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A B S T R A C T

A new dynamic optimization strategy is substantiated for allocating demands, in a typical process plant, to a set
of service equipment working in parallel. It is a stochastic process in nature, but its optimal control is based on
the solution to a related deterministic optimal tracking problem to minimize a quadratic cost objective restricted
by linear dynamics. The main theoretical novelty, demonstrated here, is the separation theorem for the
stochastic tracking problem. This means: the desired optimal stochastic solution can be calculated from the
solution to the deterministic problem, by replacing the state variable with their optimal estimates, which can be
generated online following a Kalman filter scheme. The set-points assigned to each conventional controlled
device are allowed to be continuously changed while: (i) minimizing a combined cost, which is cumulative in
time and takes into account the dynamics of all the individual utilities, and (ii) generating a feedback law that
can cope with general disturbances, like changes in fuel composition and with noisy measurements, i.e. with
differences between the predicted and the measured values of the variables.

1. Introduction

Optimal allocation problems have a long tradition in engineering
practice. In chemical processes, dynamic optimization frequently deals
with distributing global service demands of the plant into individual
targets assigned to each member of a group of service equipment, while
minimizing a predetermined generalized cost. Typical service equip-
ment (or utilities) include sets of boilers/steam generators, heat-
exchangers, pumps, air-compressors, and the like (Bujak, 2009;
Collins and Lang, 1998; Muller and Craig, 2014; Teles et al., 2008;
Zhang et al., 2013). In what follows, the individual components from
the ‘group’ under consideration will be referred to as ‘units’. Units
operate in parallel to meet the total demand required to the group.
Usually the individual demands translate into set-points communi-
cated to controllers of the PID type, which are properly tuned and
perform efficiently. The sum of the demands assigned to the units is
always assumed to equal the total demand required from the group.

With environmental policies, rising energy costs, and a struggling
global economy, there has been an increasing concern on efficiency
improvement in the process industries. Energy is supplied to (or
removed from) a plant mostly through utilities and a reduction in the
consumption of these utilities results in a direct energy saving (Pillaia
and Bandyopadhyay, 2007; Shide et al., 2009). In Fig Fig 1. a schematic

diagram of a utility group is shown (Hwan and Han, 2001). They
provide vapor to the rest of the plant, where in this case power energy is
generated by means of a system of turbines in parallel. The power
demand is decided by a supervisory controller (depicted in green),
which in turn imposes a total vapor demand to the steam generators. In
traditional engineering practice this total vapor demand enters to the
boiler system as a global set point (constant under normal operation
conditions). The global demand α needs to be distributed into the units,
realized conventionally as a constant fraction of α. A novel scheme is
introduced at this point (illustrated in blue), where the set points (u1,
u2,…un) of each boiler are permitted to change in time, following a
trajectory and decided by the Optimal Allocation Controller. In this
paper two aspects of this routine will be discussed: (i) the methodology
for deciding the individual set-points after a new total demand is
required from a group, and (ii) the convenience of changing these
orders continuously in time, by optimizing some combined cumulative
cost during a fixed finite time-horizon.

This type of approach (although resorting just to time-constant set-
point orders) has been applied to steam generation (Bujak, 2009;
Havlena, 2009; Likins and LaSpisa, 1986) towards minimizing energy
losses to the environment, or equivalently to maximize the efficiency of
a set of units, defined from theoretical relations among the many
physical variables involved. This approach gives rise to a static
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optimization problem managed by linear or nonlinear programming,
exceptionally by Dynamic Programming (Hwan and Han, 2001;
Mavromatisa and Kokossis, 1998; Pillaia and Bandyopadhyay, 2007).

They follow static optimization lines, common to research operation
engineering (see for instance Hatzopoulos et al., 2011; Xu and Zeng,
2011). To the authors' knowledge, a dynamic point-of-view has only
been applied to specialized derived situations, like redundant control
and related problems (Härkegård and Glad, 2005).

