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Abstract: This work reports new analytical applications of glassy carbon electrodes (GCE) modified
with a nanohybrid obtained by non-covalent functionalization of multi-walled carbon nanotubes
(MWCNTs) with human immunoglobulin G (IgG) (GCE/MWCNT-IgG). We report the label-free and
non-amplified breast cancer 1 gen (BRCA1) biosensing based on the facilitated adsorption of the DNA
probe at the nanohybrid modified GCE and the impedimetric detection of the hybridization event
in the presence of the redox marker benzoquinone/hydroquinone. The resulting genosensor made
the fast, highly selective, and sensitive quantification of BRCA1 gene possible, with a linear range
between 1.0 fM and 10.0 nM, a sensitivity of (3.0 ± 0.1) × 102 Ω M−1 (R2 = 0.9990), a detection limit
of 0.3 fM, and excellent discrimination of fully non-complementary and mismatch DNA sequences.
The detection of BRCA1 in enriched samples of diluted human blood serum showed a recovery
percentage of 94.6%. Another interesting analytical application of MWCNT-IgG-modified GCE based
on the catalytic activity of the exfoliated MWCNTs is also reported for the simultaneous quantification
of dopamine and uric acid in the presence of ascorbic acid, with detection limits at submicromolar
levels for both compounds.

Keywords: BRCA1 gene; impedimetric biosensor; biomarker; carbon nanotubes; human immunoglobulin
G; breast cancer; dopamine; uric acid; ascorbic acid

1. Introduction

The advent of nanomaterials has been revolutionary for the field of electrochemical
biosensors due to their unique optical, electrical and magnetic properties [1]. In this regard,
carbon nanostructures such as graphene, graphene oxide, carbon nanoparticles, carbon
nanodots, carbon nanofibers, and carbon nanotubes (CNTs) have attracted considerable at-
tention in the last years [2,3]. Multi-walled carbon nanotubes (MWCNTs) present a unique
porous structure, large surface area, important chemical stability, high mechanical strength,
strong corrosion resistance, and facilitated electron transfer [4]. Since the first report about
the use of CNTs for the preparation of electrochemical sensors, there has been an expo-
nential increment in the number of publications focused on CNTs-based electrochemical
sensors due to their highly improved analytical performance. In fact, the role of CNTs
was crucial for the development of novel architectures able to support the biorecognition
elements and new schemes for the transduction of the bioaffinity event [5,6], demonstrating
that the combination of the known advantages of electrochemical sensors [7,8] with the
unique properties of CNTs allowed the successful quantification of different biomarkers of
clinical relevance [9–11].
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Due to the strong van der Waals interaction, the CNTs are aggregated, forming bundles
in water that limit further sensing applications. Therefore, a functionalization step is
mandatory to exfoliate them [12,13]. In particular, the non-covalent functionalization
with biomolecules is demonstrated to be a very powerful strategy, not only to exfoliate the
nanostructures but also to provide them with different biorecognition properties depending
on the biomolecule (enzymes, nucleic acids, and glycobiomolecules) [6,14–20]. Recently,
we have reported the advantages of the non-covalent functionalization of MWCNTs with
human immunoglobulin G (IgG), a biomolecule that not only exfoliates the nanostructures
but also maintains the immunorecognition properties, even after the drastic treatment
used to prepare the nanohybrid [21]. The partial denaturation of IgG facilitates the non-
covalently functionalization of MWCNTs due to the stronger interaction of phenylalanine
and tyrosine residues with MWCNTs via π-π stacking and van der Waals forces [22].
López Mujica et al. [21] proposed two interesting analytical applications of GCE/MWCNT-
IgG, one original immunosensor strategy for the development of immunosensors based
on the use of the immunoglobulin that supports the MWCNTs as biorecognition layer,
without needing of an extra step for the covalent attachment of the antibody, and one an
electrochemical sensor for the quantification of uric acid taking advantage of the catalytic
activity of the exfoliated nanostructures.

The present work reports two new analytical applications of the MWCNT-IgG nanohy-
brid: (i) the label-free and non-amplified impedimetric quantification of the BRCA1 gene
without the requirement of an oriented immobilization of the DNA probe, and (ii) the si-
multaneous quantification of dopamine (Do) and uric acid (UA) in the presence of ascorbic
acid (AA), taking advantage of both, the catalytic activity of the exfoliated MWCNTs and
the charge of the protein that supports the CNTs.

