)(z × z̈) we obtain, again, equation (3).

Then the system of dynamical and constraint equations all together is equivalent
to

(α+ β)(ω̇ × e3) + (1− α)(z × z̈)× e3 = 0

ω = v0z + z × ż
ω3 = 0.
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According to [5] we can write this system equivalently in the variables (z, u, v0),
calling u = ż × z, as follows

ż1 = z2u3 − z3u2 (4)

ż2 = z3u1 − z1u3 (5)

ż3 = z1u2 − z2u1 (6)

z2u̇1 − z1u̇2 = λv0u3 (7)

0 = u3 − v0z3 (8)

0 = u2
1 + u2

2 + u2
3 + λv2

0 − µ (9)

0 = z2
1 + z2

2 + z2
3 − 1 (10)

0 = z1u1 + z2u2 + z3u3, (11)

where λ = (α + β)/(1 + β) and equation (9) represents conservation of energy,
µ = 2E/(I1 +Mr2).

Equations of motion on S2 × S1. For each given value of the energy µ ≥ 0,
the evolution of the system is given by the IDE (Implicit Differential Equation)
(4)–(11), in which λ is a parameter solely related to the inertia of the ball. This
IDE can be transformed into an equivalent ODE on a manifold, a task which is
not always easy for a given IDE. In fact, according to [5], for each given, positive
energy value µ > 0, equations (8)–(11) define a submanifold Nµ of R7 on which the
solution curves for that energy value are contained. Moreover, this submanifold Nµ
is diffeomorphic to S2 × S1 and can be parametrized by angles (θ, ϕ, ψ) as follows:

z1 = sin θ cosϕ (12)

z2 = sin θ sinϕ (13)

z3 = cos θ (14)

u1 = −a cos(ϕ− ψ) cos2 θ cosϕ− b sin(ϕ− ψ) sinϕ (15)

u2 = −a cos(ϕ− ψ) cos2 θ sinϕ+ b sin(ϕ− ψ) cosϕ (16)

u3 = a cos(ϕ− ψ) cos θ sin θ (17)

v0 = a cos(ϕ− ψ) sin θ, (18)

where

a =

√
µ

λ sin2 θ + cos2 θ
, b =

√
µ.

We can check directly that the previous expression of (z1, z2, z3, u1, u2, u3, v0) in
coordinates (θ, ϕ, ψ) satisfies (8)–(11). We can also see that equations (12)–(18)
define a diffeomorphism f : S2 × S1 → Nµ, f(z, (cosψ, sinψ)) = (z, u, v0). All this
can be verified by standard (but lengthy) calculations, using the implicit function
theorem.

Remark. A geometric interpretation of the angle ψ is the following. Equation
(11) tells us that u is a vector tangent to the 2-sphere S2 given by z2 − 1 = 0.
Heuristically, for each z ∈ S2 we consider the 3-dimensional space TzS

2×Rz, where
Rz represents a line normal to the sphere at z ∈ S2, so the collection of all Rz is
a trivial real line vector bundle with base S2. We imagine that the variable v0 is
the coordinate of the axis Rz which is normal to TzS

2. Then, for each z, equation
(8) is a plane in TzS

2 × Rz containing the origin 0 = 0z since z3 is fixed once z
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is fixed. Equation (9) gives a 2-dimensional ellipsoid, since the variables u1, u2, u3

are related by (11). The intersection of the plane with the ellipsoid is an ellipse.
Therefore Nµ must be some fiber bundle with fiber S1 and base S2. Using all this
and some imagination we can see that it is, in fact, the trivial bundle S2 × S1, and
we have the parametrization of Nµ in the variables (θ, ϕ, ψ) given by (12)–(18).
Moreover, the interested reader can check that the quantities a and b defined above
are precisely the semi axes of the ellipse.

It has been proven in [5] that the IDE (which is in fact a Differential Algebraic
Equation (DAE)), (4)–(11) is equivalent to an analytic ODE on S2 × S1, namely,
the natural extension of

θ̇ = −b sin(ϕ− ψ) (19)

ϕ̇ = −acos θ

sin θ
cos(ϕ− ψ) (20)

ψ̇ = (b− a)
cos θ

sin θ
cos(ϕ− ψ), (21)

where ϕ and θ parametrize z ∈ S2 as in (12)–(14), and (cosψ, sinψ) ∈ S1. Let
us describe the proof briefly. First, (19)–(21) are obtained, assuming θ 6= 0, π,
by introducing (12)–(18) in (4)–(7). Let us call X(z, (cosψ, sinψ)) the analytic
vector field defined on

(
S2 − {(0, 0, 1), (0, 0,−1)}

)
× S1, by equations (19)–(21) and

let us show that it has a natural extension to an analytic vector field on S2 × S1.
For this purpose, we shall choose the parametrization of S2 of a neighborhood
of (z1, z2, z3) = (0, 0, 1) by the parameters (z1, z2) given by z3 =

√
1− (z2

1 + z2
2),

(z1, z2) ∈ {(z1, z2) | z2
1 +z2

2 < 1}. We are going to use the equalities sin2 θ = z2
1 +z2

2 ,
cos2 ϕ = z2

1/(z
2
1 + z2

2), sin2 ϕ = z2
2/(z

2
1 + z2

2) and the series expansion

a− b =
√
µ
(
Σ∞k=1(1− λ)k sin2k θ

)
=
√
µ
(
Σ∞k=1(1− λ)k(z2

1 + z2
2)k
)
.

By differentiating (12) with respect to time and using (19)–(21) we obtain

ż1 = (a− b) cos θ cosϕ sinϕ cosψ + a cos θ sin2 ϕ sinψ + b cos θ cos2 ϕ sinψ,

and using the previous equalities and series expansion we can conclude that ż1,
which represents the first component of X(z, (cosψ, sinψ)), can be written as an
analytic function of (z1, z2, (cosψ, sinψ)) on {(z1, z2) | z2

1 + z2
2 < 1} × S1. We can

proceed in a similar way with the other components of X(z, (cosψ, sinψ)), which
proves that it has an analytic extension to

(
S2 − {(0, 0,−1)}

)
× S1. Finally, by an

entirely similar procedure, we can show that X(z, (cosψ, sinψ)) can be extended
further to an analytic vector field on S2 × S1.

