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Abstract. This work incorporates translational and reflection symmetry reduc-
tions to the variational determination of the two-particle reduced density matrix
(2-RDM) corresponding to the ground state of N -particle systems, within the
doubly occupied configuration interaction (DOCI) space. By exploiting these
symmetries within this lower-bound variational methodology it is possible to
treat larger systems than those previously studied. The 2-RDM matrix elements
are calculated by imposing up to four-particle N -representability constraint
conditions using standard semidefinite programing algorithms. The method is
applied to the one- and two-dimensional XXZ spin 1/2 model of quantum mag-
netism. Several observables including the energy and the spin–spin correlation
functions are obtained to assess the physical content of the variationally deter-
mined 2-RDM. Comparison with quantum-Monte Carlo and matrix product state
simulations shows that in most cases only requiring up to three-particle positivity
conditions is enough to correctly describe the ground-state properties of these
one- and two-dimensional models.

Keywords: spin chains, ladders and planes, correlation functions
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1. Introduction

The exponential growth of the dimension of the Hilbert space with the number of com-
posing particles constitutes one of the main issues in quantum many-body problems,
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including those present in condensed matter, nuclear physics, and quantum chemistry
[1]. Although a complete diagonalization of the Hamiltonian describing such systems in
the many-particle space provides the exact answer, it does so at a prohibitively expensive
computational cost. Therefore, research efforts have been focussed on the development
of approximate methods capturing the most relevant physical content of the many-body
wavefunction at a feasible computational cost, i.e. with a polynomial increase with sys-
tem size. Most of such methods rely onto approximations that improve over a reference
many-body state or onto variational treatments on the energy. In the former case, a
common approach is to start from a reference state obtained from a mean-field approx-
imation and add perturbative corrections [2] or excitations with increasing complexity
[3, 4]. However, these methods fail in the strong correlation regimes where multi-
reference approximations are needed. New variational methods overcoming this issue
were developed over the last few decades. For instance, variational algorithms like tensor-
network-state approaches [5–8], variational Monte Carlo methods [9–12], or stochastic
techniques [13–16] can be made, in principle, as accurate as the exact diagonalizations.
For instance, in one dimension, the well-known matrix product state (MPS) represen-
tation of a system can accurately describe ground states at the computational cost of
only a power law with the system size [5, 17, 18]. However, in practice, even though the
MPS is one of the best understood tensor networks for which many efficient algorithms
have been developed, for higher dimensional systems the cost of the method is shown to
rapidly increase exponentially [19]. Therefore, other methods based on the concept of
tensor networks are continuously being developed [20–22]. On the other hand, quantum
Monte Carlo (QMC) simulations [23, 24] are not restricted to one dimension, albeit only
suitable for systems not suffering from the infamous sign problem [25] and being efficient
to calculate only certain magnitudes.

A very different approach to address the exponential wall problem that is applica-
ble to any correlation regime relies on using the second-order reduced density matrix
(2-RDM) [26, 27], without mediation of the wavefunction. As the energy of any pairwise-
interacting system can be written as an exact but simple linear function of the 2-RDM, it
can be used to variationally optimize this matrix at polynomial cost [28]. However, this
optimization should be constrained to the class of 2-RDMs that can be derived from a
wavefunction (or an ensemble of wavefunctions), the so-called N -representable 2-RDMs
[29, 30]. Since one may use an incomplete set of necessary but not (in general) suf-
ficient constraints on the 2-RDM, the optimization finds a lower bound to the exact
ground-state energy and an approximation to the exact ground-state 2-RDM. Such
an approach, known as the variational second-order reduced density matrix (v2RDM)
method, has been applied with different degrees of success in quantum-chemistry [31–34],
nuclear-physics [35, 36], and condensed-matter problems [37–39]. Similar procedures
to that of the v2RDM methodology have been recently proposed which consist of,
e.g. substituting the density-matrix description of the system for approximate finite-
range correlation matrices of tunable order to limit the amount of information kept
[40] or embedding highly accurate local theories to solve large-scale strongly correlated
quantum many-body theories [41].

In the last few years, the computational efficiency of the v2RDM method has been
substantially improved for systems whose states can be described in the Hilbert subspace
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of paired single-particle states. This lies at the heart of the so-called doubly-occupied
configuration interaction (DOCI) method used in quantum chemistry to reduce the
dimension of the configuration interaction Hilbert space. The assumptions in DOCI
drastically simplify the structure of the 2-RDM [42, 43] and reduce the scaling of the
v2RDM method [44–46] for molecular systems, while still offering an excellent method
for many systems as demonstrated through the years [47–50]. A related concept, the
seniority quantum number, counts the number of particles not coupled in pair of total
angular momentum 0. It has been initially proposed by Racah [51] and extensively devel-
oped in nuclear physics [52]. Remarkably, the assumptions of DOCI and seniority are
directly related to the pseudo-SU(2) pair algebra. Very recently, this combined approach
of the v2RDM restricted to the DOCI space has been used to tackle an important class
of Hamiltonians [53, 54], the pairing Hamiltonians, where the fundamental physics lies
in the specific form of the paired states. The quantum integrable and exactly solvable
Richardson–Gaudin models [55–58] describe pairing Hamiltonians with a large amount
of free parameters in the single particle-energies and the interactions [59]. They were
recently utilized to benchmark the v2RDM-DOCI methodology at various levels of N -
representability conditions and they were shown to provide excellent results. Later on,
the research extended to treat one-dimensional Hamiltonians presenting quantum mag-
netism that demonstrated the need to develop higher positivity constraints near the
emergence of long-range antiferromagnetic ordering [60]. The results were very promis-
ing but limited to one-dimensional systems of small-to-moderate sizes. In this work, we
include novel translational and reflection symmetry reductions onto the v2RDM-DOCI
methodology that greatly overcome the previous limitations in size.