The human BRCA1 (BReast CAncer 1) gen is located on the long (q) arm of chromo-
some 17 at position 21 (17q21), and is related to a protein that acts as a tumor suppressor and
repairs damaged DNA [23,24]. The mutations of this gene have been associated with the
risk of developing breast and ovarian cancer [25]. Due to its role in genetic predisposition
to cancer, the BRCA1 gen has become a significant biomarker for the early detection and
prognosis of cancer [26,27]. Currently, there are robust techniques such as sequence analysis
and multiplex ligation-dependent probe amplification (MLPA), that are used for mutation
detection. However, these techniques are expensive and require well-trained personnel [28].
In this sense, the electrochemical biosensors represent an interesting analytical tool for com-
petitive BRCA1 quantification. Several biosensors based on the use of polymers, modified
carbon nanomaterials and/or antimonene, with or without amplification schemes, have
been reported in the last years [29–40].

Do and UA are important biomarkers that coexist in biological fluids. Do is a cate-
cholaminergic neurotransmitter that plays a central role in the transmission of information
in the central nervous system, accompanied by the release of hormones during physio-
logical processes [41,42]. The abnormal Do level can be associated with schizophrenia,
Parkinson’s disease, and Alzheimer’s disease, among others [43,44]. UA is the primary
end product of purine metabolism and is present mainly in urine and blood. Abnormal
UA concentrations can be related to different pathologies like cardiovascular diseases,
hypertension, and gout [45–47]. In addition, UA is an important natural antioxidant that
demonstrates a relevant neuroprotective role in diseases related to oxidative stress. In fact,
a low serum UA concentration has been associated with an increased risk of developing
neurodegenerative diseases [48]. Thus, the efficient quantification of Do and UA is of
great importance for human and animal health monitoring [49,50]. Electrochemical sensors
have been widely used for the quantification of both analytes due to their widely known
advantages [51–55]. However, since Do and UA are oxidized at similar potentials [56], their
simultaneous quantification at common electrodes is not possible, and new strategies are
highly required to discriminate both oxidation processes.

In the following sections, we discuss the adsorption and electrooxidation of BRCA1-
DNA probe at glassy carbon electrodes (GCEs) modified with multi-walled carbon nan-
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otubes non-covalently functionalized with IgG (GCE/MWCNT-IgG), the optimization of
the hybridization conditions for BRCA1 impedimetric biosensing, and the simultaneous
and selective voltammetric determination of Do and UA in the presence of AA.

2. Materials and Methods
2.1. Reagents

MWCNTs (outer diameter: 6–13 nm, length: 2.5–20 µm, purity > 98%), human serum
immunoglobulin G (IgG) (catalog number I4506), bovine serum albumin (BSA), hydro-
quinone (HQ), benzoquinone (BQ), dopamine (Do), and uric acid (UA) were provided
by Sigma-Aldrich (St. Louis, MO, USA). Ascorbic acid (AA) was obtained from Anedra
(Troncos del Talar, Buenos Aires, Argentina). All reagents used were analytical grade. DNA
sequences, purchased from Invitrogen (Waltham, MA, USA), are the following:

Target (BRCA1): 5′-GAA CAA AAG GAA GAA AAT C-3′

DNA probe (DNAp): 5′-GAT TTT CTT CCT TTT GTT C-3′

Non-complementary sequence (NC): 5′-CTA ACC CCA CCG ACC TCG G-3′

Mismatch (Mi): 5′-GAA GAA GAA GAA GAA GAA C-3′

The enriched samples of human blood serum samples were obtained by adding the
BRCA1 gene to reconstituted samples of serum (Wiener lab., Rosario, Santa Fe, Argentina)
diluted 1/100 with 0.050 M phosphate buffer pH 7.40 + 0.500 M NaCl.

Ultrapure water (resistivity = 18.2 MΩ·cm) from a Millipore-MilliQ system (Molsheim,
France) was used for preparing all aqueous solutions.

2.2. Apparatus

The electrochemical measurements were performed with a GCE modified with the
MWCNT-IgG nanohybrid, using a platinum wire as an auxiliary electrode, and a Ag/AgCl
(3.0 M NaCl) (BASi, West Lafayette, IN, USA) as the reference electrode. All potentials
are referred to this electrode. Electrochemical impedance spectroscopy (EIS) experiments
were carried out with a PGSTAT30 potentiostat (Methrom, Herisau, Switzerland) using
1.0 × 10−3 M HQ/BQ (prepared in 0.050 M phosphate buffer pH 7.40) as a redox marker,
with the following experimental conditions: amplitude: 0.010 V, range of frequencies:
1.0 × 10−2 to 1.0 × 106 Hz, and working potential: 0.050 V. In the Nyquist plots, the symbols
correspond to the experimental points while the solid lines represent the fitting with the
model obtained with the Zview program. Voltammetric experiments were performed with
a TEQ_04 potentiostat (nanoTeq, Buenos Aires, Argentina).