Remark. The dynamics of the system has been thoroughly studied in [5]. A tra-
jectory x(t) corresponding to a motion of the ball for the (apparently troublesome)
initial condition θ = 0 is easy to calculate, it is a straight line. In this case, the point
z is initially on the top of the sphere and describes a circular motion on a vertical
plane containing the center of the ball. For an initial condition with θ = π/2 the
solution z(t) remains constant and x(t) describes a straight line. Remarkably, it is
possible to write the solutions of the equations of motion for this system explicitly
in terms of elementary functions (see Appendix).
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It can be easily shown that the equations of motion can be reduced to

θ̇ = −b sinw (22)

ẇ = −b cos θ cosw/ sin θ, (23)

where w = ϕ− ψ, which, in turn, leads to the separable equation

dθ/dw = tan θ tanw. (24)

All the solutions (θ(t), ϕ(t), ψ(t)) represent periodic motions and all are stable.
Some solutions are shown in Figures 2 and 3. The equilibrium points are stable,
even though from the linearized vector field nothing can be said about their stability.

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

θ

w

Figure 2. Solutions of the ODEs (22)–(23) for µ = 1, θ(t0) =
mπ/24, w(t0) = nπ (n,m ∈ Z). The dashed lines correspond to
the singularities θ = 0, π in the spherical coordinate system.

The periodicity of (θ(t), ϕ(t), ψ(t)) implies that z(t), u(t) and v0(t) are periodic,
and so is ω = v0z+ z× ż. The solution x(t) is determined by its initial value x(t0),
the initial conditions (θ0, ϕ0, ψ0) and the energy level. The no-sliding condition
ω × e3 = ẋ implies that ẋ(t) is also periodic and therefore x(t) is the superposition
of a periodic motion and a uniform translation. A perturbation of the initial con-
dition produces a deviation in the direction and speed of the uniform translation
and also a perturbation of the periodic motion. As a result, it is clear that a per-
turbation of the initial condition propagates as a perturbation whose size increases
at most linearly with time; more precisely, for two such given solutions x(t), x̄(t),
the condition ‖x(t)− x̄(t)‖ ≤ a+ bt is satisfied, for some a, b > 0.
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Figure 3. Solutions of the ODEs (19)–(21) for µ = 1, λ = 1/2,
ψ(t0) = 0, ϕ(t0) = 0, θ(t0) = mπ/24 (m = 1, 2, . . . , 12).

2. Impulsive control of the symmetric ball. A relatively new concept in ro-
botics is that of graspless manipulation, where the manipulated object is not fixed
onto the robot hand (see for instance [2]), but one of the problems with this kind
of manipulation is stability [17]. Tapping and pushing are among the methods im-
plemented to perform graspless manipulation [11, 12, 16]. In those references the
manipulated object is supposed to slide with Coulomb friction law. A less stud-
ied problem in graspless control is the impulsive control of heavy rolling bodies.
Taking advantage of nonholonomic rolling constraints has potential consequences
for implementing graspless manipulation, for instance when the body is too heavy
to be accurately controlled by grasping. For achieving this, a precise knowledge
of the dynamics of the rolling object, including stability, seems necessary. In this
section we show how to control a heavy symmetric ball rolling without sliding or
spinning using impulses that do not change the (kinetic) energy of the ball, which
means that each impulse represents an elastic collision between the ball and the
robot hand with no transmission of energy.

2.1. Description of the control system. For doing experiments one may imple-
ment a plate-ball system. It consists of a material ball held between two horizontal
plates, that rolls without sliding or spinning about its vertical axis (as in section 1).
The lower plate is fixed while the upper one is actuated and can move horizontally
without rotating, see Figure 4.

Consider a plate-ball system where the ball is symmetric, as described above,
and the upper plate has mass Mplate. Since the upper plate moves with twice the
velocity of the ball center, this is equivalent, as far as momentum is concerned, to
having a symmetric ball with mass M := Mball + 2Mplate and no upper plate. The
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ball is controlled (via the upper plate) by impulsive horizontal forces. Between two
such impulses it rolls freely and behaves as studied in the previous section.

Modeling an impulse. As we have explained before, for a fixed energy value µ
equations (8)–(11) define a submanifold Nµ of R7 that can be parametrized with
the variables (θ, ϕ, ψ) as in equations (12)–(18). If the ball is rolling and receives an
impulse that does not change its energy µ, then its motion can be represented by
a curve on Nµ with a jump discontinuity at the time of the impulse. We exclude,
as a physical possibility, a discontinuity in the position variables θ and ϕ, so this
impulse is represented by an instantaneous change ∆ψ of the parameter ψ.

Reciprocally, an arbitrary ∆ψ while keeping µ, θ and ϕ fixed represents an
energy-preserving impulse. It represents an instantaneous change in u and v0, which
can be calculated using (15)–(18), and the preservation of µ is consistent with equa-
tion (9). This is, in a sense, an elastic collision, which can be implemented with the
plate ball mechanism. More generally, one can implement with this mechanism an
arbitrary instantaneous change ∆ω, which may involve an instantaneous change of
µ.

Note that an impulse that does not preserve energy, taking, say, Nµ to Nµ̄, can-
not be described by an instantaneous change in ψ. Such an impulse produces a
jump from a solution curve (z(t), u(t), v0(t)) contained in Nµ to a solution curve
(z̄(t), ū(t), v̄0(t)) contained in Nµ̄. On the other hand, the system (4)–(11) is in-
variant under a rescaling of time, if it is accompanied by a suitable rescaling of µ.
This implies that there are solutions, having different kinetic energy, for which the
ball rolls along the same trajectory and therefore produce the same reorientations
along it, as explained in the paragraph Rolling and reorientations. In this case,
passing instantaneously from one such solution to the other can be implemented by
introducing an impulse which changes the value of ‖ω‖ while keeping its direction.
This can be also implemented with the plate-ball mechanism.

Calculation of the instantaneous change of velocity of the upper plate.
To implement ∆ψ physically in the plate-ball mechanism, one should find which
horizontal instantaneous change of the velocity of the upper plate corresponds to
∆ψ. To do this we first calculate, using equations (15)–(18), the increment ∆u
and ∆v0 due to the change of (θ, ϕ, ψ) to (θ, ϕ, ψ + ∆ψ). Then one can calculate
∆ω = (∆v0)z−∆u and therefore the increase in horizontal velocity to be applied by
the upper plate to the top of the ball will be 2∆ω×e3. The plate-ball system should
be designed to provide this instantaneous change in the velocity of the upper plate
by simulating an elastic collision, with preservation of energy. This may require the

Figure 4. Plate-ball system
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calculation of the instantaneous impulse, which can be done with the formulas that
we have derived so far, but this is beyond the scope of this paper.

