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Abstract: The control of spoilage yeasts in wines is crucial to avoid organoleptic deviations in wine 
production. Traditionally, sulfur dioxide (SO2) was used to control them; nevertheless, SO2 influ-
ence on human health and its use is criticized. Biocontrol emerges as an alternative in wine 
pre-fermentation, but there is limited development in its applicability. Managing kinetics is rele-
vant in the microbial interaction process. pH was identified as a factor affecting the interaction ki-
netics of Wickerhamomyces anomalus killer biocontrol on Zygosaccharomyces rouxii. Mathematical 
modeling allows insight into offline parameters and the influence of physicochemical factors in the 
environment. Incorporating submodels that explain manipulable factors (pH), the process can be 
optimized to achieve the best-desired outcomes. The aim of this study was to model and optimize, 
using a constant and a variable pH profile, the interaction of killer biocontrol W. anomalus vs. Z. 
rouxii to reduce the spoilage population in pre-fermentation. The evaluated biocontrol was W. 
anomalus against the spoilage yeast Z. rouxii in wines. The kinetic interactions of yeasts were stud-
ied at different pH levels maintained constant over time. The improved Ramón-Portugal model 
was adopted using the AMIGO2 toolbox for Matlab. A static optimization of a constant pH profile 
was performed using the Monte Carlo method, and a dynamic optimization was carried out using 
a method based on Fourier series and orthogonal polynomials. The model fit with an adjusted R2 of 
0.76. Parametric analyses were consistent with the model behavior. Variable vs. constant optimiza-
tion achieved a lower initial spoilage population peak (99% less) and reached a lower final popu-
lation (99% less) in a reduced time (100 vs. 140 h). These findings reveal that control with a variable 
profile would allow an early sequential inoculation of S. cerevisiae. The models explained parame-
ters that are difficult to quantify, such as general inhibitor concentration and toxin concentration. 
Also, the models indicate higher biocontrol efficiency parameters, such as toxin emission or sensi-
tivity to it, and lower fitness of the contaminant, at pH levels above 3.7 during biocontrol. From a 
technological standpoint, the study highlights the importance of handling variable profiles in the 
controller associated with the pH management actuators in the process without incurring addi-
tional costs. 
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1. Introduction 
Wine is the result of grape must fermentation, mainly carried out by S. cerevisiae [1]. 

However, at the beginning (pre-fermentative stage), various yeast species coexist, origi-
nating from the grape surface and winery elements, among others [2]. Among them, 
spoilage yeast strains develop, affecting the organoleptic characteristics of the wine; one 
of them is Zygosaccharomyces rouxii [3]. Due to the economic significance of this industry 
in the region and several economies worldwide, these microbiological contaminations 
cause substantial economic losses and must be addressed [1–3]. For its control, tradi-
tionally, SO2 has been used. However, its use is not desired by consumers who prefer more 
natural products [4], nor by international organizations such as the International Organiza-
tion of Vine and Wine “OIV” or the World Health Organization “WHO”, which seek to re-
duce it due to its toxicity to human health [5–7]. Moreover, regional wines (warm climate 
areas) often have a high pH [8] and this fact causes the total SO2 to lose its molecular SO2 
(microbial inhibitor) condition from 6% at pH 3 to 0.6% at pH 4 [9]. Ultimately, this com-
pound is inefficient in controlling Z. rouxii [4] and its use must be reconsidered. 

Biocontrol has been cited as an alternative for a long time in different areas [10] and 
continues to be relevant today [11], with the aim of reducing the use of SO2 in wines [12–
14]. However, most studies focus on yeast selection and/or biocontrol mechanisms, and 
there is limited information on their application, especially in more real environments 
[15]. Biocontrol occurs due to the interaction of microorganisms; in this case, it is desired 
to take place in a pre-fermentation stage, as it is expected that Saccharomyces cerevisiae 
(through sequential inoculation), with its ethanol production, will conclude the biocon-
trol process against weakened spoilage yeasts [16]. A problem related to the applicability 
and realism of the must wine, as initially named, is the complexity of the involved yeast 
populations and their interactions. However, in order to advance the study of the inter-
actions in the pre-fermentation must, it is relevant to abstract this to an individual inter-
action kinetic behavior (two populations). Specifically, an interaction previously studied 
by us involves Wickerhamomyces anomalus and Z. rouxii. The former was selected for its 
positive oenological attributes but primarily for its wide spectrum of action against the 
strains of Z. rouxii and Brettanomyces bruxellensis (two of the major contaminants of musts 
and wines). This interaction, based on our investigations, is a case of amensalism (killer) 
[17]. This type of interaction involves two simultaneous characteristics, competition for 
the medium and the emission of the toxin (amensalism) [15]. Therefore, unlike adding 
SO2, the kinetics of the interaction is highly relevant, as the inhibitory molecule must be 
produced in the medium during the development of both populations [16].  

In order to analyze the relative importance of competition and amensalism, and due 
to the complexity of quantifying certain metabolites, a model-based approach is a rele-
vant alternative to elucidate these underlying mechanisms of interaction [17]. Mathe-
matical models can describe the most relevant mechanisms of a biological system, i.e., the 
growth kinetics and the formation of products such as the toxin itself [16]. Additionally, 
based on our background in fixed-time (static) statistical screenings and the optimiza-
tions of the interaction in a liquid medium, it was determined that pH was a significant 
factor and some optimal working conditions were obtained [18]. pH affects fitness and 
individual population kinetics [2,19] and interaction kinetics (competence) through toxin 
emission (amensalism) [18,20]. As mentioned, pH in winemaking initially differs in grape 
musts from warm regions, where it tends to be high (average pH: 3.8, reaching 4.4) [8,21]. 
On the other hand, pH can be manipulated, and is a common practice, through acidifica-
tion by adding organic acids [9] or deacidification by adding salts or electro-dialysis with ion 
exchange resins [22]. Evaluating models under different physicochemical conditions (e.g., 
pH) highlights parametric changes. This allows for the creation of secondary models and the 
possibility of generating predictions under unexplored conditions [23,24]. These unexplored 
conditions may predict better biocontrol interaction performance through the optimization of 
different desirability functions (maximizing biocontrol population, minimizing spoilage 
yeast population, maximizing amensalism, and maximizing competition) [25]. 
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Traditional process optimization involves generating a response surface from a set 
of experiments maintaining constant operating conditions to find the optimal condition 
that meets a specific objective function [25]. However, in many systems, the optimal 
conditions change over time, and biological systems are no exception to this reality. In the 
case of the killer toxin, it is estimated to be produced mainly during the exponential 
phase [20]. On the other hand, certain conditions and manipulable variables such as pH, 
in processes like pre-fermentation or fermentation, can be modified over time [26]. Nev-
ertheless, there is little exploration in biotechnology regarding the use of variable profiles 
to improve the objective function [26]. Our research group developed a dynamic opti-
mization technique based on orthogonal polynomials and Fourier series useful in bio-
processes to produce mathematically continuous and differentiable functions and de-
velop smooth profiles for manipulable physicochemical variables, avoiding abrupt 
changes that negatively affect microorganisms [27,28]. These techniques have been uti-
lized by our research group in metabolite production biotechnology related to simple 
microbial populations [29]. However, dynamic optimizations using a variable profile 
(e.g., pH) for interactions in mixed populations and particularly for enological processes 
and their yeast populations have not been found. This goal necessarily requires the de-
velopment of robust mathematical models with submodels that accurately explain 
physicochemical changes. Therefore, the objective of this study is to model mathemati-
cally and optimize, using a constant and a variable pH profile, the biocontrol process of 
the biocontrol yeast W. anomalus against the wine spoilage yeast Z. rouxii, aiming to re-
duce it in the pre-fermentation stages of wine and thus, in the future, by making micro-
bial interactions more complex and understanding them, we can reduce the use of total 
SO2 in musts and wines. 

2. Materials and Methods 
2.1. Microorganisms and Pre-Fermentations 

Two non-Saccharomyces strains from the culture collection of the Institute of Bio-
technology at the Faculty of Engineering of the National University of San Juan were 
used. The strain Wickerhamomyces anomalus “BWa156” was determined as a killer bio-
controller of Zygosaccharomyces rouxii and Brettanomyces bruxellensis in previous assays 
[16]. Moreover, BWa156 was selected due to contributing positive traits to wine and the 
absence of influence on human health in the experiments realized [16]. The strain Z. rouxii 
“BZr6” is a wine’s spoilage yeast [4]. Both strains were molecularly identified by our re-
search group [30]. 

