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A Characterization of Best ϕ-Approximants
with Applications to Multidimensional

Isotonic Approximation

F. D. Mazzone and H. H. Cuenya

Abstract. Some properties of best monotone approximants in several variables are
obtained. We prove the following abstract characterization theorem. Let (�,A, µ) be
a measurable space and let L ⊂ A be a σ -lattice. If f belongs to a Musielak–Orlicz
space Lϕ(�,A, µ), then there exists a σ -algebra A f ⊂ A such that g is a best ϕ-
approximant to f from Lϕ(L) iff g is a best ϕ-approximant to f from Lϕ(A f ). The
σ -algebra A f depends only on f . When � ⊂ Rn and Lϕ(L) is the set of monotone
functions in several variables, we give sufficient conditions on the geometry of � to
obtain a uniqueness theorem. This result extends and unifies previous ones. Finally, we
prove a coincidence relation between a function and its best ϕ-approximant. Our main
results are new, even in the classical Lebesgue spaces L p .

1. Introduction

This work is a continuation of our previous paper [16]. Our primary goal is to characterize
best ϕ-approximants in Musielak–Orlicz spaces Lϕ by elements of the convex cone
Lϕ(L), where L is a σ -lattice (see Definitions 2.1 and 2.4). We have resolved this
problem in [16] in the special case Lϕ = L1 and L a totally ordered σ -lattice. Here
we show that best ϕ-approximants to f from Lϕ(L) are best ϕ-approximants to f from
Lϕ(A f ), where A f is a σ -algebra depending only on f (see Theorem 3.6). This result
transforms a best approximation problem from a convex set into a best approximation
problem from a subspace.

When L is a totally ordered σ -lattice, we show that the σ -algebra A f coincides with
the σ -algebra generated byL outside the atoms ofA f (see Lemma 4.1). This fact, applied
to the cone of nondecreasing functions on [0, 1], leads to the following well-known result
(see [7], [15]): a nondecreasing function g is a best ϕ-approximant to f by nondecreasing
functions iff g is a constant best ϕ-approximant on each atom of A f and f = g outside
the atoms of A f (see Theorem 4.3 and Corollary 4.4). In addition, our results embrace
the discrete case studied in [14]. Therefore, Theorem 3.6 unifies and extends several
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previously known characterizations (see [7], [15], [14], [16]). In the multidimensional
case, it seems that Theorem 3.6 was unknown even in the Hilbert space L2.

The second objective of this paper is to unify and to extend the uniqueness results of
[4], [8], [15]. Under certain continuity conditions on f, uniqueness of best approximants
holds (see [4] for an approximately continuous f in L1((0, 1)n); [8] for continuous f
in the Orlicz space Lϕ([0, 1]n) and [15] for approximately continuous f in the Orlicz
space Lϕ([0, 1])). We obtain uniqueness of best approximants (see Theorem 5.2) on the
Musielak–Orlicz space Lϕ(�) with � ⊂ Rn under the following conditions:

(i) � is an open set;
(ii) � ∩ R is connected for certain parallelepipeds R with faces parallel to the coor-

dinate’s hyperplanes;
(iii) f is an approximately continuous function.

The main idea in the proof of Theorem 5.2 is the following: if g1 and g2 are two best
approximants to f, then it is possible to “separate” the connected components of the
set {g1 < a < b < g2} by sets in L (in the one-dimensional case that set has only
one component). Moreover, we give an example of a connected and open set � ⊂ R2

and a continuous function f such that uniqueness fails to hold. We point out that these
techniques provide new results, even in the case Lϕ = L1, when � is not a cube.

We showed in [16] that in the multidimensional case it is not necessarily true that
a best approximant to f coincides with f outside the atoms of A f . In this paper, we
describe a set B1 ⊂ �, where the equality f = g holds. This result generalizes [15,
Theorem 4(b)] in four aspects:

(i) we consider Musielak–Orlicz spaces;
(ii) we deal with the multidimensional case;

(iii) in [15] the following condition is assumed: f is essentially bounded on a certain
set or ϕ has a bounded right derivative;

(iv) in the one-dimensional case, our set B1 may be bigger, in the almost everywhere
(a.e.) sense, than the corresponding set B2 in [15].

In fact, we give a trivial example where µ(B2) = 0 and µ(B1) = µ(�), here µ is the
Lebesgue measure. We believe that points (ii) and (iv) are the more important ones.

Other references concerning best approximants by monotone functions are [1], [5],
[13].

The remaining part of this paper is organized as follows. Section 2 consists mainly
of notations and preliminary results. In Section 3 we establish a relation between best
approximants and generalized Lebesgue–Radon–Nikodym (LRN) derivatives (see The-
orem 3.2). Generalized LRN derivatives were introduced in [2], [9] as a generalization
of the notion of conditional expectation and conditional mean. In [2] it was proved that
LRN derivatives are solutions of certain variational problems, which include the best ap-
proximation problem in Musielak–Orlicz spaces. Therefore, Theorem 3.2 is essentially
known. It seems that paper [2] remained unknown approximation theorist to, as a conse-
quence of the fact that the connection between LRN derivatives and best approximants is
only implicit in [2]. Thus, several results in [2] were independently rediscovered in others
papers (see [12], [7], [15], [14], [16]). The main result in Section 3 is our characteriza-
tion theorem (Theorem 3.6). In Section 4 we present some consequences of Theorem 3.6
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when L is totally ordered. In Section 5 we give new uniqueness theorems. Finally, in
Section 6, we prove a coincidence theorem in several variables.