A TB04TA ultrasonic cleaner (Testlab, Bernal, Argentina) was used for sonication at
40 kHz frequency and 160 W ultrasonic power.

2.3. Preparation of MWCNT-IgG Hybrid and GCE/MWCNT-IgG Platform

The preparation of MWCNT-IgG was performed according to Mujica et al. [21]. Briefly,
2.5 mg of MWCNTs were mixed with 1.0 mL of 2.0 mg mL−1 IgG aqueous solution, and
the resulting mixture was sonicated in an ultrasonic bath for 15 min.

GCEs were polished with alumina slurries of 1.0, 0.3, and 0.05 µm for 2.0 min each,
rinsed with deionized water and dried with a nitrogen stream. The modification of the
polished GCEs with the nanohybrid was carried out by deposition of 10 µL MWCNT-IgG
and further solvent evaporation at room temperature (GCE/MWCNT-IgG).

2.4. Construction of the Genosensor (GCE/MWCNT-IgG/DNAp)

First, 10 µL of 150 ppm DNAp were dropped on top of GCE/MWCNT-IgG to obtain
the BRCA1 genosensing platform. After drying, the surface was washed with 0.050 M
phosphate buffer pH 7.40 and blocked with 2.0% w/v BSA for 20 min to avoid non-specific
adsorptions (GCE/MWCNT-IgG/DNAp/BSA). Once rinsed with the phosphate buffer, the
genosensor was ready to use. The hybridization was performed by dropping 20 µL of the
target solution on the top of the nanohybrid-modified GCE for 60 min at room temperature.
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Before EIS measuring, the electrode containing the double helix was washed with 0.050 M
phosphate buffer pH 7.40 + 0.500 M NaCl (Figure 1).
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Figure 1. Schematic representation of the construction of the impedimetric genosensor for the
quantification of BRCA1 based on the MWCNT-IgG nanohybrid.

2.5. Voltammetric Detection of Do and UA

Linear sweep voltammetry (LSV) was used to quantify Do and UA in the presence of
1.0 × 10−3 M AA. The potential was scanned between −0.300 and 0.500 V at 0.050 V s−1.

3. Results and Discussion
3.1. Electrooxidation of the DNA Probe at GCE/MWCNT-IgG

Figure 2 shows linear scan voltammograms obtained in 0.050 M phosphate buffer
pH 7.40 at bare GCE (black line) and GCE/MWCNT-IgG (red line) modified by depo-
sition of 150 ppm DNAp until dryness. At bare GCE, the guanine oxidation occurs
at 1.024 V, while the adenine oxidation takes place at 1.238 V [57]. On the contrary,
at GCE/MWCNT-IgG, there is a considerable decrease in the overvoltages for guanine
(160 mV) and adenine (116 mV) electro-oxidation and a large increase in the associated cur-
rents (~2.8 times for both G and A). This important decrease in the overvoltages is attributed
to the catalytic activity of the exfoliated MWCNTs and the favorable electrostatic interaction
between the negatively charged sugar-phosphate backbone of the DNAp and the positively
charged amino acid residues (lysine, arginine, and histidine) of the IgG (isoelectric point:
7.60–9.34), that facilitates the adsorption and further electrooxidation of the nucleic acid. We
also evaluated the electrooxidation of other nucleic acids at the MWCNT-IgG nanohybrid
modified GCE like salmon sperm double-stranded DNA, polyguanine, and polyadenine,
and in all cases, there was an important decrease in the overvoltages for the oxidation of the
electroactive bases. These results demonstrate the advantages of the biofunctionalization of
MWCNTs with human IgG for the electrooxidation of nucleic acids, making possible their
sensitive detection at the electrode surface at considerably lower potentials. It is important
to mention that the platform used for the immobilization of the DNAp was stable since
electrodes stored at 4 ◦C for 3, 7, and 10 days showed responses that correspond to 95, 91,
and 86% of the original one, respectively.
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Figure 2. Linear scan voltammograms obtained for immobilization of 150 ppm DNAp on GCE (—)
and GCE/MWCNT-IgG (—). G: guanine; A: adenine. Scan rate: 0.050 V s−1. Supporting electrolyte:
0.050 M phosphate buffer pH 7.40.