Erlenmeyer flasks of 250 mL were filled with 200 mL of grape must. The sterile grape 
must had a sugar content of 23 °Brix with a 0.1% yeast extract. The pre-inoculum of each 
isolate was made under the same initial conditions but with pH: 3.7, 1% yeast extract, and 
110 rpm overnight. The pre-fermentation biocontroller/spoilage population inoculation 
ratio was 20%:80% (total inoculum 2 × 106 cells/mL) [16]. Three different pH levels were 
tested: 3.2, 3.7, and 4.2 (n = 3), which were maintained constant by adding HCL or NaOH 
1N daily for 225 h at 25 °C. Pre-fermentation samples were plated on Wallerstein Labor-
atory Nutrient (WLN agar), a selective medium (Figure 1), for cell counts at a dilution 
allowing the observation of 50 to 250 colonies for both the strains. In Figure 1, the colony 
differences between both the yeast strains can be observed. At the time of counting, both 
the yeasts were found together on the plates due to having originated from a mixed cul-
ture. In the cases where population differences did not permit simultaneous counting, 
populations were counted from different dilutions of the same sample with the same 
colony expression objective. 
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Figure 1. (a) Wickerhamomyce anomalus “BWa156”; (b) Zygosaccharomyces rouxii “BZr6” in WLN. 

2.2. Model for Amensalism 
As it involves a killer amensalism, the model that best explains the biological be-

havior is the one proposed by Ramón-Portugal et al. [31], later modified in its adaptation 
phase by Pommier et al. [32], and further modified in its stationary phase by our research 
group [16]. 

In this primary model [16], biomass (cells/mL) is segregated into 2 variables: the vi-
able controller yeasts (killer) “𝑋𝑋𝑣𝑣𝑣𝑣” and the viable spoilage yeasts (sensitive) “𝑋𝑋𝑣𝑣𝑣𝑣”. “𝑇𝑇” is 
the killer toxin concentration and “𝐼𝐼“ is a generic inhibitor undefined for both the yeasts 
(ethanol, oxygen, and limiting substrate, among others). The dynamic evolution of each 
of the 6 variables in the model is given by the system. 

𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑣𝑣𝑣𝑣 − 𝑟𝑟𝑑𝑑𝑑𝑑   (1) 

𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑣𝑣𝑣𝑣 − 𝑟𝑟𝑑𝑑𝑑𝑑  (2) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑑𝑑𝑑𝑑  (3) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑑𝑑𝑑𝑑 (4) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑝𝑝𝑝𝑝 − 𝑟𝑟𝑎𝑎𝑎𝑎   (5) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐼𝐼   (6) 

The growth rates “𝑟𝑟𝑣𝑣𝑣𝑣” and “𝑟𝑟𝑣𝑣𝑣𝑣” (cells/h × mL) are related to specific growth rates 
“𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” and “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” (h−1) and are limited by a general inhibition of both yeasts, and they 
can be logistically expressed through deceleration parameters “𝐴𝐴𝑘𝑘” and “𝐴𝐴𝑠𝑠” (L/g) (killer 
and sensitive strain, respectively). 

𝑟𝑟𝑣𝑣𝑣𝑣 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑣𝑣𝑣𝑣(1 − 𝐴𝐴𝑘𝑘𝐼𝐼)  (7) 

𝑟𝑟𝑣𝑣𝑣𝑣 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑣𝑣𝑣𝑣(1 − 𝐴𝐴𝑠𝑠𝐼𝐼) (8) 

The production rate of the general inhibitor “𝐼𝐼” (g/L) is proportional “𝑎𝑎” to the sum 
of the growth rates from both populations. 

𝑟𝑟𝐼𝐼 = 𝑎𝑎(𝑟𝑟𝑣𝑣𝑣𝑣 + 𝑟𝑟𝑣𝑣𝑣𝑣) (9) 

The death rates “𝑟𝑟𝑑𝑑𝑑𝑑” and “𝑟𝑟𝑑𝑑𝑑𝑑” are driven by different forces where the parameters 
“𝜇𝜇𝑑𝑑𝑑𝑑” y “𝜇𝜇𝑑𝑑𝑑𝑑” (h−1) describes the natural death. While the killer population only dies 
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naturally, the sensitive population involves another term including the concentration of 
the toxin “𝑇𝑇” (g/L). The toxicity of the toxin or the sensitivity of the spoilage yeasts is 
defined by the parameter “𝐾𝐾” (L/g × h) describing the influence of the toxin concentration 
over the sensitive population concentration. 

𝑟𝑟𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑑𝑑𝑑𝑑𝑋𝑋𝑣𝑣𝑣𝑣 (10) 

𝑟𝑟𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑑𝑑𝑑𝑑𝑋𝑋𝑣𝑣𝑣𝑣 + 𝐾𝐾𝑋𝑋𝑣𝑣𝑣𝑣𝑇𝑇 (11) 

The toxin production “𝑟𝑟𝑝𝑝𝑝𝑝” is proportional to the killer yeast growth rate “𝛼𝛼” (g × 
mL/L × cells), and the adhesion rate of the toxin to the sensitive population “𝑟𝑟𝑎𝑎𝑎𝑎”, or 
consume, is defined by the parameter “𝑊𝑊” (mL/cells × h), the sensitive population, and 
the toxin concentration. This process is assumed to be instantaneous. 

𝑟𝑟𝑝𝑝𝑝𝑝 =∝ 𝑟𝑟𝑣𝑣𝑣𝑣 (12) 

𝑟𝑟𝑎𝑎𝑎𝑎 = 𝑊𝑊𝑋𝑋𝑣𝑣𝑣𝑣𝑇𝑇 (13) 

Equation (2) belonging to Pommier et al.’s [32] model was modified by Equation (14) 
proposed by our group [16]. This update takes into account the multiplication rates of 
both the populations and the influence on the behavior due to wine static conditions “𝛽𝛽”, 
through an activation function “Heaviside”, where patches of the population with certain 
physicochemical continuity occur [33]. 

𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑣𝑣𝑣𝑣 − 𝑟𝑟𝑑𝑑𝑑𝑑 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (𝜌𝜌) × 𝛽𝛽 (14) 

𝜌𝜌 = (𝑟𝑟𝑣𝑣𝑣𝑣 − 𝑟𝑟𝑣𝑣𝑣𝑣)  (15) 

𝛽𝛽 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

2.3. Theoretical Methods: The Modeling Pipeline 
Modeling was approached from a system identification perspective, which included the 

following steps: the formulation of candidate models, parameter estimation from multiple 
experiments with the same initial conditions (Table 1), and model reduction and selection. 

Table 1. Experiment initial conditions. 

Description Variable Value Unit 
Killer population Xvk 400,000 cells/mL 

Spoilage population Xvs 1,600,000 cells/mL 
Toxin concentration T 0 g/L 

Inhibitor concentration I 0 g/L 
The final time of reaction tf 225 hours 

2.4. Candidate Models Formulation 
Several candidate models were formulated, taking into account the biology of the 

amensalism system (primary model) and different polynomial submodels based on pH. 
The solution of the model depends on the given initial conditions, the process pH, and 
the values of a series of unknown parameters. 

2.5. Parameter Estimation 
The aim is to calculate the unknown parameters, constants related to growth, and 

kinetic parameters that minimize the distance between the data and the model predic-
tions, in other words, the error. One way to minimize it is through an objective function 
that includes the measure of distance using least squares: 
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𝐽𝐽(𝜃𝜃) = � ��𝑦𝑦𝑖𝑖𝑖𝑖[𝜃𝜃] − 𝑦𝑦�𝑖𝑖𝑖𝑖�
𝑇𝑇𝑄𝑄𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖[𝜃𝜃] − 𝑦𝑦�𝑖𝑖𝑖𝑖�

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗=1

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖=1

 (16) 

where “𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒“ is the number of experiments and “𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒“ is the number of observables for 
each experiment. The vectors 𝑦𝑦�𝑖𝑖𝑖𝑖 ∈ 𝑌𝑌�  ⊂ 𝑅𝑅𝑛𝑛𝑖𝑖𝑖𝑖 represent the data samples for each ob-
servable in each experiment, 𝑦𝑦𝑖𝑖𝑖𝑖 ∈ 𝑌𝑌 ⊂ 𝑅𝑅𝑛𝑛𝑖𝑖𝑖𝑖 represent the corresponding model pre-
dictions, 𝜃𝜃 ∈ 𝛩𝛩 ⊂ 𝑅𝑅𝑛𝑛𝜃𝜃 is a vector of unknown parameters, and 𝑄𝑄𝑖𝑖𝑖𝑖 ∈ 𝛺𝛺 ⊂ 𝑅𝑅𝑛𝑛𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 is 
a symmetric matrix of weights. 