Joining two close points. We are going to show that there is a way to assign,
in a unique way, for any two given points in R2 that are close enough, a trajectory
(solution to equations of motion) x(t) of the contact point of the rolling ball that
joins them. This result will suffice for the purposes of the present paper. However,
a generalization of this kind of question for the case of two arbitrary points in R2 is
important for certain global control problems, and its study is planned for a future
work.

Let σ̄ = (θ̄, ϕ̄, ψ̄) be given, and for each s ∈ R let σ̄s = (θ̄, ϕ̄, ψ̄s) where ψ̄s = ψ̄+s.
Then for each s ∈ R, there is a uniquely defined solution σs(t) = (θs(t), ϕs(t), ψs(t))
of (19)–(21) such that σs(0) = σ̄s. Using the general expressions ω = v0z − u and
(12)–(18) we obtain

ω1 = a(θ) cos(ϕ− ψ) cosϕ+ b sin(ϕ− ψ) sinϕ

ω2 = a(θ) cos(ϕ− ψ) sinϕ− b sin(ϕ− ψ) cosϕ.

Then, for each choice of t and s the vector σs(t) determines ωs(t), which, in turn,
determines a solution xs(t) to the equations of motion. Using the general expression
ẋ = ω × e3, and replacing ω by ωs(t), we obtain the following expression for ẋs(t),

ẋs(t)1 = a(θs(t)) cos(ϕs(t)− ψs(t)) sinϕs(t)− b sin(ϕs(t)− ψs(t)) cosϕs(t) (25)

ẋs(t)2 = −a(θs(t)) cos(ϕs(t)− ψs(t)) cosϕs(t)− b sin(ϕs(t)− ψs(t)) sinϕs(t).
(26)

From the periodicity of (θ(t), ϕ(t), ψ(t)) we deduce that ω(t) and ẋs(t) are periodic.
Then we obtain the trajectory xs(x0, t) satisfying xs(x0, 0) = x0, for a given initial
condition x0 ∈ R2 and a given σ̄s, as follows,

xs(x0, t) = x0 +

∫ t

0

ωs(u)× e3 du,

which shows, in particular, that xs(x0, t) is the superposition of a periodic motion
and a uniform translation. From this it follows that each higher order partial
derivative

∂α+βxs(x0, t)

∂tα∂sβ

has an upper bound, depending solely on (α, β), say K(α,β).
Now we are going to show that 0 ≤ t and s ∈ [0, 2π) may be considered as a sort

of local polar coordinates centered at the initial condition x0. From (25) and (26)
one deduces that the curve s 7→ x0 + ẋs(0) is an ellipse centered at x0, moreover, it
is easy to see that, for each s ∈ R,

‖ẋs(0)‖2 = (a(θs(0)))
2

cos2 (ϕs(0)− ψs(0)) + b2 sin2 (ϕs(0)− ψs(0)) (27)

and ∥∥∥∥∂ẋs(0)

∂s

∥∥∥∥2

= (a(θs(0)))
2

sin2 (ϕs(0)− ψs(0)) + b2 cos2 (ϕs(0)− ψs(0)) . (28)

From (27) one easily deduces the orientation and the modulus of the principal axes
of the ellipse. On the other hand, (28) shows that the ellipse is parametrized by
s as a regular curve. Then one may think of (t, s) with t ≥ 0 as being polar
coordinates, with some rescaling of the angle and the radius, centered at x0, given
by (t, s) 7→ ys(x0, t), where, by definition, ys(x0, t) = x0 + tẋs(0). Now, using
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the Taylor expansion and the integral form of the remainder we have xs(x0, t) =
x0 + tẋs(0) + c(t, s)t2, with c(t, s) a C∞ function on R2 given by

c(t, s) =

∫ 1

0

(1− u)(ẋs(ut)− ẋs(0)) du.

By differentiating under the integral we obtain the bounds

‖c(t, s)‖ ≤ K(1,0), ‖(∂c/∂t)(t, s)‖ ≤ K(2,0), ‖(∂c/∂t)(t, s)‖ ≤ K(1,1),

for all (t, s).
There is a map P : R2 → R2, x = P (y), defined by the composition of the two

maps ys(x0, t) 7→ (t, s) 7→ xs(x0, t), that is xs(x0, t) = P (ys(x0, t)), where t ≥ 0.
One can check immediately that P (x0) = x0 and that P is C∞ on R2−{0}. Let us
show that P is at least C1 and, moreover, DP (x0) = I. From the definitions and

the Taylor expansion we obtain P (y) = y + c̃(y) ‖y − x0‖2 / ‖ẋs(0)‖2 where c̃(y) is
obtained as the composition of c(t, s) with

s = h (arctan(y2 − x02)/(y1 − x01))

and

t =
‖y − x0‖
‖ẋs(0)‖ ,

where h is a positive periodic function relating the parameter s with the angle de-
scribed by ẋs(0). After some calculations involving the bounds K(1,0), K(2,0), K(1,1),
one can conclude that there is a universal constant K such that ‖DP (y)− I‖ ≤
K ‖y − x0‖. This shows that P is at least C1 and that DP (x0) = I. As we know
from the inverse function theorem, if r > 0 satisfies Kr < 1/2 then the inverse
function y = P−1(x) is defined and is C1 on the ball Br′ where r′ = r/2. This
means that one can also think of (t, s) 7→ xs(x0, t) as being a sort of (somewhat
deformed) local polar coordinates. Using the previous considerations we can deduce
the following lemma, to be used later on.

Lemma 2.1. There exists a number r′ (depending only on the dimensionless pa-
rameter λ) having the following property. Consider two points, say x0 and x in
R2, such that ‖x0 − x‖ < r′, where the contact point is x0 at t = 0. Consider also
an arbitrary σ̄ = (θ̄, ϕ̄, ψ̄) (which implies an arbitrary initial orientation of the ball
(θ̄, ϕ̄)). Then there exists (t, s), with t ≥ 0, such that xs(x0, t) = x. The time t ≥ 0
is uniquely determined while s is determined modulo 2π, and, moreover, there exists
a universal constant K1 (depending only on λ) such that t ≤ K1‖x− x0‖.
Remark. A study of the conditions under which P : R2 → R2 is a C∞ diffeomor-
phism is interesting for solving certain global control problems, and it is planned
for a future paper.