3.2. Construction of BRCA1 Gene Biosensor and Analytical Applications

Electrochemical Impedance Spectroscopy is a powerful tool for the detection of
bioaffinity events at the surface of modified electrodes. In fact, when a biomolecule of
high molecular weight binds to an electrode surface by bioaffinity recognition, disturbs
the charge transfer kinetics of a redox probe. Figure 3 displays Nyquist plots obtained at
GCE/MWCNT-IgG/DNAp blocked with BSA before (red color) and after (blue color) the
interaction with 1.0 × 10−12 M BRCA1. The inset displays the Randles circuit, which was
used to fit the experimental results. In this circuit, Rs is the resistance of the solution, RCT
is the charge transfer resistance of the redox marker, Cdl is the double-layer capacitance
and W is the impedance of Warburg. The bars plot for the RCT of the HQ/BQ redox marker
obtained at the different surfaces is also shown in the inset. An increase in RCT is obtained
once the BRCA1 target interacts with GCE/MWCNT-IgG/DNAp/BSA (796 Ω versus
1296 Ω, respectively), which is due to the duplex formation resulting in a blockage of
the surface.

The effect of the hybridization time at GCE/MWCNT-IgG/DNAp/BSA was evaluated
from the changes in RCT of the redox marker in the presence of 1.0 × 10−12 M BRCA1. As
the hybridization time increases, the RCT also increases up to 60 min due to the formation
of higher amounts of double helix DNA with the consequent blockage of the surface and
lower charge transfer rate. Longer times do not result in an additional increment in RCT due
to the saturation of the DNAp available for hybridization. Therefore, 60 min was selected
as the optimum.

Figure 4a depicts the Nyquist diagrams obtained for GCE/MWCNT-IgG/DNAp/BSA
in the presence of different concentrations of BRCA1 from 1.0 × 10−15 M to 1.0 × 10−10 M
(1 fM–100 pM). Figure 4b displays the corresponding calibration plot, obtained from the
Nyquist plots shown in Figure 4a. There is a linear dependence between RCT and the logarithm
of target concentration in the whole range of concentrations evaluated with a sensitivity of
(3.0 ± 0.1) × 102 Ω M−1 (R2 = 0.9990) and a detection limit of 0.3 fM (calculated as
3 × standard deviation of the blank signal/sensitivity). The reproducibility was 4.0% for
1.0 × 10−12 M BRCA1 using five genosensors prepared with the same MWCNT-IgG nanohybrid.
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0.050 M phosphate buffer pH 7.40.

Chemosensors 2024, 12,   6 of 14 
 

 

 
Figure 3. Nyquist plots obtained for GCE/MWCNT-IgG/DNAp/BSA (•) and GCE/MWCNT-
IgG/DNAp/BSA/BRCA1 (•). Inset: Bar plots corresponding to the RCT obtained from Nyquist plots. 
Hybridization time: 60 min. Redox probe: 1.0 × 10−3 M HQ/BQ. Frequency range: 1.0 × 10−2–1.0 × 106 
Hz; amplitude: 0.010 V; working potential: 0.050 V. Supporting electrolyte: 0.050 M phosphate buffer 
pH 7.40. 

Figure 4a depicts the Nyquist diagrams obtained for GCE/MWCNT-IgG/DNAp/BSA 
in the presence of different concentrations of BRCA1 from 1.0 × 10−15 M to 1.0 × 10−10 M (1 
fM–100 pM). Figure 4b displays the corresponding calibration plot, obtained from the 
Nyquist plots shown in Figure 4a. There is a linear dependence between RCT and the log-
arithm of target concentration in the whole range of concentrations evaluated with a sen-
sitivity of (3.0 ± 0.1) × 102 Ω M−1 (R2 = 0.9990) and a detection limit of 0.3 fM (calculated as 
3 × standard deviation of the blank signal/sensitivity). The reproducibility was 4.0% for 
1.0 × 10−12 M BRCA1 using five genosensors prepared with the same MWCNT-IgG nano-
hybrid. 

 
Figure 4. (a) Nyquist plots obtained at GCE/MWCNT-IgG/DNAp/BSA for different concentrations 
of BRCA1. (b) Calibration plot obtained from Nyquist plots shown in (a). Other conditions as in 
Figure 3. 

Table 1 shows the RCT of the redox marker obtained at GCE/MWCNT-
IgG/DNAp/BSA before and after the interaction with 1.0 × 10−12 M BRCA1, 1.0 × 10−12 M 
NC, 1.0 × 10−12 M Mi, and 1/100 diluted human blood serum without and with 1.0 × 10−12 
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Figure 3.