2.6. Model Selection and Reduction 
The models were iteratively compared based on their ability to fit the experimental 

data. Since the models with more parameters often have better fits but tend to overfit, 
the number of parameters was also considered. The Akaike Information Criterion (AIC) 
was used for this purpose, aiming to balance parsimony and the relative loss of infor-
mation among the candidate models by penalizing the number of parameters [34]. It is 
defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 = 𝑛𝑛𝑛𝑛 × log �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛

� + 2 𝑛𝑛𝑛𝑛 + 1  (17) 

where “𝑛𝑛𝑛𝑛” is the number of parameters, “𝑛𝑛𝑛𝑛” is the number of data points, and “𝑅𝑅𝑅𝑅𝑅𝑅” is 
the sum of squared residuals. The process started with the most complex candidate 
models, and after fitting the data, the less influential parameters were iteratively elimi-
nated following the AIC strategy. 

The minimum AICM value “AICmin” was used to rescale AIC. The rescaled value ΔM = 
AICM − AICmin was used to measure the models’ merit: the models with ΔM ≤ 2 provide 
substantial support, models with 4 ≤ ΔM ≤ 7 provide considerably less support, and 
models with ΔM > 10 have no support [34]. 

2.7. Numeric Tools 
To automate the modeling process, we used the AMIGO2 toolbox (IIM-CSIC, Vigo, 

Spain) [24]. AMIGO2 is a MATLAB-based tool focused on the identification and optimization 
of parametric models, including sensitivity and identifiability analysis. Software: The 
MathWorks Inc. (Natick, MA, USA) MATLAB version 9.3.0.713579 (R2017b). It provides a 
set of numerical methods for both simulation and optimization. From the available op-
tions, we selected CVODES [35] to solve the model equations and Enhanced Scatter 
Search (eSS) [36] to find the optimal parameter values within a reasonable time frame. 

2.8. Optimization 
2.8.1. Constant pH 

To achieve static optimization, a Monte Carlo algorithm was developed, which is 
widely used in the parametric estimation of nonlinear systems [37,38]. This is a method 
that makes random choices to generate an outcome. This implies that it can provide a 
higher or lower index, subject to probability [39]. Although this random algorithm may 
not find the minimum value, the probability of obtaining such a result is limited. One 
way to reduce this probability is to simply run the algorithm repeatedly (N times), with 
independent random parameter choices in each iteration, theorem 1 [40]. The number of 
simulations (N) is determined by choosing appropriate accuracy ε and confidence δ to 
limit the possibility of getting an undesired answer. Then, Equation (16) is used to cal-
culate the number of iterations. 
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𝑁𝑁 ≥ �
log �1

δ�

log � 1
1 − ε�

 � (18) 

The values of 𝛿𝛿 and 𝜀𝜀 were chosen for the desired accuracy: 𝛿𝛿 = 0.01 and 𝜀𝜀 = 
0.005, resulting in N = 1000. 

2.8.2. Variable pH 
To find the optimal pH variable profile, a novel strategy, originally developed by, is 

proposed [27]. This strategy assumes that the optimal control action is a continuous or 
piecewise continuous function and can be approximated by a function belonging to the 
Hilbert space L2 [0, tf], where tf is the final reaction time. Therefore, it can be constructed 
through a linear combination of bases belonging to this space. One of the bases that be-
longs is obtained through the orthogonalization and subsequent normalization of the 
base B = {1, t, t2, t3,…}. Considering this hypothesis, the optimal control action (uopt) can be 
approximated with an orthonormal basis polynomial: 

𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 (𝑡𝑡) ≈  𝑐𝑐0 𝑝𝑝0 +  𝑐𝑐1 𝑝𝑝1 +  𝑐𝑐2 𝑝𝑝2 + ⋯  +  𝑐𝑐𝑙𝑙 𝑝𝑝𝑙𝑙 (19) 

where ci are the coefficients of the polynomial, pi are the orthonormal polynomials ob-
tained by applying Grand-Schmidt to the base B = {1, t, t2, t3,…} between 0 and tf, and l is 
the order of the polynomial. 

On the other hand, another basis belonging to L2 [0, tf] is the orthogonal trigono-
metric Fourier basis, which states that any function in this space can be expressed as a 
sum of an infinite series of sine and cosine terms [41]. When the signal is smooth, suc-
cessive harmonics have decreasing amplitudes (Bessel‘s inequality and Parseval‘s iden-
tity [42]) and the majority of the signal‘s energy lies in a few terms using a minimal 
number of parameters. Therefore, the orthonormal basis polynomial is approximated 
with the initial terms of the Fourier series. Then, the polynomial coefficients are com-
puted through the Fourier coefficients. However, when attempting to approximate the 
function with a polynomial, too many parameters can be needed for the approximation, 
and it can be challenging to manage control action constraints. Therefore, the key to the 
proposed methodology is to perform a Fourier series expansion for Equation (19), that is, 
a linear combination of the Fourier basis approximating uopt(t). This approach leverages 
the specific characteristics of the Fourier series: 
- Any piecewise continuous function can be approximated by a linear combination of 

the Fourier basis. 
- When the function to be approximated is smooth, only a few parameters are needed. 

Then, the first few terms of the series capture over 85% of the signal‘s energy. 
- By adjusting the parameters, the signal can be bounded to handle constraints. 

Thus, employing the Fourier series requires a minimal number of parameters, and it 
allows for signal bounding as well. In this way, if it is possible to obtain the optimal 
Fourier parameters such that the best control vector is found, then the Optimal Control 
Problem (OCP) is resolved. For more details, see Pantano et al. [27]. The Fourier param-
eters are optimized through a hybrid methodology which combines Monte Carlo with 
genetic algorithms (eSS) for parameter optimization. 

The proposed methodology has the advantage of using fewer parameters than tra-
ditional Control Vector Parameterization “CVP” techniques, simplifying the optimization 
problem, and making it computationally more efficient. Moreover, the optimal operation 
profiles are smooth, continuous, and differentiable. Smooth changes in operational con-
ditions help maintain cell viability and health. Abrupt changes in parameters such as 
temperature, pH, nutrient concentration, or agitation speed can stress or shock the cells, 
leading to reduced productivity or even cell death. 
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3. Results and Discussion 
3.1. Data Obtained: Kinetic Behaviors Depend on pH 

The killer biocontrol of Wickerhmaomyces anomalus over Zygosaccheromyces rouxii is an 
amensalism interaction [18]. Biocontrol success certainly could reduce the spoilage pop-
ulation and diminish the use of SO2. In relation to this, previous works cite that preva-
lence in the media of one yeast population implies spoilage control [31,32]. Kinetics re-
vealed different behaviors in the function of the pH evaluated (Figure 2) and it can be 
observed that W. anomalus prevails in all the pre-fermentations; nevertheless, Z. rouxii 
decay was observed in pHs 3.7 and 4.2. The results are in agreement with our previous 
works [16,18]. The pH is a significant variable for individual or axenic dynamics of yeast 
cultures [19,43] as mixed cultures [16,18].  

 
Figure 2. Data for both yeast populations W. anomalus (empty markers, solid lines) and Z. rouxii 
(filled markers, dashed lines) obtained for 3 different pH values. Circles, light gray lines, pH: 3.2; 
triangles, dark gray lines, pH: 3.7; squares, black lines, pH: 4.2. Lines were developed with sig-
moidal and peak models. 

In ecology, coexistence and exclusion are related to the ecological niche concept. 
This can be summarized as the environmental conditions that allow a species to satisfy 
survival requirements and the effect of the species on the environment or medium [44]. In 
our case, pH seems to define the niche dynamics, where in pH 3.2 we have a dynamic of 
coexistence, and in pH 3.7 and 4.2, a dynamic of exclusion. 

3.2. Model of Amensalism Improved, Best Fit: 0.68 
The study was designed to dive into the ecology of the interaction in the function of 

the pH with a model approach. The amensalism model was developed initially by Ra-
mon-Portugal et al. [31], improved in the lag phase by Pommier et al. [32]), and lately 
improved in the spoilage population decay reaching a stability phase in Kuchen et al. 
[16]. The model by Kuchen et al. [16] was simultaneously fitted to the three kinetics at 
three constant pH values (3.2, 3.7, and 4.2) using AMIGO2. The best fit was 0.681, the er-
rors were normally distributed, and the adjusted R2 was 0.76. Nonlinear function simu-
lation was performed using the CVODES method [35], parameter estimation was opti-
mized with the nonlinear problem solver “eSS”, and the error calculation was based on 
least squares. 