2. Notations and Preliminary Results

Let (�,A, µ) be a complete finite measure space. We denote by M = M(�,A, µ) the
set of all A-measurable real-valued functions.

Definition 2.1. A set L ⊂ A is called a σ -lattice if ∅, � ∈ L, L is closed under
countable intersections and countable unions. The set L is called a complete σ -lattice iff
L is a σ -lattice and C ∈ L, µ(C �C ′) = 0 imply C ′ ∈ L. For L a σ -lattice, we denote
byL the σ -lattice {D : �\D ∈ L}. A function f is calledLmeasurable if { f > a} ∈ L,
for every a ∈ R.

Henceforth we assume that L denotes a complete σ -lattice.
We give two classical examples of σ -lattices extensively studied in the literature. The

first one embraces the usual class of nondecreasing functions on [0, 1]n (see, e.g., [3],
[4], [7], [15]), and the second one deals with the discrete case (see, e.g., [1], [14], [18]).

Example 2.2. Let� be a measurable set in Rn and µ the Lebesgue measure on it. For
x, y ∈ � we say that x ≤ y iff xi ≤ yi , i = 1, . . . , n, where x = (x1, . . . , xn) and
y = (y1, . . . , yn). A set C ⊂ � ⊂ Rn is called a final set iff x ∈ C and x ≤ y imply
y ∈ C . The next set Ln = Ln(�) is the standard complete σ -lattice. The σ -lattice Ln is
the class of those sets C for which there exists a final set C̃ such that µ(C � C̃) = 0. As
usual, a real function g : �→ R is called nondecreasing iff g(x) ≤ g(y) when x ≤ y.
It is easy to check that f is Ln-measurable iff there exists a nondecreasing function g
with g = f µ-a.e.

Example 2.3. Let � = N1 where N1 is a subset of N. Let L∗ ⊂ 2N1 be the σ -lattice
containing all sets of the form {m ∈ N1 |m > n}, with n ∈ N. Now it is easy to see that
f : N1 → R is L∗-measurable iff f is nondecreasing.

We consider a function ϕ : �× R → R+ with the following properties:

(i) ϕ(·, a) is a measurable function for every a ∈ R;
(ii) ϕ(ω, a) = 0 iff a = 0;

(iii) ϕ(ω, ·) is an even, nonnull, and convex function.

For ϕ satisfying (i)–(iii) we denote ϕ+ (ϕ−) as the right (left) derivative of ϕ with
respect to the second variable.

Definition 2.4. Let ϕ be a function satisfying the conditions (i)–(iii). We define the
Musielak–Orlicz space (or generalized Orlicz space) Lϕ by

Lϕ :=
{

f ∈ M | ∃λ > 0 :
∫
�

ϕ(ω, λ f (ω)) dµ <∞
}
.
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The Musielak–Orlicz space Lϕ becomes a Banach space endowed with the norm

‖ f ‖ϕ := inf

{
λ > 0 :

∫
�

ϕ

(
ω,

f (ω)

λ

)
dµ ≤ 1

}
.

If ϕ does not depend on the first variable, then Lϕ is called an Orlicz space.

For further information about these spaces the reader is referred to [17], [10].
Throughout this paper we assume that the function ϕ verifies the following two addi-

tional conditions:

(iv) ϕ(ω, ·) satisfies a uniformly �2 condition. That is, there are positive constants
M and A0, independent of ω, such that, for all ω ∈ � and |a| ≥ A0,

ϕ(ω, 2a) ≤ Mϕ(ω, a).

Under this condition, it is easy to check that f ∈ Lϕ iff
∫
�

ϕ(ω, λ f (ω)) dµ <∞.

for every λ > 0.
(v) Lϕ contains all constant functions.

We will often write
∫
�
ϕ(ω, f ) dµ instead of

∫
�
ϕ(ω, f (ω)) dµ.

Lemma 2.5. If f, g ∈ Lϕ, then ϕ+(ω, f (ω))g(ω) is an integrable function.

Proof. Using (v) the proof follows the same lines as [15, p. 1].

For a σ -lattice L we denote by Lϕ(L) the convex closed cone of all L-measurable
functions in Lϕ . Now, as usual, we say that g ∈ Lϕ(L) is a best ϕ-approximant to
f ∈ Lϕ from Lϕ(L) iff

∫
�

ϕ(ω, f − g) dµ = min
h∈Lϕ(L)

∫
ϕ(ω, f − h) dµ.

We point out that the existence of best ϕ-approximants was proved in [10]. We denote
by µ( f,L) the set of all best ϕ-approximants to f from Lϕ(L). Following a similar
argument given in [11, Theorem 14] we can show that µ( f,L) has a minimum and a
maximum element, i.e., there exist L( f,L) ∈ µ( f,L) and U ( f,L) ∈ µ( f,L) such that,
for all g ∈ µ( f,L),

L( f,L) ≤ g ≤ U ( f,L).
Now we recall some concepts from [2].