The manuscript is organized as follows. In section 2.1 we review the theoretical
aspects of the variational methodology in terms of the p-particle RDMs of hard-core
bosons. Section 2.2 provides a detailed description of the symmetry reductions applied
to one- and two-dimensional systems. In section 3 we present the application to the
Heisenberg XXZ model, with a discussion of the computational details (section 3.1) and
the numerical results for the ground-state energies and spin–spin correlation functions
along a comparison with other methodologies (section 3.2). Finally, in section 4 we
present a summary of the main achievements and concluding remarks.

2. Methods

2.1. Theoretical background

Recently, the v2RDM approach has been applied within the restricted DOCI space,
strongly reducing its computational scaling. The method is adequate for studying Hamil-
tonians with interactions in the DOCI space, i.e. interactions that do not change the
number of paired fermions. For this class of Hamiltonians, the seniority number is also
an exact quantum number, as unpaired particles do not interact with the rest of the
system since seniority-zero Hamiltonians do not allow for pair breaking.

https://doi.org/10.1088/1742-5468/abd940 4
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The most general Hamiltonian within the seniority-zero subspace can be written as

H =
∑
i

εini +
∑
i �=j

wijninj +
∑
ij

vijb
†
i bj (1)

where εi are the energies of the K single-particle levels, and wij and vij stand for the

monopole and pairing interactions, respectively. The operators b†i and (2ni − 1)/2 are the
generators of the SU(2) pair algebra, satisfying the following hard-core boson relations[

bi, b
†
j

]
= δij (1− 2ni) ,

(
b†i

)2

= 0. (2)

These operators can be related to the fermion creation and annihilation operators from
a fermion pairing scheme involving two particles with either opposite spins (i ↑, i ↓),
momenta (i,−i), or in general any classification of conjugate quantum numbers in doubly
degenerate single-particle levels.

The ground-state energy of Hamiltonian (1) can then be cast as [42–44]

EGS =
∑
ij

JijΠij +
∑
i �=j

wijDij (3)

where Jij = δijεi + vij, and the Πij and Dij matrices given by

Πij = 〈ψ|b†ibj|ψ〉, Dij = 〈ψ|ninj|ψ〉 ∀ i �= j

Dii = Πii = ρi = 〈ψ|ni|ψ〉 (4)

define the seniority blocks of the 2-RDM, which are Hermitian and fulfil the normaliza-
tion and contraction relations∑

i

Πii =
∑
i

Dii = M , (5)

∑
j

Dij = MΠii. (6)

where M is the number of hard-core bosons. In principle, equation (3) indicates that
the ground-state energy of the system may be computed by direct variation of the 2-
RDM. However, this is not the case, because not every computed 2-RDM derives from
the integration of an N -particle wave function [30, 61]. This difficulty leads to the well-
known N -representability problem which aims to define a set of necessary and sufficient
conditions, ensuring a reduced density matrix stems from an N -particle physical sys-
tem. In general, the p particle reduced density matrix (p-RDM) must be Hermitian,
properly normalized and related by contraction mappings such as equations (5) and (6)
to other order p-RDMs. Additionally, a hierarchy of necessary, albeit not sufficient, set
of constraints on the p-RDM constitutes the p-positivity N -representability conditions
(p-POS) [33, 62]. These conditions, whose application leads to energies closer to the
exact one according to the sequence

Ep−POS � Eq−POS � EGS (1 � p < q � N), (7)
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derive from the positive semidefinite property of a class of Hamiltonians of the form

H = B†B (8)

where B† is a p-particle operator. The expectation value of such Hamiltonians must
be non-negative and hence their matrix representations must be positive semidefinite.
Therefore, different forms of B† lead to different p-positivity conditions. For instance, in
the two-particle space, these yield the well-known 2-P, 2-Q and 2-G two-positivity con-
ditions (2-POS) [30, 63] which require the positive semidefiniteness of the two-particle,
two-hole, and particle–hole representations of the 2-RDM. Within the DOCI subspace,
these conditions can be formulated in terms of the seniority blocks of the 2-RDM as
follows [42–46, 53, 64]: while the 2-P condition is given by

Πij 	 0, (9)

Dij � 0, ∀ i < j, (10)

where the symbol 	 means that the corresponding matrix is semidefinite positive, the
2-Q condition is

Πij + δij(1− 2ρi) 	 0, (11)

Dij + 1− ρi − ρj � 0, ∀ i < j, (12)

and the 2-G condition is given by

Dij 	 0 (13)

(
ρa −Dab −Πab

−Πba ρb −Dab

)
	 0, ∀ a < b. (14)

Each of these conditions possesses O(1) blocks of dimension O(K ×K) and O(K2)
blocks of dimension O(1× 1).

Similarly to the 2-POS conditions, the three- (3-POS) and four-positivity (4-POS)
conditions in the seniority-zero subspace can be expressed in terms of the seniority
blocks of the 3- and 4-RDMs, defined as

Dijk = 〈ψ|ninjnk|ψ〉, ∀ i �= j �= k (15)

Πi
jk = 〈ψ|b†jnibk|ψ〉 = Πi

kj = 〈ψ|b†knibj|ψ〉, ∀ i �= j, k (16)

and

Dijkl = 〈ψ|ninjnknl|ψ〉, ∀ i �= j �= k �= l (17)

Πij
kl = 〈ψ|b†kninjbl|ψ〉, ∀ i �= j �= k �= l (18)

Πijkl = 〈ψ|b†ib
†
jblbk|ψ〉, ∀ i �= j �= k �= l. (19)

respectively. The complete set of constraints on these blocks recently reported in
[54, 60], are presented in appendix A.
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The variational optimization of the 2-RDM in the DOCI space may be formulated as
a semidefinite programing (SDP) problem in which the energy, being a linear function of
the 2-RDM, is minimized over the intersection of a linear affine space (3) and the convex
cone of block-diagonal positive semidefinite matrices corresponding to the above sets of
N -representability conditions. It should be noted that, as the commutation relations of
the hard-core boson operators ensure certain symmetries among the different seniority
sectors of the p-RDMs, e.g. hermiticity of Πij and Dij, etc, we have explicitly restricted
the p-POS conditions to terms involving unique parts of the corresponding p-RDMs
and avoid any repetition. In practice, this amounts to choosing specific orderings of the
indexes appearing in the different seniority blocks. In the next section, we will discuss
additional simplifications of this methodology for translation and reflection invariant
systems.