Each yeast has its specific growth rates in the function of the medium physico-
chemical conditions. On the other hand, every interaction which occurs in a medium with 
a limiting substrate (sugar and oxygen among others) develops a competition for these 
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resources [45]. Usually, competitions in models are segregated into intraspecific compe-
tition and interspecific competition plus individual fitness [16,24].  

This model has growth equations (Equations (7) and (8)) with parameters as “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” 
and “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” and a variable “𝑋𝑋” related to the individual fitness of each yeast. Also, these 
have parameters like ”𝐴𝐴𝑘𝑘”, “𝐴𝐴𝑠𝑠”, and the variable “𝐼𝐼”. Nevertheless, “𝐼𝐼” (Equation (9)) is a 
general inhibitor produced by both the yeasts, with a parameter “𝑎𝑎” and the variables 
“𝑋𝑋𝑣𝑣𝑣𝑣” and “𝑋𝑋𝑣𝑣𝑣𝑣”. “𝐼𝐼” works as both intra- and interspecific inhibitor variables. This in-
terspecific inhibition could be related to competence by limiting substrate or space [46]. 
Also, the model has death equations (Equations (10) and (11)), different between them, to 
explain interspecific inhibition by amensalism. The killer population death equation in-
volves only natural death, with a parameter “𝜇𝜇𝑑𝑑𝑑𝑑” and a variable “𝑋𝑋𝑣𝑣𝑣𝑣”, while the sensi-
tive population, instead, links natural death “𝜇𝜇𝑑𝑑𝑑𝑑” and “𝑋𝑋𝑣𝑣𝑣𝑣” with the amensalism influ-
ence through a pure interspecific part, with a parameter “W” and the variables “𝑋𝑋𝑣𝑣𝑣𝑣” and 
“𝑇𝑇”. The variable “𝑇𝑇” explain the toxin concentration (Equations (5), (12), and (13)) with 
the parameters “𝑎𝑎” and “𝐾𝐾” and the variables “𝑋𝑋𝑣𝑣𝑣𝑣” and “𝑇𝑇”. Summarizing the interspe-
cific inhibition could be segregated into two parts, competence explained by the variable 
“𝐼𝐼” and amensalism by the variable “𝑇𝑇”. Taking into account the biological aspects of the 
killer system, we must highlight that the model has parameters for toxin production, 
toxin adherence or consumption, and toxicity or spoilage sensitivity to toxin; neverthe-
less, there is no parameter for toxin stability. The model assumes the toxin is emitted and 
adhered to sensitive cell wall instantaneously [31,32]. 

3.3. Akaike Criterion: The Model with Five Quadratic Submodel Equations and One Linear Is the 
Reduced Model with Substantial Contribution 

Through an iterative procedure of model construction and selection and using the 
Akaike criterion, which weighs models based on their fitting ability and penalizes over-
parameterization, a reduced model was selected. 

The minimum value of AIC (AICmin) was used to rescale the Akaike Information 
Criterion (Table 2). The rescaled value ΔM = AICM − AICmin was used to assess the relative 
merit of the models: the models with ΔM ≤ 2 have substantial support, the models for 
which 4 ≤ ΔM ≤ 7 have considerably less support, and the models with ΔM > 10 have no 
support [34]. The chosen model is the one by Kuchen et al. [16] plus five parameters with 
quadratic submodels related to the maximum specific growth rate of the killer popula-
tion “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚”, proportional to the growth decrease by the common killer inhibitor “𝐴𝐴𝑘𝑘”, 
proportional to the growth decrease by the common sensitive inhibitor “𝐴𝐴𝑠𝑠”, propor-
tional to the production of the common inhibitor “𝑎𝑎”, and the toxicity of the toxin or 
sensitivity to it by the sensitive “ 𝐾𝐾”, while the maximum specific growth rate of the 
spoilage population “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” is lineal with minimal variation during pH change. This 
behavior could explain higher stability in Z. rouxii fitness through pH change. Even if this 
species has been cited with acidophilic character, growing below pH 2.3 [47], sharing a 
pH range with extreme acidophile organisms [48] also is cited with optimal growth rates 
in pHs near 3.5 [49]. 

Table 2. Akaike criterion for the selection of the reduced model. 

Primary Model Secondary Model N° Parameter AICM ΔM Merit 
Kuchen 10 Q 30 132.843 67.371 No support 
Kuchen 9 Q 27 103.146 37.674 No support 
Kuchen 8 Q 24 90.474 25.002 No support 
Kuchen 7 Q 21 74.439 8.967 No support 
Kuchen 6 Q 18 68.105 2.633 Considerably less support 
Kuchen 5 Q + 1 L 17 65.471 0 Reduced model 

Q: quadratic submodel; L: linear submodel. 
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3.4. Kinetics and Parameters: The Growth Rates, Intraspecific Saturations, Toxin Production, and 
Toxin Toxicity Were Influenced by the pH 

Kinetics for different pH values: 3.2, 3.7, and 4.2 from the reduced model (fit: 0.681) 
(Figure 3). 

  
(a) (b) 

 
(c) 

Figure 3. Constant pH and population levels over time. (a) pH: 3.2, (b) 3.7, and (c) 4.2. 

At pH 3.2, a low total population of killer yeast and a high population of spoilage 
yeast were observed, with the spoilage population remaining consistently high 
throughout the time without any decline (Figure 3). At pH 4.2, there is a higher cellular fit-
ness of the killer yeast, with a higher total population “𝑋𝑋𝑣𝑣𝑣𝑣”, and is an intermediate decline in 
the spoilage yeast. pH 3.7 exhibits a high total population of “𝑋𝑋𝑣𝑣𝑣𝑣,” similar to the condition at 
pH 4.2. Moreover, the greatest decrease in spoilage population was obtained. 

To assess the influence of the interaction, some parameters were normalized to 
different pH levels, with the value obtained at pH 3.2 (Table 3). These parameters were 
determined based on the kinetics observed in Figure 3, where the amensalism interaction 
would be lower (pH 3.2). Normalized parameters: natural death “𝜇𝜇𝑑𝑑𝑑𝑑” and “𝜇𝜇𝑑𝑑𝑑𝑑”, the 
production of the common inhibitor “𝑎𝑎”, and toxin adhesion or consumption “𝑊𝑊” (3 × 
10−9 mL/cell × h). Evaluating the results obtained in the parametric variation (submodels), 
we found the pH affected; fitness parameters, like “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” and “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚”; intraespecific 
parameters “𝐴𝐴𝑘𝑘” and “𝐴𝐴𝑠𝑠”; and interspecific parameters “∝” and “𝐾𝐾” (amensalism).  

Table 3. Parameters and submodels adjusted. 

Parameter Sub Value Submodel 
pH 

3.2 3.7 4.2 

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
mvk1 1.01 × 10−1 

mvk1 × pH2 − mvk2 × pH + mvk3 0.0897 0.0635 0.0878 mvk2 7.49 × 10−1 
mvk3 1.45 

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
mvs1 1.6 × 10−3 

−mvs1 × pH + mvs2 0.0139 0.0131 0.0123 
mvs2 1.9 × 10−2 
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𝐴𝐴𝑘𝑘 
Ak1 3.59 × 102 

Ak1 × pH2 − Ak2 × pH + Ak3 257.49 58.30 38.39 Ak2 2.87 × 103 
Ak3 5.78 × 103 

𝐴𝐴𝑠𝑠 
As1 3.53 × 102 

As1 × pH2 − As2 × pH + As3 285.25 71.02 33.53 As2 2.87 × 103 
As3 5.84 × 103 

∝ 
alfa1 1.51 × 10−3 

−alfa1 × pH2 + alfa2 × pH − alfa3 0.0016 0.0022 0.0020 alfa2 1.16 × 10−2 
alfa3 1.16 × 10−2 

𝐾𝐾 
K1 2.53 × 10−6 

−K1 × pH2 + K2 × pH − K3 1.31 × 10−7 4.97 × 10−7 2.45 × 10−7 K2 1.95 × 10−5 
K3 3.7 × 10−5 

𝜇𝜇𝑑𝑑𝑑𝑑 µdk 1.5 × 10−5 cte 1.5 × 10−5 1.5 × 10−5 1.5 × 10−5 
𝜇𝜇𝑑𝑑𝑑𝑑 µds 1.5 × 10−5 cte 1.5 × 10−5 1.5 × 10−5 1.5 × 10−5 
𝑎𝑎 a 1 × 10−9 cte 1 × 10−9 1 × 10−9 1 × 10−9 
𝑊𝑊 W 3 × 10−9 cte 3 × 10−9 3 × 10−9 3 × 10−9 

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: killer maximum specific growth rate; 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: spoilage yeast maximum specific growth rate; 
𝐴𝐴𝑘𝑘: killer intra/interspecific inhibition parameter; 𝐴𝐴𝑠𝑠: spoilage yeast intra/interspecific inhibition 
parameter; ∝: toxin production parameter; 𝐾𝐾: spoilage yeast sensitivity to toxin; 𝜇𝜇𝑑𝑑𝑑𝑑: killer specific 
death rate; 𝜇𝜇𝑑𝑑𝑑𝑑: spoilage yeast-specific death rate; 𝑎𝑎: common inhibitor production parameter; 𝑊𝑊: 
Toxin adhesion/consumption parameter. 