Rolling and reorientations. If one knows the trajectory x(t), t ∈ [0, T ] that the
ball describes on the plate then its orientation A(t) ∈ SO(3) is uniquely determined,
given an initial orientation A(0). In fact, it is known that this can be seen as a
horizontal lift with respect to a principal connection on a principal bundle R2 ×
SO(3) → R2, with structure group SO(3), see for instance [6]. Then, if x(t) is
reparametrized, for example by rescaling time, then A(t) becomes reparametrized
in the same way. Note that the reorientation would not be uniquely determined if
the ball were allowed to spin around its vertical axis.

The rotation A(t) represents the transformation taking an orthonormal frame
fixed on the ball to its position at time t, as in the description of the model at the
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beginning of this work. Therefore, if [a, b] ⊆ [0, T ], then we define the reorientation
along the partial path x(t), t ∈ [a, b] as A(b)A(a)−1.

We now state the problem concerning the impulsive control of the symmetric
ball, and show an approach to its solution, and also how this could be implemented
using a computer.

Statement of the problem. Given the initial position (x0, A0) of the ball and a
smooth trajectory p(τ) on the plate, τ ∈ [0, T ], with p(τ0) = x0, find a sequence
of energy-preserving instantaneous impulses (so, in a sense, they will behave like
elastic collisions) to be applied on the ball, such that the resulting trajectory ap-
proximates p(τ). This approximation is to be understood not with respect to p(τ)
as a parametrized curve, but with respect to its image as a geometric curve on
the lower plate. Also, estimate the difference between the final orientations of the
ball corresponding to rolling along the planned trajectory p(τ) and along the actual
trajectory resulting from the impulses.

A more general problem can be posed and solved in the case where p(τ) is only
piecewise smooth, by approximating each one of the smooth portions.

Remark. The reorientation of a ball rolling along a path is a purely geometric
outcome of the rolling process, and does not depend on the speed at which it
rolls. Therefore, we will consider only energy-preserving impulses without loss of
generality, since impulses that change the energy of the ball give rise to the same
paths on the plate as energy-preserving ones. This means that energy-changing
impulses do not allow additional control strategies that are better in terms of the
final reorientation. However, from the engineering point of view it might be useful
to consider such impulses, for example, for slowing the ball down before making a
sharp turn. This can be done by introducing impulses that change ‖ω‖ without
changing the direction of ω. This kind of impulses can be introduced freely in
between the impulses of the computed energy-preserving control strategy, without
affecting the final reorientation. Using a similar argument, we can show that the
initial speed of the ball is not relevant for the reorientation problem.

2.2. Example: The isoparallel problem for the rolling ball. Take two points
x0 and x1 on the lower plate, a smooth trajectory x(t), t ∈ [t0, t1], joining them,
and assume, for simplicity, that A(t0) = I. As the ball rolls along the trajectory it
undergoes a certain rotation A(t) ∈ SO(3), see Figure 5. The isoparallel problem
for the rolling ball consists in finding the shortest smooth trajectory among those
that induce the same final given reorientation A(t1) of the ball and join the same
points on the lower plate, see [1, 10, 19]. This problem provides a setting where the
impulsive control problem fits nicely and arises as a natural question, more precisely,
we are interested in approximating the trajectory solution to the isoparallel problem
by a sequence of impulses.

Using methods of geometric control theory [6, 10, 19], one obtains that such
trajectories x(t) satisfy

v̇ = (e3 × ẋ)× v
ẍ = v3e3 × ẋ,

where v = v1e1 + v2e2 + v3e3 is a Lagrange multiplier.

Remark. A delicate mathematical question that typically appears in this kind of
control problems is that of rigidity. For example, the straight trajectories x(t) are
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e1

e2

e3
A(t1)

x(t)

Figure 5. Following a trajectory x(t) induces a rotation of an
orthonormal frame fixed on the ball.

x(t)
ẋ(t)

θ

θ

θ̈ = −ω2
0 sin θ

ẋ = R (cos θ, sin θ)

R ≡ ‖ẋ(t)‖ = constant

Figure 6. The velocity vector in the isoparallel problem behaves
like a nonlinear pendulum. Here ω0 = g/R, where R and g are the
length and the acceleration of gravity for the pendulum system,
respectively.

C1-rigid [4]. This means that they cannot be deformed as a C1 curve while main-
taining the same endpoints x0, x1, and final reorientation A(t1). However, there are
Sobolev-class H1 deformations satisfying these conditions. It can be proven that
this kind of question is of no consequences for the problem treated in the present
work.

The rolling ball and the pendulum. There is an interesting relationship be-
tween the plate-ball isoparallel problem and the dynamics of a simple nonlinear
pendulum. The slope of the curve described by the contact point on the lower plate
behaves exactly as the angle of a pendulum, see [1, 6] and Figure 6. In addition,
‖ẋ‖ is a constant of the motion. Elliptic functions could therefore be employed to
find the solutions.

Computation of the optimal trajectories. The isoparallel problem is a bound-
ary value problem where the boundary conditions are (x0, A0), (x1, A1) in R2 ×
SO(3). Let us take A0 = I for simplicity, without loss of generality. Suppose that
we have an optimal trajectory x̄(t) satisfying x̄(0) = x0 that reaches a certain point
x̄1 on the circle with radius ‖x1 − x0‖ centered at x0, and denote the resulting
reorientation of the ball by A. Let B ∈ SO(3) be the rotation of the space around
the vertical axis through x0 that takes x̄1 into x1. Since the equations for the op-
timal curves are invariant under rotations in the plane, the trajectory obtained by
applying this rotation to x̄(t) will reach x1 with a resulting rotation of BAB−1.
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Figure 7. Approximating a solution to the isoparallel problem.
The ball goes from (0, 0) to (3, 3), and the resulting rotation is the
identity. The dashed line is the optimal curve, and the continuous
one is an approximation using impulsive control and a coarse par-
tition.