2.2. Reductions for translation and reflection invariant systems

The variational procedure can be significantly simplified when the Hamiltonian (1) is
translational and reflection invariant. In this case, the single-particle level index may
be identified with the position of a site on a lattice and the ground state of H is
guaranteed to either be translationally invariant or degenerate. In the latter case, one
can choose a superposition of the degenerate ground-state wavefunctions that would
itself be translationally invariant. We can, therefore, impose translational invariance on
the p-RDMs and thus reduce the number of variational parameters to be determined.
Similar considerations follow from the reflection symmetry. The variational calculation
of the 2-RDM for periodic molecular systems has been previously tackled by using
irreducible representations of the translational operator for low order N -representability
conditions [65], and very recently also in presence of strong correlations [66]. In this work,
we directly apply the symmetry reductions onto the full 2-POS, 3-POS, and 4-POS
N -representability conditions in coordinate space.

In this section, the indices of the p-RDMs will be explicitly separated by commas
to highlight the mathematical operation performed on each index. The case of one-
dimensional lattices is the simplest one. Let us consider the two seniority blocks of the
2-RDM. On the one hand, there is only one reduced variable ρi = ρ0 ∀ i that corresponds
to the single-site occupation of the translationally invariant system. On the other hand,
the variable reductions are straightforward in the Di,j and Πi,j matrices as, assuming
i < j, the translational symmetry entails

Di,j = D0,j−i = Di−j,0, (20)

Πi,j = Π0,j−i = Πi−j,0, (21)

where we have numbered the L sites from 0 to L− 1 and we understand that a negative
−q index means a site at L− q. This reduces the number of variational parameters in
the order of O(L) times. The reflection symmetry does not add a further reduction in
these blocks because it is equivalent to an index exchange followed by a translation.

The two seniority blocks of the 3-RDM, Di,j,k and Πi
j,k, can also be reduced using

the translational invariance. However, in this case Di,j,k and Πi
j,k have to be treated

differently as the i index in Πi
j,k, corresponding to a number operator index ni (cf

https://doi.org/10.1088/1742-5468/abd940 7

https://doi.org/10.1088/1742-5468/abd940


J.S
tat.

M
ech.

(2021)
013110

Variational determination of the two-particle reduced density matrix

equation (16)), is not equivalent to the j and k indices, corresponding to hard-core

boson creation (b†j) and annihilation (bk) operator indices. On the one hand, choosing
the ordering i < j < k in all the instances of Di,j,k, the reflection and translational
invariance warrants that

Di,j,k = Di−n,j−n,k−n = Dn−i,n−j,n−k, ∀ 0 � n < L (22)

where the last equality involves variables obtained by applying the reflection symmetry
around site 0. This amounts to a reduction factor of about 2L in the variational param-
eters entering Di,j,k. For a faster computation, it is enough to find a representative
variable that has one index equal to 0

Di,j,k = D0,j−i,k−i = Di−j,0,k−j = Di−k,j−k,0

= D0,i−j,i−k = Dj−i,0,j−k = Dk−i,k−j,0. (23)

Furthermore, a similar procedure on the Di,j,k,l yields a factor of 2L.
On the other hand, choosing the ordering j < k in all the instances of Πi

j,k, the
reflection and translational invariance on equation (16) implies

Πi
j,k = Πi−n

j−n,k−n = Πn−i
n−j,n−k, ∀ 0 � n < L (24)

and the variable reduction amounts to a factor of 2L. To find a representative variable
it is enough to search in the variables

Πi
j,k = Π0

j−i,k−i = Π0
i−j,i−k. (25)

Analogously, for the four-index matrices Πi,j
k,l and Πi,j,k,l, equations (18) and (19), we

obtain a reduction factor of 2L.
In two-dimensional systems, the site indices correspond to vectors in a lattice. For

a square lattice of side L, i = (ix, iy) with 0 � ix < L and 0 � iy < L. In this case the
translational invariance corresponds to a torus topology, i.e. periodic boundary condi-
tions along both x and y directions. Similarly to the one-dimensional case in (22), for
the variables in the Di,j,k matrix this implies

Di,j,k = Di−n,j−n,k−n

= D−(i−n),−(j−n),−(k−n)

= Dσx(i−n),σx(j−n),σx(k−n)

= Dσy(i−n),σy(j−n),σy(k−n)

∀ n = (nx,ny), 0 � nx,ny < L (26)

where now the subtraction operation means a vectorial subtraction. The first line in
(26) involves only the translation symmetry, the second one the effect of the inversion
around site 0 ≡ (0, 0). In the third and fourth lines the reflection symmetries are taken
into account separately on each direction, using the reflection matrices σx = diag(−1, 1)
and σy = diag(1,−1). This leads to a stronger variable reduction with a factor of 4L2

https://doi.org/10.1088/1742-5468/abd940 8
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instead of 2L as in the one-dimensional case. As before, it is more efficient to search the
representative variable by choosing that one of the indexes is at site 0 and in that case

Di,j,k = D0,j−i,k−i = Di−j,0,k−j = Di−k,j−k,0

= D0,−(j−i),−(k−i) = D−(i−j),0,−(k−j) = D−(i−k),−(j−k),0

= D0,σx(j−i),σx(k−i) = Dσx(i−j),0,σx(k−j) = Dσx(i−k),σx(j−k),0

= D0,σy(j−i),σy(k−i) = Dσy(i−j),0,σy(k−j) = Dσy(i−k),σy(j−k),0. (27)