The highest “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” occurs at pH 3.2, while the highest “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” is observed at pH 
4.2 and the lowest “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” at 3.7 (Table 3). Cellular fitness and consequently, nutrient 
competition are affected by pH [45]. Also, this may be related to the maintenance costs or 
optimal growth of each organism [2]. The parameters “𝐴𝐴𝑘𝑘” and “𝐴𝐴𝑠𝑠” measure both in-
traspecific inhibition and interspecific inhibition related to competition and the sensitiv-
ity to a common inhibitor for both the yeasts [2,32] and were higher at pH 3.2. It can be 
observed that these parameters are of a higher order in the condition where there is no 
toxin interaction, which explains the dominance of this factor related to the logistic model 
and competition for a limiting substrate [50]. The production of toxin “∝” and the sensi-
tivity to the toxin “𝐾𝐾” are the lowest at pH 3.2, medium at pH 4.2, and maximum at pH 
3.7. The pH affects the efficiency of the toxin [20], and they are effective in a limited range 
of environmental conditions [51,52]. Efficiency may depend on its production “∝” [32,51], 
stability [20,53], adherence “𝑊𝑊” [54], and toxicity or sensitivity of the affected cell “𝐾𝐾” 
[15,54,55]. Some W. anomalus strains have been cited with optimum toxin production at 
pH between 4.2 and 4.4 [20,56]. It should be noted that for W. anomalus, several killer 
toxins are associated [56,57], and therefore, the estimated parameters could represent the 
behavior of multiple toxins simultaneously. Linked to this, at pH 3.7 where higher toxin 
efficiency is observed, simultaneously lower specific growth rate of the killer population 
is observed. This could be due to the metabolic energy cost of toxin production, leading 
to a decrease in cellular fitness [58]. 

3.5. Correlation and Sensitivity Analysis: The Parametric Analyzes Were Consistent with the 
Model’s Behavior 

Correlation and sensitivity were calculated using AMIGO2 (Figure 4a). The param-
eters showing correlation are involved in the equations of parametric variation in the 
different submodels. Thus, mvk1, mvk2, and mvk3 are the constituents of a single pa-
rameter, “𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚”. 

Local sensitivity shows the influence of the parameter on the modeled kinetics of 
each experiment (Figure 4b–d). The highest sensitivities were observed in the parameters 
linked to “𝐴𝐴𝑘𝑘” and “𝐴𝐴𝑠𝑠”, which are related to the deceleration of the logistic curve and are 
associated with the common inhibitor. There is also higher sensitivity in the parameters 
related to “𝐾𝐾”, the toxicity of the toxin concentration, or the sensitivity of the spoilage 
yeast to the killer toxin. 
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(c) (d) 

Figure 4. (a) Crammer/Rao matrix correlation from global analysis. Relative parametric sensitivity 
by experiment: (b) pH: 3.2, (c) pH: 3.7, and (d) pH: 4.2. Zr: Zygosaccharomyces rouxii, Wa: Wicker-
hamomyces anomalus 

In the sensitivity analysis, it is observed that first the intraspecific and then the in-
terspecific parameters are critical in the dynamics of the system, influencing the theoret-
ical predictions of the model used [59]. This could be linked to hypotheses where it is 
suggested that niche differences cause species to limit themselves more in intraspecific 
competition than they limit competitors in interspecific competition [60]. 

3.6. Optimization at Constant and Variable pH: The Variable Profile Reduces 99% the Spoilage 
Population throughout the Process Compared to the Constant Profile 

In line with the main objective of this work, which is to control the spoilage yeast, 
the new reduced model with its submodels was used to find the variable profile that 
minimizes the spoilage population present in the experiment over the entire reaction 
time. Firstly, a static optimization was performed to find an optimal pH value to achieve 
the objective. Then, a dynamic optimization strategy was developed to find the best var-
iable pH profile. 

3.6.1. Optimization at Constant pH 
In this case, the static optimization problem involved finding the best pH value 

through the Monte Carlo method that minimizes the following objective function: 

𝐽𝐽1 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝛴𝛴𝑋𝑋𝑣𝑣𝑣𝑣 (0 𝑡𝑡𝑡𝑡)]  

subject to the equality constraints provided by the mathematical model of the system 
[16], considering the initial conditions specified in Table 1 and the final time, 225 h, and 
subject to the inequality constraints: 

3.2 < 𝑝𝑝𝑝𝑝 < 4.2  
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𝑋𝑋𝑣𝑣𝑣𝑣 (𝑡𝑡) > 0  

𝑋𝑋𝑣𝑣𝑣𝑣 (𝑡𝑡) > 0  

𝑇𝑇 (𝑡𝑡) ≥ 0  

𝐼𝐼 (𝑡𝑡) ≥  0  

After 1000 simulations in the pH range, the simulation results were compared in a 
sorted matrix, and the pH that minimizes the total concentration of spoilage yeast was 
selected.  

Objective function J1: 2.05 × 1010 cells/mL × process and the best manipulated varia-
ble pH: 3.99. 

3.6.2. Optimization at Variable pH 
Using the orthonormal polynomials technique developed by the research group [27], 

dynamic optimization was performed to find the best time-dependent pH variation pro-
file that minimizes the objective function: 

𝐽𝐽2 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝛴𝛴 𝑋𝑋𝑣𝑣𝑣𝑣 (0 𝑡𝑡𝑡𝑡)]  

subject to the same constraints of the mathematical model [16], the same specified initial 
conditions (Table 1), and tf: 225 h, along with the same inequality constraints as static opti-
mization.  

Objective function J1: 1.31 × 103 cells/mL × process, and manipulated variable profile: 
pH. 

The results of the optimization with a constant profile are shown in Figure 5, while 
those of the optimization with a variable profile are shown in Figure 6. The variable op-
timization was more efficient in eliminating the spoilage population in a reduced time 
period. Moreover, the reduction in population, comparing the variable with constant op-
timization throughout the entire process time, was 2.05 × 1010 cells/mL × process, 99% less 
spoilage yeast population over the process. Furthermore, the final population was re-
duced from 4.43 × 107 cells/mL in the constant profile optimization versus 1.54 × 103 
cells/mL in the variable profile optimization, also 99% less spoilage population at the end 
of the process. This difference suggests that selecting the best constant pH may not be the 
optimal option and implies that a variable pH control strategy could be more attractive 
for pre-fermentation, as it enhances biocontrol while also reducing the time required for 
the process [29], enabling earlier inoculation with Saccharomyces cerevisiae (fermenting 
population) and reducing the risks of proliferation of unwanted yeasts species [61].  

  
(a) (b) 

Figure 5. (a) Kinetic simulation of spoilage population. (b) pH profile. 
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(a) (b) 

Figure 6. (a) Kinetic simulation of spoilage population. (b) pH optimal profile. 

The variable profile (Figure 6b) starts at a high pH (4.2) and is maintained for a pe-
riod of 48 h, which would be relevant in musts from the region with high pH (pH > 3.8) 
[21,62]. Biologically, this may be related to the prediction of the model to improve the 
fitness of the biocontroller yeasts initially, which would consequently prevail in the me-
dium [45], also in terms of toxin production as a primary metabolite. Then, the pH begins 
to decrease gradually, probably to a pH where the multiplication of the biocontroller 
population is lower but the efficiency of the toxin increases in terms of the toxicity or 
sensitivity of the spoilage yeasts, thus controlling the spoilage population more effec-
tively [20,56]. Subsequently, the pH profile should increase again, possibly to maintain 
the competitive advantage of the biocontroller. This could be related to the low concen-
tration of sensitive cells present in the medium and the difficulty of controlling those, 
caused by spatial distancing [16]. 