Table 1 shows the RCT of the redox marker obtained at GCE/MWCNT-IgG/DNAp/
BSA before and after the interaction with 1.0 × 10−12 M BRCA1, 1.0 × 10−12 M NC,
1.0 × 10−12 M Mi, and 1/100 diluted human blood serum without and with 1.0 × 10−12 M
BRCA1. In the presence of NC and Mi, there is almost no change in RCT compared to the
one obtained at GCE/MWCNT-IgG/DNAp/BSA, evidencing the good selectivity of the
biosensing event. Almost no matrix effect was observed for reconstituted human blood
serum diluted with 0.050 M phosphate buffer solution + 0.500 M NaCl, while the response
for the same serum sample enriched with 1.0 × 10−12 M BRCA1 was 93.8% of the one
obtained in the presence of pure target solution. These results indicate that the proposed
biosensing platform is highly promising for further practical applications.
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Table 1. Selectivity study and proof-of-concept for the analytical application of the GCE/MWCNT-
IgG/DNAp genosensor.

Platform RCT/Ω

GCE/MWCNT-IgG/BSA (8.1 ± 0.2) × 102

GCE/MWCNT-IgG/BSA/BRCA1 (1.0 × 10−12 M) (1.3 ± 0.5) × 103

GCE/MWCNT-IgG/BSA/NC (1.0 × 10−12 M) (7.9 ± 0.5) × 102

GCE/MWCNT-IgG/BSA/Mi (1.0 × 10−12 M) (8.1 ± 0.3) × 102

GCE/MWCNT-IgG/BSA/Diluted serum 1/100 (8.0 ± 0.4) × 102

GCE/MWCNT-IgG/BSA/Diluted serum 1/100 + BRCA1 (1.0 × 10−12 M) (1.22 ± 0.09) × 103

Table 2 summarizes the analytical performance of the most relevant BRCA1 electro-
chemical biosensors reported in the last years. As can be seen, GCE/MWCNT-IgG/DNAp
presents a very competitive analytical performance, with a lower detection limit [29–35] or
comparable [36,37] than those shown in the table. Wang et al. [29] proposed a differential
pulse voltammetric (DPV) biosensor based on a nanocomposite of the conductive polymer
poly(3,4-ethylenedioxythiophene) (PEDOT) and a novel antifouling polypeptide (PEP)
electrodeposited on the surface of a GCE. PEP acted both as an inhibitor of non-specific
protein adsorption and as a binder of the DNAp. Methylene blue (MB) was used as a redox
indicator and the concentration of BRCA1 was obtained from the changes in its DPV cur-
rents produced as a consequence of the DNAp-BRCA1 hybridization, allowing a detection
limit of 3.4 fM. Senel et al. [30] presented another DPV biosensor for the BRCA1 detection
using Au electrodes modified with ferrocene (Fc)-cored poly(amidoamine) dendrimers
(PAMAM) as support for DNAp, where Fc is a redox marker, and glutaraldehyde works
as a linker between PAMAM and DNAp. After a hybridization time of 60 min with the
BRCA1 target, Au/Fc-PAMAM/DNAp showed a wide linear range (1.3–20 nM) but a high
detection limit (0.38 nM). A graphene oxide (GO) and ionic liquid (IL) composite-modified
pencil graphite electrode (PGE) was developed by Işın et al. [31] as an electrochemical
platform for BRCA1 quantification. After solution-phase hybridization, the DNAp-BRCA1
hybrids were immobilized on the PGE-GO-IL surface and monitored through the direct
measurement of the guanine oxidation signal by DPV, obtaining a detection limit value
of 1.48 µg mL−1 (~6.7 nM). Another strategy for BRCA1 quantification was proposed by
using a carbon paste electrode (CPE) modified with electrospinning ribbon conductive
nanofibers of poly(ethersulfone) and MWCNTs as a platform for the immobilization of the
DNAp and EIS to transduce the hybridization event. Ehzari et al. [32] reported that the
EIS signals were proportional to the BRCA1 concentration up to 14 nM with a detection
limit of 2.4 pM. An improved detection limit (0.57 fM) was reported by Ehzari et al. [33]
using an electrochemical biosensor with a sandwich-type hybridization scheme based on
(i) MWCNTs and a core-shell structured magnetic imine-containing metal-organic frame-
work (MOF) (MWCNT/Fe3O4@MOF), and (ii) two distinct DNAs, DNAp and ferrocene-
functionalized reporter DNA (Fc-DNAr), capable of simultaneously binding to BRCA1.
MWCNT/Fe3O4@MOF allowed the improvement in the electron transfer between the
electroactive species and the electrode and the consequent enhancement of the DPV out-
put signal by redox recycling of the (Fe(CN)6