Definition 2.6. Let ν be a signed measure onA. We say that C ∈ L is a ν-positive set,
if for all D ∈ L we have ν(C ∩ D) ≥ 0. A set D ∈ L is called ν-negative, if for all
C ∈ L we have ν(C ∩ D) ≤ 0.
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It is easy to prove the following lemma:

Lemma 2.7. The class of allν-positive (negative) sets is closed under countable unions.

Let f ∈ Lϕ . For each g ∈ Lϕ(L) and a ∈ R we define the measures

µ+
g (A) =

∫
A
ϕ+(ω, f − g) dµ, µ−

g (A) =
∫

A
ϕ−(ω, f − g) dµ,(1)

and

µ+
a (A) =

∫
A
ϕ+(ω, f − a) dµ, µ−

a (A) =
∫

A
ϕ−(ω, f − a) dµ.(2)

We will need the following result which is a consequence of the Cavallieri principle:

Lemma 2.8. For all f ∈ Lϕ we have µ+
a = µ−

a for a.e. a ∈ R.

Proof. We consider the product measure µ× dx on�×R, where dx is the Lebesgue
measure on R. For A ⊂ � × R we denote Aω := {a : (ω, a) ∈ A} and Aa := {ω :
(ω, a) ∈ A}. We define the map T : � × R → � × R by T (ω, a) = (ω, f (ω) − a).
We will show that

µ× dx(A) = µ× dx(T (A)),

for all µ× dx-measurable sets A. From the Fubini theorem we get

µ× dx(A) =
∫
�

|Aω| dµ =
∫
�

|T (A)ω| dµ = µ× dx(T (A)).

Now we consider the set A := {(ω, a) : ϕ+(ω, a) > ϕ−(ω, a)}. Then A is µ × dx-
measurable and the section Aω is at most countable, for every ω ∈ �. Therefore, by the
Fubini theorem we have that µ×dx(A) = 0. Hence µ×dx(T (A)) = 0. Now, applying
Fubini’s theorem again, we have

0 = µ× dx(T (A)) =
∫ +∞

−∞
µ(T (A)a) da.

Thus, µ(T (A)a) = 0 for a.e. a ∈ R. That is, for a.e. a ∈ R we have ϕ+(ω, f (ω)− a) =
ϕ−(ω, f (ω)− a) µ-a.e.

Definition 2.9. For f ∈ Lϕ set C( f ) := {a : µ+
a = µ−

a }.

Let us recall the following definition from [2]:

Definition 2.10. Let {νa}a∈R be a family of measures on �. A L-measurable function
g is called a Lebesgue–Radon–Nikodym function (LRN function) of {νa} iff:

(i) {g > a} is νa-positive for all a ∈ R.
(ii) {g < b} is νb-negative for all b ∈ R.
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Remark 1. In Definition 2.10 the set R may be replaced for a dense subset Q (see [2,
p. 588]). On the other hand, it is easy to check that (see [2, Theorem 1.8]) g is an LRN
function of {νa} iff there exists a dense set A ⊂ R such that {g ≥ a} is a νa-positive set
and {g ≤ a} is a νa-negative set for every a ∈ A.

3. Characterizations of Best ϕ-Approximants

In this section we give three characterizations of best ϕ-approximants. The first two
are essentially known and, for the sake of completeness, we give a short proof of these
results.

Lemma 3.1. Let f ∈ Lϕ,L ⊂ A be a σ -lattice and let g ∈ Lϕ(L). Then the following
statements are equivalent:

(i) g ∈ µ( f,L).
(ii) For every h ∈ Lϕ(L) we have:

(a)
∫
{g>h}

ϕ+(ω, f − g)(g − h) dµ ≥ 0.

(b)
∫
{g<h}

ϕ−(ω, f − g)(g − h) dµ ≥ 0.

Proof. Let h ∈ Lϕ(L). We consider the function

M(t) =
∫
ϕ(ω, f − g − t (h − g)) dµ.

Then M is a convex function and g is a best ϕ-approximant iff

M ′
+(0) ≥ 0,

where M ′
+ denotes the right derivative of M . As a consequence of Lemma 2.5, the last

inequality implies

0 ≤
∫
{g>h}

ϕ+(ω, f − g)(g − h) dµ+
∫
{g<h}

ϕ−(ω, f − g)(g − h) dµ.

The inequalities (a) and (b) are obtained by replacing (in the last inequality) h by h ∧ g
and h ∨ g, respectively. On the other hand, (a) and (b) imply M ′

+(0) ≥ 0.

Theorem 3.2. Let f ∈ Lϕ and let L ⊂ A be a σ -lattice. Then the following facts are
equivalent:

(i) g ∈ µ( f,L).
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(ii) The set {g > a} is µ+
g -positive and the set {g < a} is µ−

g -negative for every
a ∈ R.

(iii) g is an LRN function for the families {µ±
a }a∈R.

Proof. (i) ⇒ (ii). Let D ∈ L. We define the sets A := {g > a} and An := {g >

a + 1/n}, with n ∈ N. Set

gn(w) :=



g(w), if w /∈ A ∩ D,
a, if w ∈ (A − An) ∩ D,
g(w)− 1/n, if w ∈ An ∩ D.

Then gn ∈ Lϕ(L). Now, replacing gn in formula (ii)(a) of Lemma 3.1, we get

0 ≤
∫
(A\An)∩D

ϕ+(ω, f − g)(g − a) dµ+ 1

n

∫
An∩D

ϕ+(ω, f − g) dµ.