No studies were found on biocontrol implementing pH control strategies with a 
variable pH profile. On the other hand, other studies on dynamic optimization in liquid 
fermentation with stepped temperature profiles were found to enable better process 
yields [63,64]. However, stepped profiles are difficult to implement in real conditions 
because instantaneous increases and decreases are physically impossible to achieve in 
reality. In contrast, smooth and continuous profiles are more suitable for reproduction in 
a real system. Additionally, abrupt changes in physicochemical parameters (such as 
temperature or pH, among others) can negatively affect microbial systems, causing cel-
lular stress [27,29]. 

Although the study focuses on a particular strain combination, the findings may 
well be relevant to other cases, and especially the methodology may be applicable to 
other cases. The dynamic optimization of variable profiles can be applied to other 
winemaking cases where mixed cultures and microbial interactions occur. One case 
could be biocontrol with other mechanisms, such as competition between Metschnikowia 
pulcherrima and Z. rouxii [18], as well as in the sequential mixed inoculation of 
non-Saccharomyces yeasts with S. cerevisiae for different purposes, such as improving or-
ganoleptic profile [24] and reducing ethanol concentration [65], among others, where 
static optimization was performed. 

Finally, using a variable profile involves only modifying the controller, while the 
control action actuators (higher equipment cost) remain constant. This means that the 
process can be significantly more efficient simply by changing the controller and utilizing 
optimization with a variable profile. On the other hand, managing the biocontrol process 
through the use of the manipulable variable pH instead of temperature, for example, 
could result in lower energy use, influencing production costs. 
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4. Conclusions 
The main objective of this study was to explore the role of pH in the dynamics of 

pre-fermentative biocontrol through an ecological modeling approach. The variation in 
parameters with pH was incorporated, and it accurately predicted the population levels 
of biocontroller/spoilage yeast antagonism under different conditions of must/wine. The 
model explained parameters that are not quantifiable online. The model analysis re-
vealed that Wickerhamomyces anomalus decreases the population levels of Zygosaccharo-
myces rouxii to low values at pH levels above 3.7 in co-inoculation. It is inferred from the 
results that pH influences nutrient consumption patterns, tolerance to different envi-
ronmental stressors, varying intra- and interspecific competition, and modifying the 
niche over time by changing pH. 

One of the main implications of this research is that sequential inoculation is the 
most promising alternative for new fermentations aimed at reducing the use of SO2. 
Further research is needed to formulate suitable mechanistic models for optimal design 
based on the models of new mixed pre-fermentations. On the other hand, this allowed us 
to establish the mathematical foundations for implementing the dynamic pH optimiza-
tion strategy. 

The variable pH profile optimized was smooth, continuous, and differentiable, 
which is highly suitable for bioprocesses. It reduced the total spoilage population and the 
time it takes to do so. Moreover, its practical implementation is feasible because it avoids 
abrupt changes in pH during the bioprocess. Also, at a technological level, it is highly 
relevant since it only involves changing the controller profile without additional costs. 

Author Contributions: Conceptualization, G.S. and F.V.; methodology, G.S.; software, B.K., M.C.G. and 
M.N.P.; formal analysis, G.S. and B.K.; investigation, B.K., M.N.P. and M.C.G.; resources, G.S.; data cu-
ration, L.P.P.; writing—original draft preparation, B.K.; writing—review and editing, B.K.; visualization, 
L.P.P.; supervision, G.S. and F.V.; project administration, B.K. and G.S.; funding acquisition, B.K. and 
G.S. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by grants from Agencia Nacional de Promoción de la Investi-
gación, el Desarrollo Tecnológico y la Innovación, Ministerio de Ciencia, Tecnologı́a e Innovación, 
Argentina, (PICT-2021-I-INVI-00284). 

Data Availability Statement: The raw data supporting the conclusions of this article will be made 
available by the authors without undue reservation. 

Acknowledgments: We thank ENAV S.A. CUIT: 30-69313567-9. San Juan, for kindly giving con-
centrated grape must and data related. 

Conflicts of Interest: The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential conflict of interest. 

References 
1. Tafel, M.; Szolnoki, G. Estimating the economic impact of tourism in German wine regions. Int. J. Tour. Res. 2020, 22, 788–799. 

https://doi.org/10.1002/jtr.2380. 
2. Ciani, M.; Capece, A.; Comitini, F.; Canonico, L.; Siesto, G.; Romano, P. Yeast interactions in inoculated wine fermentation. 

Front. Microbiol. 2016, 7, 555. https://doi.org/10.3389/fmicb.2016.00555. 
3. Csoma, H.; Kállai, Z.; Antunovics, Z.; Czentye, K.; Sipiczki, M. Vinification without Saccharomyces: Interacting osmotolerant and 

“spoilage” yeast communities in fermenting and ageing botrytised high-sugar wines (tokaj essence). Microorganisms 2021, 9, 19. 
https://doi.org/10.3390/microorganisms9010019. 

4. Rojo, M.C.; Arroyo López, F.N.; Lerena, M.C.; Mercado, L.; Torres, A.; Combina, M. Evaluation of different chemical preserva-
tives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control 2015, 50, 349–355. 
https://doi.org/10.1016/j.foodcont.2014.09.014. 

5. Cejudo-Bastante, M.J.; Sonni, F.; Chinnici, F.; Versari, A.; Perez-coello, M.S.; Riponi, C. Fermentation of sulphite-free white 
musts with added lysozyme and oenological tannins: Nitrogen consumption and biogenic amines composition of final wines. 
LWT-Food Sci. Technol. 2010, 43, 1501–1507. https://doi.org/10.1016/j.lwt.2010.02.011. 

6. Comitini, F.; Ciani, M. The zymocidial activity of Tetrapisispora phaffii in the control of Hanseniaspora uvarum during the early 
stages of winemaking. Lett. Appl. Microbiol. 2010, 50, 50–56. https://doi.org/10.1111/j.1472-765X.2009.02754.x. 



Processes 2024, 12, 1446 16 of 18 
 

 

7. Ferrer-Gallego, R.; Puxeu, M.; Martín, L.; Nart, E.; Hidalgo, C.; Andorrà, I. Microbiological, Physical, and Chemical Procedures 
to Elaborate High-Quality SO2-Free Wines. In Grapes and Wines-Advances in Production, Processing, Analysis and Valorization; 
IntechOpen: London, UK, 2018. https://doi.org/10.5772/intechopen.71627. 

8. Lerena, M.C.; Rojo, M.C.; Sari, S.; Mercado, L.A.; Krieger-Weber, S.; Combina, M. Malolactic fermentation induced by Lacto-
bacillus plantarum in Malbec wines from Argentina. South Afr. J. Enol. Vitic. 2016, 37, 115–123. https://doi.org/10.21548/37-2-827. 

9. Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. (Eds.) Handbook of Enology, Volume 2: The Microbiology of Wine and 
Vinifications; John Wiley & Sons Ltd.: Chichester, UK, 2006; Volume 2. https://doi.org/10.1002/0470010398. 

10. Baker, K.F.; Cook, R.J. Biological Control of Plant Pathogens; W.H. Freeman and Company: San Francisco, CA, USA, 1974. 
https://doi.org/10.5555/19741622425. 

11. Canonico, L.; Agarbati, A.; Galli, E.; Comitini, F.; Ciani, M. Metschnikowia pulcherrima as biocontrol agent and wine aroma 
enhancer in combination with a native Saccharomyces cerevisiae. LWT 2023, 181, 114758. https://doi.org/10.1016/j.lwt.2023.114758. 

12. Oro, L.; Ciani, M.; Comitini, F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 2014, 116, 
1209–1217. https://doi.org/10.1111/jam.12446. 

13. Berbegal, C.; Garofalo, C.; Russo, P.; Pati, S.; Capozzi, V.; Spano, G. Use of autochthonous yeasts and bacteria in order to control 
Brettanomyces bruxellensis in wine. Fermentation 2017, 3, 65. https://doi.org/10.3390/fermentation3040065. 