4−/3−) species. García-Mendiola et al. [34]
developed a sensor based on the deposition of a few layers of antimonene on Au screen-
printed electrodes and further non-covalent functionalization of antimonene with DNAp
to develop a specific BRCA1 sensor. The analytical signal was obtained from the DPV
signal of thionine (as a redox indicator) accumulated at the immobilized DNAp before and
after hybridization with BRCA1. The detection limit of this genosensor was found to be
28.3 pg µL−1 (~128 pM). Li et al. [35] reported a “signal on-off-off” amplification strategy for
the electrochemical detection of the BRCA1 gene. For this, a stem-loop DNAp modified at
5′-end with a thiol group and at 3′-end with MB, was self-assembled on an electrodeposited
nanoAu surface, which strengthened the MB electrochemical signal and indicated “signal
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on”. Then, the BRCA1-DNAp hybridization made MB away from the nanoAu surface and
reduced its signal, indicating “signal off”. Finally, a further decrease of MB signal was
recorded using a duplex-specific nuclease to cleave the DNAp-BRCA1 hybrid, which also
indicated the “signal off”. Despite the amplification strategy, this genosensor shows a much
higher detection limit (52 pM) than our sensor (0.3 fM). Xia et al. [36] obtained a similar
detection limit (0.301 fM) to ours with a label-free biosensor based on three-dimensional re-
duced graphene oxide (3D-rGO) and polyaniline (PANI) nanofibers assembled on the GCE
surface. The DNAp for BRCA1 was immobilized to GCE/3D-rGO-PANI via the formation
of phosphoramidate bonds between its phosphate group at 5′-end and the amino group
of PANI. After hybridization, the analytical signal was obtained from the DPV response
of MB embedded into the duplex DNA. A linear range between 1.0 fM and 10.0 pM and
a detection limit of 0.3 fM for BRCA1 was reported by Cui et al. [37]. They developed an
impedimetric genosensor by applying a self-assembled monolayer of zwitterionic peptides
to covalently bind DNAp and prevent non-specific adsorption on the sensing surface
(antifouling ability).

Table 2. Comparison of the analytical characteristics of electrochemical biosensors for BRCA1.

Platform Detection Limit Linear Range Ref.

Electrochemical Technique: DPV

GCE modified with an electrodeposited nanocomposite of
PEP-doped PEDOT 3.4 fM 0.01 pM to 1.0 nM [29]

Au modified with Fc-cored PAMAM as support for DNAp 0.38 nM 1.3 nM to 20 nM [30]

PGE modified with a GO and IL composite 6.7 nM --- [31]

AuSPE modified with antimonene non-covalently
functionalized with DNAp 28.3 pg µL−1 (~128 pM) 0.1 to 20.0 ng µL−1

(~452 pM to ~90 nM)
[34]

Electrodeposited nanoAu surface as support for a
stem-loop DNAp modified with a thiol group (5′-end) and
MB (3′-end)

52 pM 5.0 nM to 70 nM [35]

GCE modified with 3D-rGO and PANI nanofibers 0.301 fM 1.0 fM to 100 nM [36]

Electrochemical Technique: EIS

CPE modified with electrospun conductive nanofibers of
PES and MWCNTs as platform to immobilize DNAp 2.4 pM 5.0 pM to 14 nM [32]

GCE modified with MWCNTs and MOF with Fe3O4
nanoparticles core to immobilize DNAp 0.57 fM 1.0 fM to 100 pM [33]

Au modified with an antifouling zwitterionic peptide
SAM to covalently bind DNAp 0.3 fM 1.0 fM to 10.0 pM [37]

Au modified with MXene/AuNP@BLM to immobilize
SH-DNAp 1.0 zM 1.0 zM to 1.0 µM [38]

GCE modified with rGO and PANHS to graft DNAp 0.35 aM 1.0 aM to 100 pM [39]

GCE modified with ePDA/TA/tetraPEG/eAuNP to
immobilize SH-DNAp 0.05 fM 0.1 fM to 10 pM [40]