Therefore, a candidate trajectory can be tested by letting it run until it reaches the
circle, calculating B and comparing BAB−1 to the desired A1 (using, for example,
Euler angles appropriately). This gives a strategy to solve the optimal control prob-
lem, by iteration. One should take into account that, using the analogy with the
pendulum, there are three parameters to adjust: R (which affects the scaling of the
trajectory), the energy of the pendulum, and the initial phase. The value of ω0 can
be normalized using a rescaling of time, which does not affect the resulting rotation
(see [6] for further details). In any case, solving very efficiently the optimal control
problem from the numerical point of view is not the purpose of the present paper.

2.3. Control strategy. Let p(τ), τ ∈ [0, T ] be the planned trajectory, which we
assume is a smooth curve, meaning that there exists a smooth extension of p to an
open interval (−ε, T + ε). A partition P is defined by a selection of n + 1 values
0 = τ0 < τ1 < . . . < τn = T , which determines n portions of the planned path.
We define two norms of P, namely, ‖P‖p, which is the maximum of the numbers
‖p(τk) − p(τk+1)‖, k = 0, . . . , n − 1, and ‖P‖[0,T ], which is the maximum of the
numbers τk+1 − τk, k = 0, . . . , n− 1.

Given the state of the ball at time τ0, which is described by θ0, ϕ0, ψ0, and the
position p(τ0) of the contact point, we need to join p(τ0) and p(τ1) using a method
that we will explain shortly. We do this repeatedly to join p(τk) and p(τk+1),
k = 1, . . . , n − 1, where the initial values θk, ϕk, ψk, p(τk), k = 1, . . . , n − 1, for
each step follow from the previous one. By refining the partition, one obtains an
arbitrarily close impulsive control approximation to the planned trajectory.
Figure 7 shows an approximation to a solution of the isoparallel problem.

Joining consecutive points in the partition. Let (θ0, ϕ0, ψ0) be an initial con-
dition, which determines the energy µ, and consider the points p(τk) and p(τk+1),
k = 0, . . . , n−1. First, we need to find (∆ψ)0 such that the solution (θ(t), ϕ(t), ψ(t))
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with initial conditions (θ0, ϕ0, ψ0 + (∆ψ)0) is such that it induces, by rolling, a tra-
jectory x(t), t ∈ [t0, t1] starting from x(t0) = p(τ0) and reaching x(t1) = p(τ1) for
some t1 > t0. We have proven that this is possible in a unique way, with an energy-
preserving trajectory, if the norm ‖P‖p of the partition is less than the number
r′ determined in the paragraph Joining two close points of subsection 2.1, which
we will assume from now on. In a similar way, we want to introduce an impul-
sive change (∆ψ)k when the ball reaches the point p(τk), k = 0, . . . , n − 1. More
precisely, one assumes that, at the point of contact p(τk), the ball is rolling with
angular velocity ωk and (θ(τk), ϕ(τk), ψk) is known, which determines its energy µ.
An appropriate energy-preserving impulse is applied using for instance the plate
ball system mechanism, which takes the value of ψk to ψk + (∆ψ)k. Then the mo-
tion with the new initial conditions (θ(τk), ϕ(τk), ψk + (∆ψ)k) is determined by the
equations of motion, and we want to choose (∆ψ)k in such a way that, at a certain
moment tk+1 to be determined, the point of contact reaches p(τk+1). We also want
to calculate the final values of all the variables.

Remark. In the present paper we are not interested in showing how to find (∆ψ)k
such that the motion with initial condition (θ(τk), ϕ(τk), ψk), p(τk) reaches the
contact point p(τk+1) after a certain time tk+1 − tk to be determined has elapsed,
for points p(τk) and p(τk+1) such that ‖p(τk) − p(τk+1)‖ is large. This is because
our control strategy is of a local character and requires only solving the problem of
finding impulsive control approximations where the norm of the partition tends to
zero.

However, the previous simple global impulsive control problem for the plate ball
system for distant points p(τk) and p(τk+1), can still be approached with the tech-
niques described in this paper. A more extensive treatment of this and other global
control problems should be the purpose of future work. Here is the idea of how
to calculate (∆ψ)k for distant points p(τk) and p(τk+1), using standard software
packages. We take advantage of the fact that the motion x(t) is the superposition
of a periodic motion and a uniform translation. Because of this, we approach the
problem by assuming first a uniform motion in the direction of the destination point.
The instantaneous change in the direction of the uniform motion is our initial guess
for (∆ψ)k (if the previous direction is not known, it is computed using a single
period and (∆ψ)k = 0). Then we solve the ODE with the new initial conditions
and find the distance from the solution curve to p(τk+1). We take advantage of
the periodicity of the solutions when trying to reach distant points, since we can
compute just one period and then repeat it until the trajectory passes near p(τk+1).
The value of (∆ψ)k is then adjusted by using, for example, MATLABr’s fsolve,
until the distance is zero within tolerance. See Figure 8 for examples.

Convergence. Let us now study the convergence of the method as the partition
is refined. We are going to study an arbitrarily close impulsive approximation to
a given smooth planned trajectory p(τ) on the plate and its resulting approximate
reorientation, and we will estimate the difference.

Lemma 2.2. Consider a family of curves Cν on R2, for ν ∈ [0, 1], each curve given
by xν(τ), τ ∈ [a, b]. We assume that xν(τ) is smooth in both ν and τ , and that the
endpoints are fixed with respect to ν. Regard each Cν as a curve on R3 with null
third component as in the description of the model. Let Rν(τ) ∈ SO(3), τ ∈ [a, b]
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ψ0 + ∆ψ ≈ 1.62

ψ0 + ∆ψ ≈ 2.00

ψ0 + ∆ψ ≈ 2.31

ψ0 + ∆ψ ≈ 2.53

Figure 8. Reaching points by taking different values of (∆ψ)k.
Here µ = 1, λ = 2, θ0 = −π/3, ϕ0 = π/2, ψ0 = 0.

be the reorientation that results from rolling the ball along Cν from a to τ . Then
ν 7→ Rν(b) is a curve on SO(3) with velocity vector dRν(b)/dν = ξνRν(b), where

ξν =

∫ b

a

(Rν(τ))−1

(
∂xν(τ)

∂ν
× ∂xν(τ)

∂τ

)
dτ

is in the Lie algebra so(3) ≡ R3 of SO(3).