14. Simonin, S.; Roullier-Gall, C.; Ballester, J.; Schmitt-Kopplin, P.; Quintanilla-Casas, B.; Vichi, S.; Peyron, D.; Alexandre, H.; 
Tourdot-Maréchal, R.  Bio-Protection as an Alternative to Sulphites: Impact on Chemical and Microbial Characteristics of Red 
Wines. Front. Microbiol. 2020, 11, 1308. https://doi.org/10.3389/fmicb.2020.01308. 

15. Boynton, P.J. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019, 36, 473–485. 
https://doi.org/10.1002/yea.3398. 

16. Kuchen, B.; Maturano, Y.P.; Gil, R.M.; Vazquez, F.; Scaglia, G.J.E. Kinetics and mathematical model of killer/sensitive interaction 
under different physicochemical conditions of must/wine: A study from a biological point of view. Lett. Appl. Microbiol. 2022, 74, 
718–728. https://doi.org/10.1111/lam.13657. 

17. Kuchen, B.; Maturano, Y.P.; Mestre, M.V.; Combina, M.; Toro, M.E.; Vazquez, F. Selection of native non-Saccharomyces yeasts 
with biocontrol activity against spoilage yeasts in order to produce healthy regional wines. Fermentation 2019, 5, 60. 
https://doi.org/10.3390/fermentation5030060. 

18. Kuchen, B.; Vazquez, F.; Maturano, Y.P.; Scaglia GJ, E.; Pera, L.; Vallejo, M.D. Toward application of biocontrol to inhibit wine 
spoilage yeasts: The use of statistical designs for screening and optimisation. Oeno One 2021, 55, 75–96. 
https://doi.org/10.20870/oeno-one.2021.55.2.4510. 

19. Serra, A.; Strehaiano, P.; Taillandier, P. Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of 
a wine yeast interspecific hybridization on these parameters. Int. J. Food Microbiol. 2005, 104, 257–265. 
https://doi.org/10.1016/j.ijfoodmicro.2005.03.006. 

20. Comitini, F.; Ingeniis De, J.; Pepe, L.; Mannazzu, I.; Ciani, M. Pichia anomala and Kluyveromyces wickerhamii killer toxins as new 
tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol. Lett. 2004, 238, 235–240. 
https://doi.org/10.1016/j.femsle.2004.07.040. 

21. Fanzone, M.L.; Sari, S.E.; Mestre, M.V.; Catania, A.A.; Catelén, M.J.; Jofré, V.P.; Maturano, Y.P. Combination of pre-fermentative 
and fermentative strategies to produce Malbec wines of lower alcohol and pH, with high chemical and sensory quality. OENO 
One 2020, 54, 1041–1058. https://doi.org/10.20870/oeno-one.2020.54.4.4018. 

22. Comuzzo, P.; Battistutta, F. Acidification and pH control in red wines. In Red Wine Technology; Academic Press: Cambridge, MA, 
USA, 2019; Chapter 2, pp. 17–34.  

23. Hellweger, F.L.; Clegg, R.J.; Clark, J.R.; Plugge, C.M.; Kreft, J.U. Advancing microbial sciences by individual-based modelling. 
Nat. Rev. Microbiol. 2016, 14, 461–471. https://doi.org/10.1038/nrmicro.2016.62. 

24. Balsa-Canto, E.; Alonso-del-Real, J.; Querol, A. Temperature Shapes Ecological Dynamics in Mixed Culture Fermentations 
Driven by Two Species of the Saccharomyces Genus. Front. Bioeng. Biotechnol. 2020, 8, 915. 
https://doi.org/10.3389/fbioe.2020.00915. 

25. Narayanan, H.; Luna, M.F.; von Stosch, M.; Cruz Bournazou, M.N.; Polotti, G.; Morbidelli, M.; Butté,, A.; Sokolov, M. Biopro-
cessing in the Digital Age: The Role of Process Models. Biotechnol. J. 2020, 15, e1900172. https://doi.org/10.1002/biot.201900172. 

26. Noll, P.; Lilge, L.; Hausmann, R.; Henkel, M. Modeling and Exploiting Microbial Temperature Response. Processes 2020, 8, 121. 
https://doi.org/10.3390/pr8010121. 

27. Pantano, M.N.; Fernández, M.C.; Ortiz, O.A.; Scaglia GJ, E.; Vega, J.R. A Fourier-based control vector parameterization for the 
optimization of nonlinear dynamic processes with a finite terminal time. Comput. Chem. Eng. 2020, 134, 106721. 
https://doi.org/10.1016/j.compchemeng.2019.106721. 

28. Pantano, M.N.; Fernández, M.C.; Amicarelli, A.; Scaglia, G.J.E. Evolutionary Algorithms and Orthogonal Basis for Dynamic 
Optimization in L2 Space for Batch Biodiesel Production. Chem. Eng. Res. Des. 2022, 177, 354–364. 
https://doi.org/10.1016/j.cherd.2021.11.001. 

29. Groff, M.C.; Noriega, S.E.; Gil, R.M.; Pantano, N.; Scaglia, G. Dynamic Optimization of Lactic Acid Production from Grape Stalk 
Solid-State Fermentation with Rhizopus oryzae Applying a Variable Temperature Profile. Fermentation 2024, 10, 101. 
https://doi.org/10.3390/fermentation10020101. 



Processes 2024, 12, 1446 17 of 18 
 

 

30. Maturano, Y.P.; Mestre, M.V.; Combina, M.; Toro, M.E.; Vazquez, F.; Esteve-Zarzoso, B. Culture-dependent and independent 
techniques to monitor yeast species during cold soak carried out at different temperatures in winemaking. Int. J. Food Microbiol. 
2016, 237, 142–149. https://doi.org/10.1016/j.ijfoodmicro.2016.08.013. 

31. Ramon-Portugal, F.; Délia-Dupuy, M.L.; Pingaud, H.; Carrillo-leroux, G.A.; Riba, J.P. Kinetic study and mathematical model-
ling of killer and sensitive S.cerevisiae strains growing in mixed culture. Bioprocess Eng. 1997, 17, 375–381. 
https://doi.org/10.1007/PL00008970. 

32. Pommier, S.; Strehaiano, P.; Délia, M.L. Modelling the growth dynamics of interacting mixed cultures: A case of amensalism. 
Int. J. Food Microbiol. 2005, 100, 131–139. https://doi.org/10.1016/j.ijfoodmicro.2004.10.010. 

33. Hua, M.X.; Chi, Z.; Liu, G.L.; Aslam Buzdar, M.; Chi, Z.-M. Production of a novel and cold-active killer toxin by Mrakia frigida 
2E00797 isolated from sea sediment in Antarctica. Extremophiles 2010, 14, 515–521. https://doi.org/10.1007/s00792-010-0331-6. 

34. Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Soc. Methods and Res. 
2004, 33, 261–304. https://doi.org/10.1177/0049124104268644. 

35. Hindmarsh, A.C.; Brown, P.N.; Grant, K.E.; Lee, S.L.; Serban, R.; Shumaker, D.E.; Woodward, C.S. SUNDIALS: Suite of non-
linear and differential/algebraic equation solvers. ACM Trans. Math. Softw. (TOMS) 2005, 31, 363–396. 
https://doi.org/10.1145/1089014.1089020. 

36. Egea, J.A.; Vazquez, E.; Banga, J.R.; Martí, R. Improved scatter search for the global optimization of computationally expensive 
dynamic models. J. Glob. Optim. 2009, 43, 175–190. https://doi.org/10.1007/s10898-007-9172-y. 

37. Solonen, A. Monte Carlo Methods in Parameter Estimation of Nonlinear Models. Master’s Thesis, Lappeenranta University of 
Technology, Lappeenranta, Finland, 2006. 

38. Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo method is so important today. Wiley Interdiscip. Rev. 
Comput. Stat. 2014, 6, 386–392. https://doi.org/10.1002/wics.1314. 

39. Chaves de Resende, L.; Facion do Nascimento, R.; De Sousa Sales, W.; Aparecido de Assis, F.; Carlos do Nascimento, L. 
Well-Being Analysis Applied to the Study of Composite Systems Flexibility Considering Wind Energy Sources. IEEE Lat. Am. 
Trans. 2021, 19, 1640–1647. https://doi.org/10.1109/tla.2021.9477226. 

40. Tempo, R.; Ishii, H. Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control. Eur. J. Control. 2007, 13, 189–
203. https://doi.org/10.3166/ejc.13.189-203. 