Analogously, for the variables in the Πi
j,k matrix this implies that, as in equation (24),

Πi
j,k = Πi−n

j−n,k−n

= Π
−(i−n)
−(j−n),−(k−n)

= Π
σx(i−n)
σx(j−n),σx(k−n)

= Π
σy(i−n)

σy(j−n),σy(k−n)

∀ n = (nx,ny), 0 � nx,ny < L. (28)

This also leads to variable reductions with a factor of 4L2 instead of 2L as in the one-
dimensional case. It is thus enough to select the translation that moves site i to 0 to
obtain

Πi
j,k = Π0

j−i,k−i

= Π0
−(j−i),−(k−i)

= Π0
σx(j−i),σx(k−i)

= Π0
σy(j−i),σy(k−i). (29)

The same generalized approach is useful for the other matrices and this causes a reduc-
tion of the free variables of L2 in ρi, of 2L

2 in Di,j and Πi,j , and a 4L2 reduction in Di,j,k,

Di,j,k,l, Π
i
j,k, Πi,j,k, and Πi,j

k,l.
Finally, applying the one- and two-dimensional reductions described above leads to

several of the N -representability conditions to become equivalent, thus yielding addi-
tional computer time and memory savings during the solution of the SDP problem.
For instance, if we consider the contraction relation

∑
j Dij = Mρi, ∀i, it yields K times

the same constraint
∑

j D0j = Mρ0. In table 1 we summarize the number of free variables
(leading terms) in the SDP problem for both the standard and the symmetry-reduced
p-POS conditions in one and two dimensions.

3. Results and discussion

In this section, we will discuss the computational details of the variational methodology
followed by the calculation of the ground-state energy in section 3.2.1, and the spin–spin

https://doi.org/10.1088/1742-5468/abd940 9
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Table 1. The number of free variables (leading terms) in the SDP problem within
the p-POS conditions. K = L and L2 for one- and two-dimensional systems,
respectively.

SDP problem 2-POS 3-POS 4-POS

Without symmetry reductions K2 K3 K4

With symmetry reductions K K2 K3

correlation functions in section 3.2.2, both for one- and two-dimensional Heisenberg XXZ
models.

3.1. Computational details

In this manuscript, we have considered a dual SDP problem formulation of the
variational optimization of the 2-RDM in the DOCI space under three sets of N -
representability constraints: the 2-POS, 3-POS, and 4-POS conditions. We have devel-
oped codes to efficiently formulate and solve the SDP problem exploiting the sparse
structure of the matrices from the three sets of p-positivity conditions induced by
the structure of the seniority-zero wave functions and the reductions due to transla-
tion and reflection symmetries, thus allowing to investigate larger systems than those
previously studied at the same precision level. In our numerical calculations, we use
the semidefinite programing algorithm (SDPA) code reported in [67, 68], which solves
semidefinite problems by means of the Mehrotra-type predictor-corrector primal-dual
interior-point method, providing ground-state energies and the corresponding 2-RDMs.
Since the SDPA code does not allow for the equality constraints arising from the nor-
malization, contraction, and consistency relations, they have been included by relaxing
them into inequality constraints with a sufficiently small summation error δ (δ = 10−7),
which effectively fixes the precision of the ground-state energies and 2-RDMs. In figure 1
we show the computing time per SDP iteration and the gained speedup, defined as the
ratio between the computing time without and with the symmetry reductions devel-
oped in section 2.2. The results are presented as a function of the basis size K for the
2-, 3-, and 4-POS conditions. As it may be observed in the figure, the gained speedup
goes up to 100 for 3- and 4-POS conditions at K � 50. Furthermore, it is worthwhile
noticing that the number of iterations needed to achieve convergence of the SDPA for
the Heisenberg XXZ model lies in the range [20, 50], depending on the system size,
interaction strengths, and the p-POS conditions employed. Similar values are found for
the problem without the imposed symmetry reduction.

Results corresponding to QMC simulations using the stochastic series expansion [15]
and the MPS calculations, both implemented in the ALPS library [69–71], have been
obtained as reference values to be compared with those arising from our variational
method. It is worthwhile remarking that QMC calculations are considered exact, but
they usually offer access to only some magnitudes. On the other hand, MPS can be
considered as exact in one dimension, but they still suffer from poor convergence scaling
in two dimensions [19]. However, any observable of interest of the MPS is accessible at
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Figure 1. Time (left) and speedup (right) per iteration as a function of
K for the symmetry-reduced 2-POS (squares), 3-POS (circles), and 4-POS
(diamonds) conditions. Empty and solid symbols correspond to 1D and 2D sys-
tems, respectively. All measurements have been performed in an Intel Xeon CPU
E5-2670 running at 2.60 GHz using a single thread for 2- and 3-POS conditions
and eight threads for the 4-POS conditions.

polynomial cost. The XXZ model has been extensively studied in one-dimension, and in
particular in [40, 72] it has been used to validate approximations of few-particle Green’s
functions or correlators for the ground state in a variational context similar to ours.

The variational optimization of the 2-RDM for the ground state of small one-
dimensional spin chains following the Heisenberg XXZ model was previously analysed
in [60] for the 2-POS, 3-POS, and 4-POS sets of N -representability conditions. Here,
we extend these studies to larger one-dimensional periodic systems by exploiting the
reductions described in section 2.2. Furthermore, we apply our variational methodology
for the first time to two-dimensional systems where these reductions are specially use-
ful. The two-dimensional system has been studied in some detail using QMC and exact
diagonalizations in [73], and more recently by a high-order coupled cluster treatment
in [74].