GCE modified with MWCNT-IgG/DNAp 0.3 fM 1.0 fM to 100 pM This work

Abbreviations: DPV: differential pulse voltammetry; GCE: glassy carbon electrode; PEP: antifouling polypeptide;
PEDOT: poly(3,4-ethylenedioxythiophene); Au: gold electrode; Fc: ferrocene; PAMAM: poly(amidoamine)
dendrimers; DNAp: deoxyribonucleic acid probe; PGE: pencil graphite electrode; GO: graphene oxide;
IL: ionic liquid; AuSPE: gold screen-printed electrode; MB: methylene blue; rGO: reduced graphene oxide;
PANI: poly(aniline); EIS: electrochemical impedance spectroscopy; CPE: carbon paste electrode;
PES: poly(ethersulfone); MWCNTs: multi-walled carbon nanotubes; MOF: metal-organic framework;
SAM: self-assembled monolayer; AuNP: gold nanoparticles; BLM: biomimetic bilayer lipid membrane;
SH-DNAp: thiolated deoxyribonucleic acid probe; PANHS: 1-pyrenebutyric acid-N-hydroxysuccinimide;
ePDA: electropolymerized poly(dopamine); TA: tannic acid; tetraPEG: four-armed poly(ethylene glycol);
eAuNP: electrodeposited gold nanoparticles.
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The use of MXene modified with a AuNPs decorated-biomimetic bilayer lipid mem-
brane (AuNP@BLM) [38], rGO or MWCNTs modified with 1-pyrenebutyric acid-N-
hydroxysuccinimide (PANHS) [39], and a hydrophilic material based on electropolymerized
poly(dopamine), tannic acid (TA), and four-armed poly(ethylene glycol) (ePDA/TA/tetraPEG)
with electrodeposited AuNPs [40], presented better detection limits than our biosensor.
Divya et al. [38] reported the construction of a label-free electrochemical genosensor based
on the synergistic combination of AuNP@BLM with 2D MXene nanosheets and the use
of SH-DNAp that allowed an expanded linear range from 10 zM to 1 µM with a de-
tection limit as low as 1 zM. Benvidi et al. [39] proposed the impedimetric detection of
BRCA1 via GCEs modified with rGO and MWCNTs, using PANHS as a suitable base to
graft DNAp on the electrode surface and Tween to remove its non-specific adsorption.
EIS responses for different concentrations of BRCA1 at GCE/rGO/PANHS/DNAp or
GCE/MWCNT/PANHS/DNAp showed a wide linear range that made possible its detec-
tion at levels from 0.35 to 3.1 aM, respectively. In addition, Chen et al. [40] fabricated an
electrochemical biosensor for BRCA1 quantification by modifying the GCE surface with
ePDA/TA/tetraPEG using the layer-by-layer technique. After electrodeposition of AuNPs
and immobilization of SH-DNAp on GCE/ePDA/TA/tetraPEG/AuNP, the hybridization
experiments were performed by immersing the resulting sensor into different target con-
centrations (0.1 fM–10 pM), allowing BRCA1 to be detected by EIS with a detection limit
of 0.05 fM. This comparison allows us to conclude that our biosensor is competitive since,
even when the biosensors reported in [37–39] present better detection limits, they involve
more than one nanomaterial associated with lipid membranes, linkers, or polymers, at
variance with our BRCA1 genosensor which only contains MWCNTs and IgG.

3.3. Simultaneous Detection of Do and UA in the Presence of AA

The voltammetric response of a mixture of 1.0 × 10−3 M AA, 1.0 × 10−3 M Do, and
1.0 × 10−3 M UA obtained at bare GCE is displayed in the inset of Figure 5. Under these
conditions, it is not possible to distinguish the three processes due to the proximity of the
oxidation peak potentials. At variance with this behavior (Figure 5), due to the catalytic
activity of the efficiently exfoliated MWCNTs, three very well-defined oxidation current
peaks are observed in the linear scan voltammogram obtained at GCE modified with
MWCNT-IgG for a mixture containing 5.0 × 10−4 M of Do, UA and AA at −0.013 V,
0.147 V, and 0.272 V, for AA, Do and UA, respectively.
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Based on the different electrochemical behavior of AA, Do, and UA at the surface
of GCE/MWCNT-IgG, this sensor allowed us the simultaneous quantification of Do and
UA in the presence of AA. As can be seen in Figure 5b,c, there was a linear relationship
between 1.0 × 10−6 M and 5.0 × 10−4 M and detection limits of 0.3 µM for both analytes,
with sensitivities of (3.8 ± 0.2) × 104 µA M−1 (R2 = 0.985) and (1.44 ± 0.05) × 105 µA M−1

(R2 = 0.990) for Do and UA, respectively. Therefore, the successful exfoliation of MWCNTs
with IgG allows the development of a very active electrochemical platform that makes
possible the resolution of complex mixtures like Do, UA, and AA.