Hence, multiplying by n in the above inequality and taking the limit as n → ∞ we
obtain ∫

A∩D
ϕ+(ω, f − g) dµ ≥ 0,

i.e., {g > a} is aµ+
g -positive set. A similar argument shows that {g < a} is aµ−

g -negative
set.

(ii) ⇒ (iii). For a ∈ C( f ) the proof follows immediately from the monotonicity of
ϕ±. For the general case, we apply Remark 1 and Lemma 2.8.

(iii) ⇒ (ii). For a ∈ R, D ∈ L, k ∈ N ∪ {0}, and n ∈ N we define the sets
A := {a < g} ∩ D and Ak,n := {a + k/n < g ≤ a + (k + 1)/n} ∩ D. Then

µ+
a+k/n(Ak,n) =

∫
Ak,n

ϕ+

(
ω, f − a − k

n

)
dµ ≥ 0.

Therefore, from the monotonicity of ϕ+, we get∫
Ak,n

ϕ+

(
ω, f − g + 1

n

)
dµ ≥ 0.

Now, summing over k = 0, 1, . . . , we obtain∫
A
ϕ+

(
ω, f − g + 1

n

)
dµ ≥ 0.

Since ϕ+ is a right continuous function, taking the limit n → ∞ we obtain thatµ+
g (A) =

µ+
g (D ∩ {a < g}) ≥ 0, i.e., {a < g} is a µ+

g -positive set. A similar argument shows that
{g < a} is a µ−

g -negative set.
(ii) ⇒ (i). Let h ∈ Lϕ(L). Integrating on a in the inequality∫

{h<a}∩{a<g}
ϕ+(ω, f − g) dµ ≥ 0

and applying the Fubini theorem we get inequality (ii)(a) in Lemma 3.1. Inequality (ii)(b)
follows in a similar way.
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For a ∈ R set La for the class of all sets C ∈ L such that C is µ+
a -positive and �\C

is µ+
a -negative. Now we define the set

L̃ f :=
⋃

a∈C( f )

La .

Henceforth, when a ∈ C( f ) we denote by µa the measure µ+
a = µ−

a .
As a consequence of Theorem 3.2 and the above notations we have

Corollary 3.3. g ∈ µ( f,L) iff for every a ∈ C( f ), we have {g > a} ∈ La .

Proof. If g ∈ µ( f,L), a ∈ C( f ), and b ∈ R, with b > a, we have that {g > a} is
µa-positive and {g < b} is µ−

b -negative. Hence∫
{g<b}∩C

ϕ−(ω, f − b) dµ ≤ 0,

for every C ∈ L. Taking limit for b ↓ a in the above inequality we getµ−
a ({g ≤ a}∩C) ≤

0. Since a ∈ C( f ) we obtain µ+
a ({g ≤ a} ∩ C) ≤ 0. Therefore, the set {g > a} ∈ La .

Now suppose that {g > a} ∈ La, for every a ∈ C( f ). Therefore, the set {g > a} is
µa-positive. On the other hand, for b < a and b ∈ C( f ), we have∫

{g≤b}∩C
ϕ+(x, f − b) dx ≤ 0,

for every C ∈ L. Taking limit for b ↑ a in the last inequality we getµa({g < a}∩C) ≤ 0.
Therefore, the function g is an LRN function (see Remark 1) of {µ+

a }.

Remark 2. We observe that we can put {g ≥ a} instead of {g > a} ∈ La in Coro-
llary 3.3.

The following lemma plays a central role in many of our considerations:

Lemma 3.4. Let a, b ∈ C( f ),with a ≤ b,C1 ∈ La, and C2 ∈ Lb. Then C1∩C2 ∈ Lb

and C1 ∪ C2 ∈ La . In particular, the class L̃ f is closed under finite unions and finite
intersections, i.e., L̃ f is a lattice.

Proof. We have that�\C1 isµa-negative. Therefore, from the inequalityµa ≥ µb,we
have that �\C1 is µb-negative. Since �\C2 is also negative, the set (�\C1) ∪ (�\C2)

is µb-negative. On the other hand, suppose that there exists D ∈ L such that

µb(C1 ∩ C2 ∩ D) < 0.(3)

We consider the set D′ = (�\C1) ∪ (C1 ∩ D) = (�\C1) ∪ D ∈ L. Since µb ≤ µa and
C1 ∈ La we get

0 ≤ µb(C2 ∩ D′)
= µb(C2\C1)+ µb(C1 ∩ C2 ∩ D)

< µb(C2\C1)

≤ µa(C2\C1) ≤ 0.
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Therefore, inequality (3) is false. This proves C1 ∩C2 ∈ Lb. The relation C1 ∪C2 ∈ La

follows analogously.
Finally, the second part of the lemma follows as a direct consequence of the first one.

Definition 3.5. We denote by L f (A f ) the lower complete σ -lattice (σ -algebra) con-
taining L̃ f .

We note that C ∈ L f iff, for every ε > 0, there exists C∗ ∈ L̃ f such that

µ(C �C∗) < ε.(4)

and A ∈ A f iff for every ε > 0 there exist sets Ci ∈ L̃ f , Di ∈ L̃ f , i = 1, . . . , n such
that

µ

(
A�

n⋃
i=1

Ci ∩ Di

)
< ε.(5)

Moreover, it is not hard to prove that we can suppose the sets Ci ∩ Di , i = 1, . . . , n, are
mutually disjoint.