3.2. The Heisenberg XXZ model

The Heisenberg Hamiltonian is a fundamental model of quantum magnetism [75]. For
spin 1/2, the XXZ version of the model is exactly solvable only in one dimension by
means of the Bethe ansatz [76], and hence approximations must be considered in higher
dimensions. The Hamiltonian for a general lattice L reads

H =
∑

〈i,j〉∈L

[
1

2

(
S+
i S

−
j + S−

i S
+
j

)
+ΔSz

i S
z
j

]
(30)

where S±
i and Sz

i represent the fermionic spin-ladder and spin projection operators
acting at the lattice site i, 〈i, j〉 represents the nearest neighbours on the lattice and
periodic boundary conditions are assumed. The parameter Δ fixes the anisotropy of
the model. As a function of Δ the model has a rich phase diagram. In one dimension,
for −1 < Δ < 1 the system is a critical antiferromagnet with gapless excitations. For
|Δ| > 1 the system is gapped, being ferromagnetic for Δ < −1 and antiferromagnetic
for Δ > 1. For the ferromagnetic phase, it can be perturbatively treated starting from a
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Figure 2. (Left) Ground-state energy per site EGS/L as a function of the anisotropy
Δ for a one-dimensional XXZ chain of L = 30 sites at half filling. The squares, cir-
cles, triangles and diamonds correspond to 2-POS, 3-POS, 4-POS, and QMC results.
The inset shows the relative error of the ground-state energy. (Right) Relative error
of the ground-state energy with respect to QMC calculations ΔEGS as a function
of the number of sites L for Δ = −0.5, 0.75, and 2.0. The dashed and solid lines
correspond to errors of the 2-POS and 3-POS calculations, respectively. The QMC
simulations were calculated at an inverse temperature β = 100.

reference state where all spins are aligned in the z direction. Therefore, this phase will
not be discussed in this paper and we will concentrate in the more demanding region
Δ � −1.

In a standard hard-core boson representation, the spin operators can be written as

S+
i = b†i = (S−

i )
†, Sz

i = b†i bi −
1

2
= ni −

1

2
(31)

and the projection of the total spin Sz
tot is related to the total number of hard-core bosons

by
∑

i ni = M = Sz
tot +Ns/2, where N s is the number of sites. Hereafter, we shall focus

on a half-filled lattice, i.e. we set M/N s = 1/2, which corresponds to Sz
tot = 0. In terms

of these hard-core boson operators, the Hamiltonian (30) reads

H = E0 +
∑

〈i,j〉∈L

[
1

2

(
b†i bj + b†jbi

)
+Δninj

]
. (32)

This Hamiltonian, whose energy functional in terms of the Πij and Dij seniority blocks
of the 2-RDM is given by

E = E0 +
∑

〈i,j〉∈L

[Πi j +ΔDi j] , (33)

has the same form as (1) with constant pairing and monopole interaction Δ among the
nearest neighbours 〈i, j〉 of the lattice. The constant E0 depends on the dimension and
topology of the lattice and is given by E0 = −γ

2
Δ(M −Ns/4), with γ the number of

nearest neighbours.
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Figure 3. (Left) Ground-state energy per site EGS/L
2 as a function of Δ for a

6× 6 square lattice at half filling. The squares, circles, triangles, and diamonds cor-
respond to 2-POS, 3-POS, 4-POS, and QMC results, respectively. The inset shows
the relative error of the ground-state energy. (Right) Relative energy error as a
function of the number of sites L2 in a square lattice for Δ = −0.5, 1.0, and 2.0.
The dashed and solid lines correspond to errors of the 2-POS and 3-POS calcula-
tions, respectively. The QMC simulations were calculated at an inverse temperature
β = 100.

As previously discussed in [60], for vanishing Δ, the system can also be mapped to
a set of non-interacting fermions through the Jordan–Wigner transformation [77] and
thus the 2-POS conditions on those fermions are sufficient N -representability conditions,
whereas the 2-POS conditions on the hard-core bosons are not. On the other hand, for
Δ = −1 the exact ground state of the XXZ model is an antisymmetrized geminal power
(AGP) and thus its ground-state energy can exactly be calculated within the 2-POS
conditions in the variational treatment [53].

3.2.1. Ground-state energy. We first analyse the accuracy of the ground-state energy
obtained from our variational methodology using the symmetry-reduced 2-POS, 3-POS
and 4-POS conditions in a linear chain of L = 30 sites and a square lattice of L = 6 side.
In the left panels of figures 2 and 3 the energy values per site are compared to QMC
simulations for the range Δ ∈ [−1, 2]. The results for the 2-POS calculations on the one-
dimensional system present a maximum relative error of 37% at Δ = 0.5 and a minimum
at the transition point Δ = −1, where the variational ground-state energy becomes exact
as expected for an AGP exact eigenstate [61, 78, 79]. Similarly, 2-POS calculations on
the two-dimensional system present a maximum relative error of 47% at Δ = 0.75 and a
minimum at Δ = −1. These results show that this set of N -representability conditions
is inadequate to achieve acceptable energy precision. On the other hand, the 3-POS
and 4-POS conditions provide higher quality results for the energy, showing negligible
differences between them, with errors below 2% and 2.5% in one and two dimensions,
respectively. These results are consistent with previous observations in the literature
[40, 60, 72, 79, 80].

https://doi.org/10.1088/1742-5468/abd940 13

https://doi.org/10.1088/1742-5468/abd940


J.S
tat.

M
ech.

(2021)
013110

Variational determination of the two-particle reduced density matrix

Figure 4. Spin–spin correlations along a one-dimensional chain of L = 30 sites
at half filling for Δ = −0.5, 0.5, 1.0, and 1.5. The squares, circles, diamonds, and
triangles correspond to 2-POS, 3-POS, 4-POS, and QMC results, respectively.

The symmetry reductions allow us to examine the energy error of the variational
calculation as a function of the system size for a broad range of lengths L. To this
aim, we have investigated the accuracy of the ground-state energy computation in the
2-POS and 3-POS methodology as a function of the number of sites with chains and
square lattices of up to 256 sites. In the right panels of figures 2 and 3 we present the
results for the energy error ΔEGS = (EQMC −Ev2RDM−DOCI)/EQMC at three values of Δ.
For the linear chains the relative error for the 3-POS calculation remains below 0.5%
in the gapless phase of the XXZ antiferromagnet, and it increases up to about 2% in
the Néel antiferromagnet at Δ = 2. In the case of the square lattices, the errors follow
a similar trend, with maximum relative values of about 3% for Δ = 1.0. Importantly,
these results for one- and two-dimensional systems show that the relative energy error
does not increase with system size but it rather goes to a constant value.