Table 3 compares the analytical characteristics of our sensor with those electrochemical
sensors based on CNTs for the simultaneous quantification of Do and UA published
since 2021 [58–67]. Among them, Liao et al. [60] reported detection limits for Do and
UA comparable and higher to our sensor, respectively; Rattanaumpa et al. [63] presented
detection limits higher and comparable than our sensor for Do and UA, respectively, while
Li et al. [66] reported comparable detection limits to our sensor for both compounds. The
rest of the sensors included in the table [58,59,61,62,64,65,67], allowed the detection of lower
levels of Do and UA than the sensor proposed here. However, it is important to remark
that in all these cases, at variance with our sensing platform, these sensors involve not only
CNTs, but also metal [58] and covalent [62,64,67] organic frameworks; a graphenaceous
material [62], polymers like poly(melamine) [59], cyclodextrin, and polyoxometalate [62],
making the preparation of the sensor more complex and time-consuming. Therefore, our
sensor, which only involves MWCNTs dispersed in IgG, represents a very competitive
alternative for the simultaneous quantification of Do and UA in a simple, fast, and label-free
way, without any amplification scheme.

Table 3. Comparison of detection limits and linear ranges for Do and UA obtained with
GCE/MWCNT-IgG and different CNT-modified GCE.

Platform
Detection Limit

(µM)
Linear Range

(µM) Ref.
Do UA Do UA

Electrochemical Technique: DPV

GCE modified with MWCNTs and a Zr-based MOF (DUT-67) grown on
ZnCo2O4 nanoflowers 0.012 0.0087 1.0 to 180.0 1.0 to 180.0 [58]

GCE modified with a cMWCNT/CD-PMEL nanocomposite obtained by
polymerization of CD-fixed MEL residues 0.023 0.064 0.1 to 10 0.1 to 200 [59]

GCE modified with FeNPs encapsulated in BNC 0.8 0.28 1 to 630 0.5 to 2065 [60]

GCE modified with cMWCNTs and TFPB-TAPB-COF 0.073 0.063 0.6 to 250 0.6 to 250 [61]

GCE modified with a rGO-β-CD-cMWCNT-rPOM tetracomponent hybrid 0.04 0.05 0.5 to 300 1 to 400 [62]

GCE modified with microporous carbon 0.2 1.7 10 to 150 10 to 150 [63]

GCE modified with DBTA-TAPT-COF, La2O3, and cMWCNTs 0.039 0.024 2 to 450 0.4 to 450 [64]

GCE modified with a LaV-MWCNT nanocomposite 0.046 0.025 2 to 100 2 to 100 [65]

GCE modified with Gr, SWCNTs, eCeNPs, eCuNPs, and Tween 20 0.0072 0.0063 0.1 to 100 0.08 to 100 [66]

GCE modified with eAuNPs and a TFPPy-PDA-COF—aMWCNT dispersion 0.21 0.29 0.7 to 108 0.97 to 200 [67]

Electrochemical Technique: LSV

GCE modified with MWCNT-IgG 0.33 0.33 1 to 500 1 to 500 This work

Abbreviations: DPV: differential pulse voltammetry; GCE: glassy carbon electrode; PEP: antifouling polypeptide;
PEDOT: poly(3,4-ethylenedioxythiophene); Au: gold electrode; Fc: ferrocene; PAMAM: poly(amidoamine)
dendrimers; DNAp: deoxyribonucleic acid probe; PGE: pencil graphite electrode; GO: graphene oxide;
IL: ionic liquid; AuSPE: gold screen-printed electrode; MB: methylene blue; rGO: reduced graphene ox-
ide; PANI: poly(aniline); CPE: carbon paste electrode; PES: poly(ethersulfone); MWCNTs: multi-walled car-
bon nanotubes; MOF: metal-organic framework; SAM: self-assembled monolayer; AuNP: gold nanoparticles;
BLM: biomimetic bilayer lipid membrane; SH-DNAp: thiolated deoxyribonucleic acid probe; PANHS:
1-pyrenebutyric acid-N-hydroxysuccinimide; ePDA: electropolymerized poly(dopamine); TA: tannic acid;
tetraPEG: four-armed poly(ethylene glycol); eAuNP: electrodeposited gold nanoparticles; LSV: linear
sweep voltammetry.
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4. Conclusions

The results presented here demonstrate the advantages of using GCEs with MWCNTs
non-covalently biofunctionalized with IgG for the development of two electrochemical
sensors. One of them is for the highly sensitive and selective impedimetric quantification
of BRCA1 due to the facilitated adsorption of the DNAp at the resulting GCE/MWCNTs-
IgG, demonstrating that the interaction of DNAp with MWCNT-IgG does not affect in a
significant way the recognition properties of the DNAp. The other one was focused on the
voltammetric quantification of Do and UA in the presence of AA, due to the electrocatalytic
activity of the exfoliated MWCNTs.
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