Idea of the proof. One can regard the reorientation as being the holonomy of a curve
with respect to a certain principal connection [6]. The integrand is essentially the
curvature of the connection, and the formula for ξν is a classical result for the
derivative of the holonomy of a curve [10].

Notation. We are going to accept a slight abuse of notation, namely, for a, b ∈ R,
a < b, the interval [a, b] will be sometimes denoted [b, a].

Lemma 2.3. Let p(τ), τ ∈ [0, T ] be a smooth curve in R2. For each a, b ∈ [0, T ],
let pa,b(τ), τ ∈ [a, b], be the segment joining p(a) and p(b), that is,

pa,b(τ) = p(a) +
(τ − a)

b− a (p(b)− p(a)) .

Then there exists a constant Kp such that for all a, b ∈ [0, T ], the distance between
the curve and the segment satisfies ‖p(τ)− pa,b(τ)‖ ≤ Kp‖b− a‖2, for all τ ∈ [a, b].

Proof. Let p(a) + ṗ(a)(τ − a) + c(τ)(τ − τk)2 be the Taylor expansion of p(τ) at a.
Then there exists a constant Kp > 0 such that ‖c(τ)‖ ≤ Kp/2, for all τ, a ∈ [0, T ].
Then the following inequality can be proven in a straightforward way for all τ ∈
[a, b],

‖p(τ)− pa,b(τ)‖ = ‖ − (τ − a)c(b)(b− a) + c(τ)(τ − a)2‖ ≤ Kp‖b− a‖2.
Lemma 2.4. Assume the conditions and notation of lemma 2.3. Consider the
family of curves pν(τ) = p(τ) + ν(pa,b(τ) − p(τ)), representing a deformation of
the straight segment pa,b(τ) joining p(a) and p(b) into the portion of p(τ) between
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p(a)
p(b) p(a)

p(b)

Figure 9. The enclosed area tends to zero like ‖p(a)− p(b)‖2 on
the left, but like ‖p(a)− p(b)‖3 on the right.

the points p(a) and p(b). In particular, p0(τ) = p(τ) and p1(τ) = pa,b(τ), for
τ ∈ [a, b]. If Rν(τ) represents the reorientation of the ball as it rolls along pν(τ),
then using the operator norm for matrices we have ‖R1(b)−R0(b)‖ ≤ K̄p‖b− a‖3,
where K̄p = KpM

′
p, with M ′p = max(τ,ν)∈[0,T ]×[0,1] ‖∂pν(τ)/∂τ‖.

Proof. From lemma 2.2 we have

‖R1(b)−R0(b)‖ ≤
∥∥∥∥∫ 1

0

ξν dν

∥∥∥∥ ≤ ∫ 1

0

∫ b

a

∥∥∥∥(Rν(τ))−1

(
∂pν(τ)

∂ν
× ∂pν(τ)

∂τ

)∥∥∥∥ dτ dν
≤
∫ 1

0

∫ b

a

∥∥∥∥∂pν(τ)

∂ν
× ∂pν(τ)

∂τ

∥∥∥∥ dτ dν ≤ ∫ 1

0

∫ b

a

∥∥∥∥∂pν(τ)

∂ν

∥∥∥∥∥∥∥∥∂pν(τ)

∂τ

∥∥∥∥ dτ dν.
The proof can be finished in a straightforward way taking into account the fact that
∂xν(τ)/∂ν = pa,b(τ)− p(τ) and using lemma 2.3.

Corollary 1. If ∂pν(τ)/∂τ is nowhere zero for all (τ, ν) ∈ [0, T ]× [0, 1] then there
are constants Cp > 0, cp > 0 such that cp‖P‖p < ‖P‖[0,T ] < Cp‖P‖p. Then, under

the hypotheses of lemma 2.4, the inequality ‖R1(b)−R0(b)‖ ≤ K̄pCp‖p(b)− p(a)‖3
holds.

Remark. (a) It is clear that the reorientation R(τ) along a given path p(τ) does
not depend on the parametrization of the path.

(b) There is an interesting geometric idea behind lemma 2.4. The integral∫ 1

0

∫ b

a

∥∥∥∥∂pν(τ)

∂ν
× ∂pν(τ)

∂τ

∥∥∥∥ dτ dν
represents the area swept by the curve pν(τ), τ ∈ [a, b] as ν varies from 0 to
1 (possibly counting some regions more than once, if pν(τ) sweeps those regions
several times). In fact, the integrand represents the absolute value of the Jacobian
determinant of the map [a, b] × [0, 1] 7→ R2 given by (τ, ν) 7→ pν(τ). On the other
hand, since p̈(τ) is bounded on [a, b] one can conclude, by an elementary geometric
argument, at least in the case in which the map [a, b]× [0, 1] 7→ R2 is injective and
the Jacobian determinant is nonzero (except at most in a subset of measure zero)
and besides ṗ(τ) is nowhere zero, τ ∈ [a, b], that this area is bounded by a constant
times ‖p(a)−p(b)‖3. The idea behind the proof (which we do not think necessary to
give here in detail) is depicted in Figure 9. In the diagram on the left, which shows
a nonsmooth planned trajectory, the enclosed area tends to zero like ‖p(a)− p(b)‖2
as p(a) and p(b) move towards the vertex. However, for the one on the right, it
tends to zero like ‖p(a)− p(b)‖3 as p(a) and p(b) move closer.

(c) We remark that lemma 2.4 can be applied to two cases that are of interest
for this paper. Namely, to the trajectories described by the ball on the horizontal
plate, rolling freely according to the equations of motion, and to the solutions to
the isoparallel problem, since they are smooth.
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Main results. Given a smooth trajectory p(τ), τ ∈ [0, T ] let us choose a partition
P given by the selection of 0 = τ0 < τ1 < · · · < τn = T , which determines n portions
of the trajectory. Now let A(τ) ∈ SO(3) be the orientation of the ball at the value τ
of the parameter when rolling along p(τ), and let Āk, k = 0, . . . , n, be the orientation
of the ball at the points p(τk) when rolling along the polyline formed by the straight
segments joining the endpoints of the portions of P. For instance, at the starting
point p(τ0) the orientation is Ā0, which we can assume to have some initial error
with respect to A(τ0). After rolling along the straight segment from p(τ0) to p(τ1),
the orientation will be Ā1, and so on. Let Rk = A(τk)A(τk−1)−1, k = 1, . . . , n, be
the reorientation corresponding to the portion of the planned trajectory between
τk−1 and τk, and let Sk = ĀkĀ

−1
k−1 be the reorientation corresponding to the straight

segment joining the endpoints of that portion. The following two theorems are our
main results concerning convergence.