3.2.2. Spin–spin correlation functions. To emphasize the validity and convenience of
the variational methodology applied to moderately large systems with periodic boundary
conditions, we have also computed spin–spin correlation functions. In the language of
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Figure 5. Spin–spin correlations 〈Sk
0S

k
i 〉 in a 6× 6 square lattice at half filling

along an horizontal chain for Δ = −0.5, 0.5, 1.0, and 1.5. Left panels correspond to
the k = z direction and right panels to k = x. The squares, circles, and diamonds
correspond to 2-POS, 3-POS, and 4-POS, respectively; while the green and cyan
triangles correspond to QMC and MPS results, respectively.
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Figure 6. Spin–spin correlations 〈Sk
0S

k
i 〉 as a function of Δ for a 6× 6 (left column),

and 16× 16 (right column) square lattices. The first (i = 1) and second neighbours
(i = 2) correlations are depicted in the first and second row, respectively for k = z
(solid lines) and k = x (dashed lines) directions. The squares, circles, and diamonds
correspond to 2-POS, 3-POS, and 4-POS, respectively; while the green and cyan
triangles correspond to QMC and MPS results, respectively.

hard-core bosons, these correlation functions are byproducts of our methodology as

〈Sx
i S

x
j 〉 = 〈Sy

i S
y
j 〉 =

1

2
[Πij + δij(1− 2ρi)] (34)

and

〈Sz
i S

z
j 〉 = Dij −

1

2
(ρi + ρj) +

1

4
. (35)

The Πij seniority block of the variational 2-RDM has been deeply studied for one dimen-
sion in [60], and thus here we focus our attention on the D seniority block of the 2-RDM
determining the 〈Sz

i S
z
j 〉 correlation function. Under translational invariance, these func-

tions depend only on the distance between sites i and j, so that without loss of generality
we can analyse it with respect to a fixed position which we arbitrarily choose as site 0. In
figure 4 we compare the correlation function at several levels of p-POS conditions for a
chain of L = 30 sites at several values of Δ. Again the 2-POS results are incorrect for all
Δ, except at i = 0 where its value is fixed from the hard-core boson condition n2

i = ni (cf
equation (2)). On the other hand, the 3-POS is able to capture the spatial dependence
of the correlation very well on the gapless antiferromagnet, whereas it underestimates
the long-range correlation on the Néel side of the phase diagram. In accordance with
previous findings in one dimension [60], near the phase transition at Δ = 1, the accuracy
of the two-particle correlation functions is more sensitive to the order of the p-positivity
conditions utilized and therefore one may need to resort to 4-POS conditions to obtain
an accurate description of the ground state.
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Let us now consider the correlation functions for the two-dimensional systems. In
this case, both 〈Sx

i S
x
j 〉 and 〈Sz

i S
z
j 〉 functions have been studied in detail. We have calcu-

lated both correlators from the QMC simulations and the MPS calculations. Using the
loop algorithm of the QMC method as implemented in the ALPS library, we computed
〈Sz

i S
z
j 〉 in the full range of studied parameters, and the off-diagonal correlator 〈Sx

i S
x
j 〉 for

−1 � Δ � 1. The MPS calculations were performed by choosing MPS parameters so as
to obtain essentially identical results as those provided by QMC. We first compare the
spatial dependence of the correlation corresponding to sites along a horizontal chain.
The results for a 6 × 6 lattice at different values of Δ using 2-POS, 3-POS, 4-POS,
QMC and MPS are summarized in figure 5. In all the cases, the agreement of 3-POS
and 4-POS with both QMC and MPS is very good. Furthermore, we find that the 3-POS
correlations differ slightly with the 4-POS results even at large distances, at variance
with the one-dimensional case for Δ > 1.

The determination of the spin–spin correlation functions of square lattices as a func-
tion of Δ poses a stringent test for any method. Since positive values of Δ favour the
formation of antiferromagnetic domains, it is important to determine not only the first
neighbour correlation, but also the second neighbour and subsequent ones in order to
establish whether the system may possess a long-range order. In figure 6 we report
the first- (〈Sk

0S
k
1 〉) and second-neighbour (〈Sk

0S
k
2 〉) spin-spin correlation functions for a

6× 6 and a 16× 16 square lattice at different N -representability levels of the variational
approach. The case of the 6× 6 lattice is thoroughly compared with results obtained
from both QMC and MPS, while in the case of the 16× 16 lattice, only QMC results are
reported. As it may be seen, at Δ = 1 there is a notable change in the correlators which
is correctly predicted by the 3-POS and 4-POS calculations. Indeed, the first-neighbour
correlation function, 〈Sz

0S
z
1〉, monotonically decreases in the whole explored range from

Δ = −1 to Δ = 2, approaching the limiting value of −1/4 valid at infinite Δ. On the
other hand, the second-neighbour correlation function, 〈Sz

0S
z
2〉, increases from approxi-

mately vanishing values for Δ < 1 towards the maximum possible value of 1/4. Similar
agreements are observed for the other correlators 〈Sx

0S
x
1,2〉 in the case of the 6× 6 lattice.

4. Summary and concluding remarks

We have extended the variational determination of the two-particle reduced density
matrix by applying symmetry reductions stemming from the translational and reflection
invariance of the ground state of an N -particle system, within a doubly-occupied-
configuration-interaction space. The formalism has been presented in terms of hard-
core boson operators representing the seniority-zero nature of the configuration space
and applied to the spin 1/2 Heisenberg XXZ model with zero total spin along z. We
have focussed on the calculation of the ground-state energy and spin–spin correlation
functions for one- and two-dimensional systems of varied size.