Next we present the main result of this section.

Theorem 3.6. Let f ∈ Lϕ and let L be a σ -lattice. Then the following statements are
equivalent:

(i) g ∈ µ( f,L).
(ii) g ∈ µ( f,A f ) ∩ Lϕ(L).

Proof. We assume g ∈ µ( f,L) and a ∈ C( f ). Thus {g > a} ∈ La ⊂ L f . Now,
from the density of C( f ) in R we obtain that g is an L f -measurable function (thus g is
A f -measurable). In order to prove that g ∈ µ( f,A f ),we need to show that g is an LRN
function (with respect toA f ) of the family {µ+

a : a ∈ R}. That is, for every A ∈ A f and
a ∈ R, we must prove

µ+
a ({g > a} ∩ A}) ≥ 0 and µ+

a ({g < a} ∩ A}) ≤ 0.(6)

From (5) it is sufficient to prove the inequalities (6) for a ∈ C( f ) and A = C ∩ D, with
C ∈ L̃ f and �\D ∈ L f . Let b ∈ C( f ) be such that C ∈ Lb and suppose b < a. Then,
from Lemma 3.4, we get {g > a} ∩ C ∈ La . Therefore, µa({g > a} ∩ C ∩ D) ≥ 0.
Next we suppose a ≤ b. Since C ∩ {g > a} is a µb-positive set, we obtain µa({g >
a} ∩ C ∩ D) ≥ µb({g > a} ∩ C ∩ D) ≥ 0. This concludes the proof of (i) ⇒ (ii).

Finally, we assume that g ∈ Lϕ(L) ∩ µ( f,A f ). Let g̃ ∈ µ( f,L). As a consequence
of part (i) ⇒ (ii) of this theorem we get

∫
ϕ(ω, f − g) dµ =

∫
ϕ(ω, f − g̃) dµ.

Therefore, g ∈ µ( f,L).
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4. Totally Ordered σ -Lattices

In this section we will use Theorem 3.6 to obtain a sharper characterization of best ϕ-
approximants when L is a totally ordered σ -lattice. We recall that a σ -lattice L is totally
ordered if for any sets C1,C2 ∈ L we have C1 ⊂ C2, µ-a.e. or C2 ⊂ C1, µ-a.e.

As usual, we say that a set B is an atom of the σ -algebra B ⊂ A iff B ∈ B and for
every B measurable set C we have µ(C ∩ B) = 0 or µ(C ∩ B) = µ(B). We consider
the set of all equivalence classes (sets which differ in a µ-null set are equivalent) of
atoms of the σ -algebra B. We denote by Atom(B) a complete set of representatives of
the atoms of B (since µ is a finite measure, then Atom(B) is at most countable). On
the other hand, if �′ ⊂ �, we denote by B�′ the σ -algebra induced by B on �′, i.e.,
B�′ := {B∩�′ : B ∈ B}. ForL′ a sub-σ -lattice ofL,we denote byA(L′) the σ -algebra
generated by L′.

Lemma 4.1. Suppose L is a totally ordered σ -lattice. Let L′ be a sub-σ -lattice of L.
We define the set

�′ := �\
⋃

{A : A ∈ Atom(A(L′))}.(7)

Then A(L)�′ = A(L′)�′ .

Proof. Step 1. We show that A ∈ Atom(A(L′)) iff for every C ∈ L′ we have
µ(C ∩ A) = 0 or µ(C ∩ A) = µ(A). The necessary condition follows trivially. For the
sufficient implication note that it is enough to prove that µ(B ∩ A) = 0 or µ(B ∩ A) =
µ(A), when B is a set of the form B =⋃

Ci ∩ Di , with Ci , �\Di ∈ L′, i = 1, . . . , n.
This follows immediately from the conditions that we are assuming on B.

Step 2. Let C be an arbitrary set in L. We consider the following numbers:

α := inf{µ(C ′) : C ′ ∈ L′ and C ⊂ C ′}
and

β := sup{µ(C ′) : C ′ ∈ L′ and C ′ ⊂ C}.
We can find two sequences in L′, Cn,Cn ∈ L′ such that Cn ⊂ C, Cn ⊃ C, µ(Cn) ↑ β,
and µ(Cn) ↓ α. We define the sets C∗ =⋂

Cn and C∗ =
⋃

Cn . It follows immediately
that C∗,C∗ ∈ L′, µ(C∗) = α, µ(C∗) = β, and C∗ ⊂ C ⊂ C∗. We affirm that C∗\C∗ ∈
Atom(A(L′)). Otherwise, we could find C ′ ∈ L′ such that 0 < µ(C ′ ∩ (C∗\C∗)) <
µ(C∗\C∗). SinceL is totally ordered, we have C∗ ⊂ C ′ ⊂ C∗. We can suppose (w.l.o.g.)
that C ⊂ C ′ . In this case we get µ(C ′) < α, which is a contradiction.

Hence, we have that C ∩�′ is equal to C∗ ∩�′ µ-a.e. or C∗ ∩�′ µ-a.e. This implies
the statement of the lemma.

Given a function f and a set A we denote by f|A the restriction of f to A.