Theorem 2.5. In the notation above, the error in the final orientation at time T ,
assuming an initial error ‖A(0)− Ā0‖, is bounded as follows

‖A(T )− Ān‖ ≤ ‖A(0)− Ā0‖+ K̄p

(
‖τ0 − τ1‖3 + · · ·+ ‖τn−1 − τn‖3

)
.

Proof. It is easy to show that if A ∈ SO(3) and X is a 3× 3 matrix, then ‖AX‖ =
‖X‖ = ‖XA‖. At time τk we have

‖A(τk)−Āk‖ = ‖RkA(τk−1)− SkĀk−1‖ = ‖A(τk−1)Ā−1
k−1 −R−1

k Sk‖
≤ ‖A(τk−1)Ā−1

k−1 − I‖+ ‖I−R−1
k Sk‖ = ‖A(τk−1)− Āk−1‖+ ‖Rk − Sk‖.

By lemma 2.4 we know that ‖Rk − Sk‖ ≤ K̄p‖τk − τk−1‖3, for all k = 1, . . . , n, so
the lemma follows inductively.

Corollary 2. Since ‖τk − τk−1‖ ≤ ‖P‖[0,T ] theorem 2.5 gives ‖A(T ) − Ān‖ ≤
‖A(0)−Ā0‖+K̄pn‖P‖3[0,T ]. If the partition P divides the interval [0, T ] in intervals

of equal size T /n = ‖P‖[0,T ] then ‖A(T )− Ān‖ ≤ ‖A(0)− Ā0‖+ K̄pT 3/n2.

The argument above compares the errors in reorientation between the planned
path and a polyline joining selected points in the path via straight line segments.

For the next theorem we are going to work with partitions P such that ‖P‖p <
r′, where r′ is defined in lemma 2.1. For such a partition we can consider three
trajectories that pass through the points involved in it: the planned trajectory p,
the polyline, and some trajectory arising from the free dynamical behavior of the ball
between the consecutive impulses, that is, an impulsive control approximation of the
planned path. As we know, such an impulsive control approximation is composed
of the pieces xsk(p(τk), t), t ∈ [tk, tk+1]. Recall that Sk+1 is the reorientation of
the ball resulting from rolling along the segment joining p(τk) and p(τk+1), this
time parametrized with t ∈ [tk, tk+1], which, as we know, does not change the

reorientation. Denote by R̃k+1 the reorientation resulting from rolling along the

path xsk(p(τk), t), t ∈ [tk, tk+1]. Then, by theorem 2.5, we obtain ‖Sk+1− R̃k+1‖ ≤
K̃‖tk+1 − tk‖3, where K̃ is a constant depending only on the physical parameter λ
and the chosen value of µ, which can be calculated using lemmas 2.3 and 2.4 in a
similar way as we did with K̄p. Namely, we know that the function c(t, s) calculated

in (2.1) satisfies ‖c(t, s)‖ ≤ K(1,0), so K̃ = 2K(1,0)M
′, where M ′ is calculated in a

similar way as we did with M ′p. Using this and an argument similar to the proof of
theorem 2.5 we have

‖Ā− Ãn‖ ≤ ‖Ā0 − Ã0‖+ K̃
(
‖t0 − t1‖3 + · · ·+ ‖tn−1 − tn‖3

)
. (29)
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Using lemma 2.1 and (29) and taking into account that ‖p(τk) − p(τk+1)‖ < r′,
we obtain

‖Ā− Ãn‖ ≤ ‖Ā0 − Ã0‖+ K̃K1
(
‖p(τ0)− p(τ1)‖3 + · · ·+ ‖p(τn−1)− p(τn)‖3

)
.

Using the Taylor expansion of p(τ) to order 1 one can see that there is a constant,
say Dp, depending on p, such that ‖p(τk) − p(τk+1)‖ ≤ Dp‖τk − τk+1‖, for k =

0, . . . , n− 1. Let K̃p = K̃K1Dp, then we deduce that

‖Ā− Ãn‖ ≤ ‖Ā0 − Ã0‖+ K̃p

(
‖τ0 − τ1‖3 + · · ·+ ‖τn−1 − τn‖3

)
.

From this, taking into account that ‖A(T )− Ãn‖ ≤ ‖A(T )− Ān‖+ ‖Ān − Ãn‖,
we obtain the following theorem.

Theorem 2.6. Let p(τ), τ ∈ [0, T ], be a given smooth path and let P be a given
partition 0 = τ0 < τ1 < . . . < τn = T such that ‖P‖p ≤ r′, with r′ as in lemma 2.1.
Consider the impulsive control approximation consisting of impulses given at the
points p(τk), k = 0, . . . , n − 1, and let Ãk be the orientation of the ball at the
point p(τk), k = 0, . . . , n, when rolling along the trajectory resulting from these
impulses. Then the error in the final orientation at value T , assuming an initial
error ‖A(0)− Ã0‖ at value τ0, is

‖A(T )− Ãn‖ ≤ ‖A(0)− Ã0‖+ (K̄p + K̃p)
(
‖τ0 − τ1‖3 + · · ·+ ‖τn−1 − τn‖3

)
.

We can also deduce the following corollary, which generalizes corollary 2.

Corollary 3. Since ‖τk− τk−1‖ ≤ ‖P‖[0,T ] we have ‖A(T )− Ãn‖ ≤ ‖A(0)− Ã0‖+(
K̄p + K̃p

)
n‖P‖3[0,T ]. If the partition P divides the interval [0, T ] in intervals of

equal size T /n = ‖P‖[0,T ] then ‖A(T )− Ãn‖ ≤ ‖A(0)− Ã0‖+
(
K̄p + K̃p

)
T 3/n2.

We should mention here, among others, two other articles regarding the control
of the rolling ball, but these consider a continuous (non-impulsive) control. In
addition, the dynamics of the ball does not play a role. A trajectory with exact
reorientation is constructed in [15]. Also, [20] develops a robust planner, using
certain maneuvers. However, in the case of the isoparalell problem, one of our goals
is staying close to the optimal curve, precisely because its length is a minimum
(or extremum) in the set of smooth curves, and the curves in these works do not
guarantee this.