The symmetry reductions incorporated in the calculations allowed us to determine
the two-, and three-particle reduced density matrices for spin chains of lengths up to
L = 256, and square lattices of up to L = 16 side. Importantly, the quality of the energy
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calculation showed that the results arising from imposing both three and 4-POS con-
ditions do not deteriorate at increasing system size, and that the relative energy error
remains below 2% in the one-dimensional model and 3% in the two-dimensional case, for
the full range of Hamiltonian parameters explored. Furthermore, we have found a good
agreement between the proposed variational formulation and the QMC and MPS simu-
lations in the behaviour of the spin–spin correlation function in two dimensions already
using 3-POS conditions. However, as shown in previous works with small size systems,
the long-range correlations in the Neel phase of the one-dimensional XXZ Hamiltonian
are underestimated unless the 4-POS conditions are taken into account. These findings
suggest that 3-POS conditions may be enough to treat two-dimensional systems where
correlations play a role.

In summary, we have demonstrated that the symmetry-reduced variational formu-
lation based on the p-particle reduced density matrices provides a direct and accurate
method to determine ground-state properties of moderately large systems obeying the
pseudo-SU(2) algebra, as those composed by hard-core bosons. This methodology could
be used as a starting point to study excited states on these systems by applying, e.g.
random phase approximations on top of such correlated ground states [81, 82].
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Appendix A. Positive semidefiniteness conditions for N-representability of the 3-
and 4-RDM in the DOCI space

As mentioned in section 2.1, restricting the operator B† in equation (8) to the two-
particle space leads to the 2-P, 2-Q and 2-G N -representability conditions. Similarly,
restricting the operator B† to the three-particle seniority-zero subspace leads to the 3-
POS conditions 3-P, 3-Q, 3-E and 3-F [53, 54], which can be expressed in terms of the
two seniority blocks of the 3-RDM, (15) and (16), as follows

• The 3-P condition:

Dijk � 0, ∀ i < j < k (A.1)

Πa
ij 	 0, ∀ a (A.2)
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which thus posesses O(K3) blocks of dimension O(1× 1) and O(K) blocks of
dimension O(K ×K).

• The 3-Q condition:

1− ρi − ρj − ρk +Dij +Djk +Dki −Dijk � 0, ∀ i < j < k. (A.3)

− Πa
ij +Πji + δij (1− 2ρi − ρa + 2Dia) 	 0, ∀ ij �= a (A.4)

possessing O(K3) blocks of dimension O(1× 1) and O(K) blocks of dimension
O(K ×K).

• The 3-E condition:⎛
⎝Dab − Dabc Πa

bc Πb
ac

Πa
bc Dac − Dabc Πc

ab

Πb
ac Πc

ab Dbc − Dabc

⎞
⎠ 	 0, ∀ a < b < c (A.5)

⎛
⎝Daij + δijDai Πi

aj Dia

Πj
ai Πij −Πa

ij Πia

Dai Πai ρa

⎞
⎠ 	 0, ∀ a, ij �= a, (A.6)

which posesses O(K3) blocks of dimension O(1× 1) and and O(K) blocks of
dimension O(K ×K).

• The 3-F condition:⎛
⎝ρa −Dab −Dac + Dabc Πac − Πb

ac Πab −Πc
ab

Πac −Πb
ac ρc −Dbc −Dac + Dabc Πbc −Πa

bc

Πab −Πc
ab Πbc − Πa

bc ρb −Dab −Dbc + Dabc

⎞
⎠ 	 0

∀ a < b < c. (A.7)

⎛
⎝−Daij + δij (ρi −Dai) +Dij −Πi

aj − δijΠia ρi −Dia

−Πi
aj − δijΠia Πa

ij + δij (ρa − 2Dia) −Πia

ρi −Dai −Πai 1− ρa

⎞
⎠ 	 0

∀ a, ij �= a, (A.8)

which posesses O(K3) blocks of dimension O(1× 1) and O(K) blocks of dimension
O(K ×K).

It is important to note that, for the conditions that are split into multiple blocks,
we will label the blocks with the indices a, b, c, . . . , and the elements inside each block
with indices i, j, k, . . . .

The above 3-POS conditions are supplemented with the contraction and consistency
relations

ρi =
1

M − 1

(∑
j<i

Πj
ii +

∑
i>j

Πi
jj

)
, ∀ i (A.9)

Πij =
1

M − 1

∑
k �=ij

Πk
ij, ∀ i < j (A.10)
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Dij = Diij = Πi
jj = Πj

ii (A.11)

Πi
jj =

1

M − 2

∑
k �=ij

Dijk, ∀ i < j. (A.12)

Five different choices of the operator B† in equation (8) restricted to the four-particle
seniority-zero subspace give rise to the 4-POS conditions 4-P, 4-Q, 4-E , 4-F and 4-G
[53, 54], which can be expressed in terms of the seniority blocks of the 4-RDM in
equations (17)–(19) as follows:

• The 4-P condition:

Dijkl � 0, ∀ i < j < k < l. (A.13)

Πab
ij 	 0, ∀ a < b, i, j (A.14)

Πijkl 	 0 ∀ i < j, k < l withmatrix indices ij and kl. (A.15)

This condition possesses O(K4) blocks of dimension O(1× 1), O(K2) blocks of
dimension O(K ×K), and O(1) blocks of dimension O(K2 ×K2), respectively.