Lemma 4.2. Let f ∈ Lϕ and let B be a sub-σ -algebra of A. Suppose �i ⊂ �,

i = 1, 2, . . . , is a countable partition of � by B-measurable sets. Then g ∈ µ( f,B) iff
g|�i ∈ µ( f|�i ,B�i ), for every i ∈ N.
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Proof. This follows immediately from the definitions.

The following is the main result in this section:

Theorem 4.3. Let f ∈ Lϕ and let�′ be defined by (7) with L′ = L f . Then, a function
g ∈ µ( f,L) iff:

(i) g ∈ Lϕ(L).
(ii) g is constant on each set A ∈ Atom(A(L f )). Moreover, g|A is a best constant

ϕ-approximant to f|A on each set A ∈ Atom(A f ).
(iii) g|�′ ∈ µ( f|�′ ,A(L)�′).

Proof. The theorem follows from Theorem 3.6, Lemmas 4.1 and 4.2.

The following corollary is well-known in Orlicz spaces (see [15]):

Corollary 4.4. Let� = [0, 1] and g ∈ µ( f,L1). Then there exists an open set V such
that g is constant on each component of V and g = f on [0, 1]\V µ-a.e.

Proof. It is a consequence of this that L1
�′ is the Lebesgue σ -algebra restricted to �′.

5. Uniqueness Theorems on Domains of Rn

Throughout this section, � ⊂ Rn denotes an open subset of Rn, A is the Lebesgue σ -
algebra, and µ is the Lebesgue measure. For x, y ∈ � we denote Rx,y := {z ∈ � : x ≤
z ≤ y}. We observe that Rx,y is a n-parallelepiped with faces parallel to the coordinate’s
hyperplanes.

We are going to prove a uniqueness theorem of best ϕ-approximants which generalize
those established in [4], [8], [15] for f approximately continuous. In [4], R. Darst and
Shunsheng Fu considered � = (0, 1)n and the space L1(�). Later, in [15], M. Marano
and J. Quesada gave a uniqueness theorem for � = (0, 1) and the Orlicz space Lϕ(�).

We are looking for sufficient conditions on the geometry of � and on the function f
such that a uniqueness theorem remains true.

Henceforth, for C ⊂ �, we denote by ∂C the boundary of C relative to �. It is
well-known that a nondecreasing function g : �→ R is continuous a.e. (see [4]). Since
χC is nondecreasing, for all final sets C, we obtain that µ(∂C) = 0.

Let A be a subset of Rn . The density of A at a point x ∈ Rn is defined by

D(A, x) := lim
r→0

µ(A ∩ B(x, r))

µ(B(x, r))
,

if the limit exists. A function f : � → R is said to be approximately continuous at a
point x ∈ � iff, for every open set G containing f (x), we have D( f −1(G), x) = 1. We
say that f is approximately continuous on�when, for every x ∈ �, f is approximately
continuous at x . An approximately continuous function f takes open connected sets into
connected sets (see [6]).
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Lemma 5.1. Let g be an Ln-measurable function. Then there exists a nondecreasing
function g (g) such that g = g µ-a.e. (g = g µ-a.e.) and g is u.s.c (g is l.s.c.).

Proof. For each q ∈ Q there exists a final set Cq such that µ({g > q}�Cq) = 0. It is
easy to check that the set Bq := int(Cq) is also a final set and thatµ({g > q}� Bq) = 0.
Now, we define

g(x) := sup
x∈Bq

q.

It is not hard to see that g is a nondecreasing function, l.s.c, and g = g µ-a.e. The
function g is defined analogously.

Theorem 5.2. Let � be an open set in Rn with Rx,y connected for every x, y ∈ �. We
assume that f : � → R is an approximately continuous function. Then there exists a
unique best ϕ-approximant to f from Lϕ(Ln).

Proof. Let gi ∈ µ( f,Ln), i = 1, 2. As a consequence of Lemma 5.1, we can assume
that g1 (g2) is u.s.c. (l.s.c.) and nondecreasing. In order to prove the theorem, it is sufficient
to show that, for every a, b ∈ C( f ) with a < b, we have

µ({g1 < a < b < g2}) = 0.(8)

We note that the set A = {g1 < a < b < g2} is open. Therefore, A = ⋃m
k=1 Ak

(m ∈ N ∪ {+∞}) with Ak, k = 1, . . . , are open and connected sets. We will show
that for every k = 1, . . . there exists Ck ∈ Ln (Dk ∈ Ln) such that Ak = A ∩ Ck

(Ak = A ∩ Dk). We define

Ck :=
⋃

x∈Ak

{y ∈ � : x ≤ y}.

Then Ck is a final set, thus Ck ∈ Ln, with Ak ⊂ Ck . Suppose that for some x ∈ Ak and
p  = k we have that {y ∈ � : x ≤ y}∩ Ap  = ∅. Let z be a point in Ap ∩{y ∈ � : x ≤ y}.
Then, from the monotonicity properties of g1 and g2, we have that Rx,z ⊂ A. Moreover,
from the hypothesis, Rx,z is a connected set. Therefore, Rx,z ⊂ Ak and Rx,z ⊂ Ap which
is a contradiction. Hence, we have that Ck ∩ A = Ak . Analogously, we can prove that
there exists Dk ∈ Ln such that Ak = Dk ∩ A for all k.