3. Conclusions and final remarks. We have demonstrated that the position of
a heavy symmetric ball rolling without sliding or spinning can be controlled by
impulsive forces, which can be chosen to preserve the kinetic energy of the ball.
This gives a graspless accurate control of the system. We have also shown how,
for a given planned trajectory, by choosing a partition P such that ‖P‖[0,T ] is
small enough, one can obtain an arbitrarily close impulsive control approximation
to it. For doing this, we have used an accurate description of the dynamics of the
ball as a nonholonomic system established in a previous work. More precisely, we
have proven that the final error in the reorientation of the ball tends to zero as
the partition is refined. In particular, if the intervals of the partition are, for each
partition, of the same size, T /n, it is O(1/n2), where n is the number of portions
in which the planned path is partitioned. This is an estimation of the error of the
speed of convergence of the method, without taking into account certain errors that
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would appear in a more realistic model, and that may lead to a slower convergence,
roughly of order 1/n. Studying this kind of errors is the purpose of a future work.

We remark that the problem of designing a single impulse for joining two given
contact points on the plate, for instance two points of the partition of the planned
trajectory, is relatively easy if the ball is homogeneous. This is in part because,
in this case, the dynamical trajectory is a straight line joining the two points.
However, it is more difficult and requires an accurate knowledge of the dynamics
of the system if the ball has a nonhomogeneous mass distribution. For the case
of a symmetric ball, studied in this paper, the dynamics is given by explicit and
simple formulas. The dynamics for a general nonhomogeneous ball would be more
complex, but questions similar to the ones treated in this paper can be approached
and solved, numerically.

The control problem that we have considered involves the dynamics of the system
in an essential way, and not only the geometric aspects. In this sense, it differs from
the usual plate-ball problem with a massless ball. The latter appears, for instance, in
[9], which includes a detailed study of theoretical and numerical solutions and their
stability. Basically, the difference consists in that, in our problem, the trajectory
of the system between two consecutive impulses cannot be chosen at will as in the
case of the massless ball, but it is the natural trajectory dictated by the dynamical
laws.

Now we would like to comment briefly on the continuous, as opposed to impulsive,
control of our system. Let us consider a massless ball, then one can roll the ball
along a path p(τ), using for instance the plate-ball mechanism. The impulsive
control, however, does not make any sense, since it involves the dynamics of the
ball. In any case ω(τ) can be calculated readily. Now assuming that the ball has an
arbitrary distribution of mass, and that τ = t represents the physical time, then the
determination of the force to be applied to the upper plate of the plate-ball system
at the instant of time t to keep the ball rolling along p(t), is given by standard
formulas in mechanics, involving the values, at time t, of the position of the center
of mass, the inertia tensor and ω(t). This will be the continuous control of the heavy
ball, at least from the perspective of this paper. There is no error of the method
in this kind of continuous control. However, analyzing basic questions about the
errors in more realistic models could be more difficult than in the impulsive control
approach. For example, designing and implementing a robot arm controlling a
heavy rolling ball in a continuous fashion could be more complex and costly than
designing a control system by impulses that do not transfer energy to the ball.

Acknowledgments. We thank the referee for his helpful suggestions and for pro-
viding us the simpler proof of formula (3), above the remark.

Appendix. Solutions to the dynamics. For the following computations, we
assume µ = 1. For arbitrary µ > 0, the solutions are reparametrizations of the ones
shown here. By integrating the equations of the planar system (22)–(23) we get the
family of solutions

θ(t) = arctan

(√
1 + (c1 sin t− c2 cos t)2

c1 cos t+ c2 sin t

)
(30)

w(t) = − arctan(c1 sin t− c2 cos t). (31)
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Now we will find two constants of motion c and d, by finding functions such
that the solutions lie on their level sets. Equation (24) can be easily integrated by
separable variables, which yields

θ(w) = arcsin
( c

cosw

)
,

so the solutions of the system must lie on the level surface

sin θ cosw = c. (32)

In order to get another level set for the solutions we first define

C1(t) = c1 sin t− c2 cos t, C2(t) = c1 cos t+ c2 sin t.

Note that c̄ =
√

1 + C2
1 (t) + C2

2 (t) =
√

1 + c21 + c22 is a constant. From (30)–(31)
we can write

tan θ =

√
1 + C2

1 (t)

C2(t)
, cos2 w =

1

1 + C2
1 (t)

,

and

sin2 θ =
1 + C2

1 (t)

c̄2
, cos2 θ =

C2
2 (t)

c̄2
.

Considering that

a =

√
1

λ sin2 θ + cos2 θ
,

we get its expression in terms of C1(t),

a = c̄

√
1

(λ− 1)(1 + C2
1 (t)) + c̄2

.

We can write

ϕ̇ = −a cot θ cosw

= −c̄
√

1

(λ− 1)(1 + C2
1 (t)) + c̄2

C2(t)

1 + C2
1 (t)

= −c̄
√

1

(λ− 1)(1 + C2
1 (t)) + c̄2

C ′1(t)

1 + C2
1 (t)

and integrate; in fact, if we call x = C1(t), we get

ϕ = −c̄
∫ √

1

(λ− 1)(1 + x2) + c̄2
dx

1 + x2
= −c̄

∫ √
1

(λ− 1)(1 + tan2 u) + c̄2
du,

with the substitution x = tanu for the second integral. Considering that 1+tan2 u =
1/(cos2 u), this yields

ϕ = −c̄
∫ √

cos2 u

(λ− 1) + c̄2 − c̄2 sin2 u
du = −c̄

∫ √
1

(λ− 1) + c̄2 − c̄2v dv,

by writing sinu = v. Finally, if we call c̄v = z, then

ϕ =

∫ √
1

m2 − z2
dz = arcsin

( z
m

)
+ d,

where m2 = λ− 1 + c̄2. By some simple calculations we get

− sin (ϕ− d) =
c̄ sinw

m
. (33)
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Since cos2 w = 1/(1 + C2
1 (t)) and sin2 θ = (1 + C2

1 (t))/c̄2 we get

sin θ cosw =
1

c̄
= c,

which gives a relationship between c and c̄. We can rewrite (33) as√
(λ− 1)c2 + 1 sin (ϕ− d) + sinw = 0. (34)

Then the solutions must satisfy (32) and (34).
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