• The 4-Q condition:

1− ρi − ρj − ρk − ρl +Dij +Dik +Dil +Djk +Djl +Dkl −Djkl

−Dikl −Dijl −Dijk +Dijkl � 0, ∀ i < j < k < l. (A.16)

Πij − Πa
ij − Πb

ij +Πab
ij + δij (1− ρa − ρb − 2ρi +Dab + 2Dia + 2Dib − 2Diab) 	 0,

∀ a, b, i �= a, b, j �= a, b (A.17)

Πijkl + δik
(
Πlj − 2Πi

lj

)
+ δjk

(
Πli − 2Πj

li

)
+ δil

(
Πkj − 2Πi

kj

)
+ δjl

(
Πki − 2Πj

ki

)
+ δikδjl (1− 2ρi − 2ρj + 4Dij) 	 0,

∀ i, j, k, l withmatrix indices ij and kl. (A.18)

This condition also possesses O(K4) blocks of dimension O(1× 1), O(K2) blocks of
dimension O(K ×K), and O(1) blocks of dimension O(K2 ×K2), respectively.

• The 4-E condition:⎛
⎜⎜⎝
Dabc − Dabcd Πbc

ad Πac
bd Πab

cd

Πbc
ad Dbcd − Dabcd Πcd

ab Πbd
ac

Πac
bd Πcd

ab Dcda − Dabcd Πad
bc

Πab
cd Πbd

ac Πad
bc Ddab − Dabcd

⎞
⎟⎟⎠ 	 0,

∀ a < b < c, d �= abc. (A.19)⎛
⎝Dijab Πia

jb Πib
aj

Πja
ib Πa

ij − Πab
ij Πiajb

Πjb
ia Πibja Πb

ij − Πab
ij

⎞
⎠ 	 0, ∀ ij �= ab. (A.20)

This condition results in O(K4) blocks of dimension O(1× 1), and O(K2) blocks of
dimension O(K ×K).
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• The 4-F condition:

⎛
⎜⎜⎝
(a) Πab − Πc

ab −Πd
ab +Πcd

ab Πac − Πb
ac − Πd

ac +Πbd
ac Πad − Πb

ad − Πc
ad +Πbc

ad

. . . (b) Πbc −Πa
bc −Πd

bc +Πad
bc Πbd − Πa

bd − Πc
bd +Πac

bd

. . . . . . (c) Πcd − Πa
cd − Πb

cd +Πab
bd

. . . . . . . . . (d)

⎞
⎟⎟⎠ 	 0,

(A.21)

where the matrix is symmetric and the notation () represents

(a) = ρa −Dab −Dac −Dad +Dabc +Dabd +Dacd −Dabcd. (A.22)

and

⎛
⎝ Dij −Dija −Dijb +Dijab Πi

ja − Πib
ja + δij

(
Πia −Πb

ia

)
a1

Πj
ia − Πjb

ia + δij
(
Πja − Πb

ja

)
Πa

ij − Πab
ij + δij (ρa −Dab − 2Dia + 2Diab) a2

Πj
ib − Πja

ib + δij
(
Πjb − Πa

jb

)
Πaijb + δij

(
Πab − 2Πi

ab

)
a3

⎞
⎠ 	 0,

(A.23)

with

a1 = Πi
jb − Πia

jb + δij
(
Πib − Πa

ib

)
,

a2 = Πajib + δij
(
Πab − 2Πi

ab

)
, and

a3 = Πb
ij −Πab

ij + δij (ρb −Dab − 2Dib + 2Diab) .

(A.24)

This condition also results in O(K4) blocks of dimension O(1× 1), and O(K2) blocks
of dimension O(K ×K).

• The 4-G condition: the mixed two-particle-two-hole representation yields

⎛
⎜⎜⎜⎜⎜⎜⎝

(ab) Πa
bd − Πac

bd Πb
ad − Πbc

ad Πa
bc −Πad

bc Πb
ac −Πbd

ac Πabcd

Πa
bd −Πac

bd (ad) Πd
ab − Πcd

ab Πa
cd −Πab

cd Πadbc Πd
ac − Πbd

ac

Πb
ad − Πbc

ad Πd
ab −Πcd

ab (bd) Πbdac Πb
cd − Πab

cd Πd
bc − Πad

bc

Πa
bc −Πad

bc Πa
cd −Πab

cd Πacbd (ac) Πc
ab −Πcd

ab Πc
ad − Πbc

ad

Πb
ac − Πbd

ac Πbcad Πb
cd − Πab

cd Πc
ab − Πcd

ab (bc) Πc
bd −Πac

bd

Πcdab Πd
ac −Πbd

ac Πd
bc − Πad

bc Πc
ad − Πbc

ad Πc
bd − Πac

bd (cd)

⎞
⎟⎟⎟⎟⎟⎟⎠

	 0,

(A.25)

with, for example,

(ab) = Dab −Dabc −Dabd +Dabcd

(bc) = Dbc −Dabc −Dbcd +Dabcd,
(A.26)
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⎛
⎜⎜⎝
Dijb −Dijab Πij

ab Πib
ja + δijΠ

b
aj Πi

jb − Πia
jb

Πij
ab Dija −Dijab Πia

jb + δijΠ
a
bj Πi

ja − Πib
ja

Πjb
ia + δijΠ

b
aj Πaj

ib + δijΠ
a
bj Πab

ij + δij (Dab − 2Diab) Πabij

Πj
ib − Πja

ib Πj
ia − Πjb

ia Πijba Πij −Πa
ij − Πb

ij +Πab
ij

⎞
⎟⎟⎠ 	 0,

(A.27)

and

Πilkj + δjl
(
Πik − 2Πj

ik

)
	 0, withmatrix indices ij and kl. (A.28)

This last condition results in O(K4) blocks of dimension O(1× 1), O(K2) blocks of
dimension O(K ×K), and O(1) blocks of dimension O(K2 ×K2).

The elements of the seniority-zero blocks of the 4-RDM must satisfy the following
contraction and consistency relations with the 2- and 3-RDMs:∑

j �=il

Πij
kl = (M − 2)Πi

kl (A.29)

∑
i �=jkl

Dijkl = (M − 3)Djkl (A.30)

Πikkj = Πk
ij , Πijij = Dij , (A.31)

Πij
kk = Dijk, Dijkk = Dijk. (A.32)
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