On the other hand, from Theorem 3.2 we obtain that, for k = 1, 2, . . . ,

0 ≤ µb(A ∩ Ck) ≤ µa(A ∩ Dk) ≤ 0.

Therefore

0 =
∫

Ak

ϕ+(ω, f − a) dµ =
∫

Ak

ϕ+(ω, f − b) dµ.(9)

We note that ϕ+(ω, f − a) ≥ ϕ+(ω, f − b) µ-a.e. Since ϕ+(ω, a) > 0 for a > 0, we
have the strict inequality ϕ+(ω, f − a) > ϕ+(ω, f − b) on {a < f < b} ∩ Ak . So,
using (9), we get µ({a < f < b} ∩ Ak) = 0. Thus, if x ∈ {a < f < b} ∩ Ak, then
D( f −1((a, b)), x) = 0. This fact implies that {a < f < b}∩ Ak = ∅. On the other hand,
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formula (9) implies that µ({b ≤ f } ∩ Ak) > 0 and µ({ f ≤ a} ∩ Ak) > 0. Therefore f
takes the open and connected set Ak into a disconnected set. This contradiction concludes
the proof.

Remark 3. Theorem 5.2 generalizes the uniqueness results in [4], [8], [15] in two
aspects. We have considered best approximants in Musielak–Orlicz spaces and a more
general domain �.

Remark 4. We give an example of a domain � ⊂ R2 and a continuous function
f : �→ R such that f fails to have a unique best ϕ-approximant. Here ϕ(ω, a) = |a|
and � = (−1, 1)× (−1, 1)\{(x, 0) : x ≥ 0}. We define f by

f (x, y) =
{

x, if x ≥ 0 and y ≤ 0,
0, otherwise.

Now we define the following functions g1 ≡ 0 and g2(x, y) = sup{0, x}. For any
function f we denote by fx the function fx (y) := f (x, y). It is easy to check that,
on the vertical sections �x := {y : (x, y) ∈ �}, the functions g1

x and g2
x are best ϕ-

approximants to fx from the class of nondecreasing functions. So, we have, for every
g ∈ Lϕ(L2),

∫ 1

−1
| fx − gi

x | dµ ≤
∫ 1

−1
| fx − gx | dµ,

for i = 1, 2. Hence, an integration with respect to x and the Fubini theorem show that
gi , i = 1, 2, are best ϕ-approximants.

6. A Coincidence Theorem in Several Variables

In this section � will be an open set in Rn and L will be the σ -lattice Ln . Let C ∈ Ln

be a final set and let x ∈ ∂C . We note that C contains the set C+
0 (x) := (x + C+

0 ) ∩�,
where C+

0 := {y ∈ Rn : yi > 0, i = 1, . . . , n}. Similarly �\C contains the set
C−

0 (x) := (x + C−
0 ) ∩�, with C−

0 := −C+
0 .

As usual, we denote by ej the canonical unit vector and we define ej := (1, 1, . . . , 1)−
ej . Now, for 1 > δ > 0, define the following vectors vδj := ej + δej . We consider the
following cones: C+

δ := {x ∈ Rn : 〈x, vδj 〉 > 0, j = 1, . . . , n} (note that if n = 1, then
C+
δ = C+

0 ). We define the sets C+
δ (x) := (x +C+

δ )∩�. Analogously we define the sets
C−
δ and C−

δ (x). It is easy to check that C±
δ1
⊂ C±

δ2
for 0 ≤ δ1 < δ2 < 1.

Definition 6.1. Given C ∈ Ln, we say that x ∈ ∂C is an upper (lower) δ-regular point
of ∂C iff C+

δ (x) ⊂ C (C−
δ (x) ⊂ �\C). The point x ∈ ∂C will be called an upper (lower)

regular point of ∂C iff it is upper (lower) δ-regular for some δ > 0 (see Figure 1).

We note that when ∂C is “smooth” at x then x is a regular (lower and upper) point
of ∂C iff νi > 0 with ν = (ν1, . . . , νn) the unit inward normal vector to C at x . In
particular, if C = {g > a} with g smooth and nondecreasing, then x ∈ {g = a} is a
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C

vδ
2

vδ
1

x

C−δ (x)

Ω

Fig. 1. A lower regular point.

regular point of {g = a} iff ∂g/∂ti |t=x > 0, for i = 1, . . . , n. If n = 1 all points in ∂C
are regular, for every C ∈ L1.

We denote by R+ = R+(Ln
f ) (R− = R−(Ln

f )) the set of all upper (lower) regular
points of ∂C for some C ∈ Ln

f .

Theorem 6.2. Let f ∈ Lϕ and let g ∈ µ( f,Ln). Then there exists aµ-null set F ⊂ R−

(F ⊂ R+) such that f (x) ≥ g(x) ( f (x) ≤ g(x)) for x ∈ R+\F (x ∈ R−\F).

We need the following general lemma:

Lemma 6.3. Let (�,A, µ) be a finite complete measurable space and let L ⊂ A be
a complete σ -lattice. Suppose that f ∈ Lϕ and g ∈ µ( f,L) If C ∈ L f then, for every
D ∈ L, ∫

C∩D
ϕ+(x, f (x)− g(x)) dx ≥ 0.(10)

That is, C is a µ+
g -positive set.