41. Nearing, J.C. Mathematical Tools for Physics; Dover Publications: New York, NY, USA, 2003. 
42. Kreyszig, E. Introductory Functional Analysis with Applications; John Wiley & Sons: Hoboken, NJ, USA, 1978. 
43. Arroyo-López, F.N.; Orlić, S; Querol, A.; Barrio, E. Effects of temperature, pH and sugar concentration on the growth param-

eters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int. J. Food Microbiol. 2009, 131, 120–127. 
https://doi.org/10.1016/j.ijfoodmicro.2009.01.035. 

44. Chase, J.; Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches, 2nd ed.; University of Chicago Press: 
Chicago, IL, USA, 2003. https://doi.org/10.7208/chicago/9780226101811.001.0001. 

45. Pirt, S.J. Parameters of growth and analysis of growth data. In Principles of Microbe and Cell Cultivation; Blackwell Scientific 
Publications: Hoboken, NJ, USA, 1975; pp. 4–14. 

46. Oztekin, S.; Dikmetas, D.N.; Devecioglu, D.; Acar, E.G.; Karbancioglu-Guler, F. Recent insights into the use of antagonistic 
yeasts for sustainable biomanagement of postharvest pathogenic and mycotoxigenic fungi in fruits with their prevention 
strategies against mycotoxins. J. Agric. Food Chem. 2023, 71, 9923–9950. https://doi.org/10.1021/acs.jafc.3c00315. 

47. Martorell, P.; Stratford, M.; Steels, H.; Fernández-Espinar, M.T.; Querol, A. Physiological characterization of spoilage strains of 
Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int. J. Food Microbiol. 2007, 114, 
234–242. https://doi.org/10.1016/j.ijfoodmicro.2006.09.014. 

48. Johnson, D.B. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 1998, 27, 307–317. 
https://doi.org/10.1111/j.1574-6941.1998.tb00547.x. 

49. Wang, H.; Hu, Z.; Long, F.; Guo, C.; Niu, C.; Yuan, Y.; Yue, T. Combined effect of sugar content and pH on the growth of a wild 
strain of Zygosaccharomyces rouxii and time for spoilage in concentrated apple juice. Food Control 2016, 59, 298–305. 
https://doi.org/10.1016/j.foodcont.2015.05.040. 

50. Dantigny, P.; Bevilacqua, A. Fungal starters: An insight into the factors affecting the germination of conidia. In Starter Cultures in 
Food Production; Speranza, B., Bevilacqua, A., Corbo, R.M., Sinigaglia, M., Eds.; John Wiley and Sons: West Sussex, UK, 2017; pp. 
50–63. https://doi.org/10.1002/9781118933794.ch3. 

51. McBride, R.; Greig, D.; Travisano, M. Fungal viral mutualism moderated by ploidy. Evolution 2008, 62, 2372–2380. 
https://doi.org/10.1111/j.1558-5646.2008.00443.x. 

52. Deschaine, B.M.; Heysel, A.R.; Lenhart, B.A.; Murphy, H.A. Biofilm formation and toxin production provide a fitness advantage 
in mixed colonies of environmental yeast isolates. Ecol. Evol. 2018, 8, 5541–5550. https://doi.org/10.1002/ece3.4082. 

53. Sinclair, R.M. Citation: Sinclair RM(2014) Persistence in the Shadow of Killers. Front. Microbiol. 2014, 5, 342. 
https://doi.org/10.3389/fmicb.2014.00342/Journal/Abstract.aspx?s=1102. 

54. Fernández de Ullivarri, M.; Mendoza, L.M.; Raya, R.R. Characterization of the killer toxin KTCf20 from Wickerhamomyces 
anomalus, a potential biocontrol agent against wine spoilage yeasts. Biol. Control 2018, 121, 223–228. 
https://doi.org/10.1016/j.biocontrol.2018.03.008. 

55. Károlyi, G.; Neufeld, Z.; Scheuring, I. Rock-scissors-paper game in a chaotic flow: The effect of dispersion on the cyclic com-
petition of microorganisms. J. Theor. Biol. 2005, 236, 12–20. https://doi.org/10.1016/j.jtbi.2005.02.012. 



Processes 2024, 12, 1446 18 of 18 
 

 

56. Liu, G.L.; Chi, Z.; Wang, G.Y.; Wang, Z.P.; Li, Y.; Chi, Z.M. Yeast killer toxins, molecular mechanisms of their action and their 
applications. Crit. Rev. Biotechnol. 2013, 35, 222–234. Healthcare. https://doi.org/10.3109/07388551.2013.833582. 

57. Magliani, W.; Conti, S.; Gerloni, M.; Bertolotti, D.; Polonelli, L. Yeast killer systems. Clin. Microbiol. Rev. 1997, 10, 369–400. 
https://doi.org/10.1128/cmr.10.3.369. 

58. Pieczynska, M.D.; Wloch-Salamon, D.; Korona, R.; de Visser, J.A.G.M. Rapid multiple-level coevolution in experimental pop-
ulations of yeast killer and nonkiller strains. Evolution. Int. J. Org. Evol. 2016, 70, 1342–1353. https://doi.org/10.1111/evo.12945. 

59. Zi, Z. Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 2011, 5, 336–346. 
https://doi.org/10.1049/iet-syb.2011.0015. 

60. Levine, J.; HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 2009, 461, 254–257. 
https://doi.org/10.1038/nature08251. 

61. Bianchi, A.; Taglieri, I.; Venturi, F.; Sanmartin, C.; Ferroni, G.; Macaluso, M.; Palla, F.; Flamini, G.; Zinnai, A. Technological 
Improvements on FML in the Chianti Classico Wine Production: Co-Inoculation or Sequential Inoculation? Foods 2022, 11, 1011 
https://doi.org/10.3390/foods11071011. 

62. Morata, A.; Loira, I.; Manuel del Fresno, J.; Escott, C.; Antonia Bañuelos, M.; Tesfaye, W.; González, C.; Palomero, F.; Antonio 
Suárez Lepe, J. Strategies to Improve the Freshness in Wines from Warm Areas. In Advances in Grape and Wine Biotechnology; 
IntechOpen: London, UK, 2019. https://doi.org/10.5772/intechopen.86893. 

63. Feng, J.; Feng, N.; Zhang, J.S.; Yang, Y.; Jia, W.; Lin, C.C. A New Temperature Control Shifting Strategy for Enhanced Triterpene 
Production by Ganoderma Lucidum G0119 Based on Submerged Liquid Fermentation. Appl. Biochem. Biotechnol. 2016, 180, 740–
752. https://doi.org/10.1007/s12010-016-2129-1. 

64. Cheng, K.K.; Zeng, J.; Jian, J.H.; Zhu, J.F.; Zhang, G.X.; Liu, D.H. Model-Based Temperature Control for Improving Lactic Acid 
Production from Glycerol. RSC Adv. 2019, 9, 11614–11620. https://doi.org/10.1039/C9RA01323G. 

65. Maturano, Y.P.; Mestre, M.V.; Kuchen, B.; Toro, M.E.; Mercado, L.A.; Vazquez, F.; Combina, M. Optimization of fermenta-
tion-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts. Int. J. Food Microbiol. 2019, 
289, 40–48. https://doi.org/10.1016/j.ijfoodmicro.2018.08.016. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 
to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


	1. Introduction
	2. Materials and Methods
	2.1. Microorganisms and Pre-Fermentations
	2.2. Model for Amensalism
	2.3. Theoretical Methods: The Modeling Pipeline
	2.4. Candidate Models Formulation
	2.5. Parameter Estimation
	2.6. Model Selection and Reduction
	2.7. Numeric Tools
	2.8. Optimization
	2.8.1. Constant pH
	2.8.2. Variable pH


	3. Results and Discussion
	3.1. Data Obtained: Kinetic Behaviors Depend on pH
	3.2. Model of Amensalism Improved, Best Fit: 0.68
	3.3. Akaike Criterion: The Model with Five Quadratic Submodel Equations and One Linear Is the Reduced Model with Substantial Contribution
	3.4. Kinetics and Parameters: The Growth Rates, Intraspecific Saturations, Toxin Production, and Toxin Toxicity Were Influenced by the pH
	3.5. Correlation and Sensitivity Analysis: The Parametric Analyzes Were Consistent with the Model’s Behavior
	3.6. Optimization at Constant and Variable pH: The Variable Profile Reduces 99% the Spoilage Population throughout the Process Compared to the Constant Profile
	3.6.1. Optimization at Constant pH
	3.6.2. Optimization at Variable pH


	4. Conclusions
	References