Proof. Clearly, it is possible to assume that g is the maximum best ϕ-approximant. We
start by supposing that C ∈ La, for some a ∈ C( f ). We define

h(x) :=
{

g(x), x /∈ C,
g(x) ∨ a, x ∈ C .

Then

{h > b} =
{{g > b}, if b ≥ a,
{g > b} ∪ C, if b < a.

Therefore h ∈ Lϕ(L). Suppose that b ∈ C( f ). Now, from Corollary 3.3, we obtain that,
for b ≥ a, {h > b} ∈ Lb. Further, from Lemma 3.4, we have that {g > b} ∪ C ∈ Lb,

when b < a. Therefore, for every b ∈ C( f ), {h > b} ∈ Lb. So h ∈ µ( f,L). Since g is
the maximum best ϕ-approximant, we get h ≤ g. Hence, g ≥ a on C .

Now, for every n ∈ N, we choose a sequence {tn
k } such that:

(i) a = tn
1 < tn

2 < · · · .
(ii) tn

k ∈ C( f ) for every k ∈ N.
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(iii) There exist constants c and d independent of n and k such that

c

n
≤ tn

k − tn
k−1 ≤ d

n
.

for every k > 1.

We consider the sets Ckn := C ∩ {g ≥ tn
k } and Dkn := D ∩ {g < tn

k+1}. We have that
C ∈ La and {g ≥ tn

k } ∈ Ltn
k
. Therefore, we obtain C ∩ {g ≥ tn

k } ∈ Ltn
k

(see Lemma 3.4
and Remark 2). Hence ∫

Ckn∩Dkn

ϕ+(x, f (x)− tn
k ) dx ≥ 0.

With a similar argument to the one used to prove (iii) ⇒ (ii) of Theorem 3.2 and taking
into account that C ⊂ {g ≥ a}, we prove that inequality (10) holds for C ∈ La and
a ∈ C( f ). A density argument proves (10) for every C ∈ L f .

Proof of Theorem 6.2. Let E ⊂ � be the set of all Lebesgue points of ϕ+(x, f (x)−
g(x)). That is, x ∈ E iff

lim
ε→0

1

µ(B(x, ε))

∫
B(x,ε)

|ϕ+(t, f (t)− g(t))− ϕ+(x, f (x)− g(x))| dt = 0.

It is well-known that F = �\E is a µ-null set. Let x be an arbitrary point in R−\F .
We assume that x ∈ ∂C, with C ∈ L f . Let C−

δ (x) be a set satisfying C−
δ (x) ⊂ �\C

and 0 < δ < 1. Now, for small ε > 0, we consider the set Dε := C+
0 (x + εv), with

v = (1, . . . , 1), and Sε := C ∩ Dε (see Figure 2).
From the relation C+

0 (x) ∩ Dε ⊂ Sε, we obtain

cεn ≤ µ(Sε).(11)

where c is independent of ε. Moreover, since Sε ⊂ (�\C−
δ (x)) ∩ Dε, we get

diam Sε ≤ dε and µ(Sε) ≤ dεn.(12)

with d independent of ε.

Sε
x

C−δ (x)

Ω

∂C

x + εv

Fig. 2. The set Sε .
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Since x is a Lebesgue point of ϕ+(·, f − g), from inequalities (11) and (12) and from
Sε ⊂ B(x, dε) we have

lim
ε→0

1

µ(Sε)

∫
Sε

|ϕ+(t, f (t)− g(t))− ϕ+(x, f (x)− g(x))| dt = 0.

From this equality and Lemma 6.3 we get ϕ+(x, f (x)− g(x)) ≥ 0. Therefore f (x) ≥
g(x).

The other case of the theorem follows analogously.

Corollary 6.4. Let f ∈ Lϕ and let g ∈ µ( f,Ln). Then there exists aµ-null set F ⊂ �

such that f (x) = g(x) for x ∈ R− ∩ R+\F .

Remark 5. In [15] there was proved a coincidence theorem in an Orlicz space
Lϕ([0, 1]). More precisely, Marano and Quesada proved that:

(i) if f is approximately continuous at x0 ∈ [0, 1];
(ii) if g is not constant at x0 (i.e., g(x) > g(x0) for x > x0 or g(x) < g(x0) for

x < x0);
(iii) if ϕ− ∈ L∞(R) or f ∈ L∞(U ), with U a neighborhood of x0, then f (x0) =

g(x0).

They also proved that (i) and (iii) imply that g is continuous at x0. We note that if g
is not constant at x0, then we have {x0} = ∂C ∩ (0, 1), with C = {g > g(x0)} or
C = {g ≥ g(x0)}. Since g is Ln

f -measurable, we have C ∈ Ln
f . Moreover, in the one

dimensional case, the unique point in ∂C is a regular point. The set of all Lebesgue points
of ϕ±(·, f − g)may not be the same set as the set of all points where f is approximately
continuous. However, these sets are equal except possibly by a µ-null set. Therefore,
our set B1 = R+ ∩ R− contains µ-a.e. the set B2 of all points satisfying (i)–(iii). On the
other hand, it is possible that µ(B1) > µ(B2). A simple example of that is a constant
function f . In this case, we have B2 = ∅ µ-a.e. and B1 = � µ-a.e. In other words, the
set B1 also contains points where g is constant.
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