An original ‘dynamic feedback’ strategy will be sought here, in the
sense that the set-points to each unit will be allowed to change
continuously while: (i) minimizing a combined cost, which is cumula-
tive in time and takes into account the dynamics of all the individual
units, and (ii) generating a stochastically optimal control that copes
with general disturbances, like changes in fuel composition, noisy
measurements, environmental interactions and the like.

With these objectives in mind, the dynamics for the responses of
each unit to set-point indications will be assessed, directly from
experimental data. Then the whole group of n units will be assembled
into a general model with an n( − 1)-dimensional control vector
associated with the first n − 1 set-points, the remaining one determined
by the residue with respect to the global demand, which is constant
during each optimization time-horizon. This new ‘big’ system, together
with a typical quadratic cost functional conform an optimal control
problem that has a close mathematical solution, leading to a linear
feedback law with time-variant coefficients. Both the proportional
coefficient and the feed-through term in the control law need to be
calculated only once for a unitary global demand, and stored in
memory, the updating procedure for another demand being straight-
forward. The nature of the modeling also admits a stochastically
optimal handling of disturbances and systemic perturbations, and
eventually a suboptimal online correction (Costanza, 2005; Costanza
and Rivadeneira, 2014) of the feedback law due to hard restrictions on
control values (Bujak, 2009; Havlena, 2009).

The rest of the article will be organized as follows: in Section 2 the
modeling for the dynamics and the design of the cost objective are
made explicit, and the optimal solution analytically found. Also the
stochastic problem of estimation is posed for groups of units, and the
‘Separation Principle’ for tracking problems is demonstrated, which
guarantees the optimality of the tandem filter-regulator. Section 3 is
devoted to numerical calculations and validations, the stochastic
aspects are substantiated, and all issues illustrated for boilers in a

steam utility group. The last Section exposes the conclusions.

2. Theoretical setup

2.1. State space models for utility units

In what follows it will be assumed that a group of service equipment
is in operation as part of an industrial plant, its units working in
parallel, evolving within the admissible range of their main variables,
and that each member is efficiently controlled, according to conven-
tional engineering practice, to meet its assigned demand.

It is commonly accepted that the dynamics of each unit is in general
nonlinear (Bujak, 2009; Havlena, 2009), of the form

x f x v˙ = ( , ), (1)

where x denotes the relevant states and v some manipulated variable
(for instance, the water inflow). As soon as a new set-point u for the
‘production’ state x1 is received, then the manipulated variable will be
assumed to follow some finely tuned control strategy

v k t u= ( , ), (2)

which ‘efficiently’ drives x1 towards u in due time. Eq. (2) represents
the final form that the control trajectory (generated by a controller,
typically a PID) will adopt after a set-point of magnitude u is assigned.
This paper will not deal with the validity of the subjacent efficiency
criterion nor with the design/tuning of the control strategies k t u( , ).

The ‘production’ state x1 is attached to the ‘service’ required from
the equipment. For instance, if the unit were a boiler, then the value
x t( )1 would reflect the amount of vapor produced by the boiler at time t .
It follows that there will also be at least a main ‘expense’ variable x2,
necessary for the unit to actually realize the service. Again for a boiler,
x t( )2 could typically describe the amount of fuel that the unit is
consuming at time t .

As a consequence of applying such efficient control strategies k, it
can also be reasonably assumed that the dynamics of the variables
x x u, ,1 2 result approximately linear, i.e. that the finally controlled unit
would perform well under proportionally different admissible set-
points. This hypothesis has been corroborated by experimental data
(Bujak, 2009; Costanza and Rivadeneira, 2015; Xu and Zeng, 2011;
Havlena, 2009), and it amounts to propose a linear model for the new
system, namely

Fig. 1. Schematic diagram of supervisory control with optimal demand allocation of a utility plant. (For interpretation of the references to color in this figure, the reader is referred to
the web version of this article.)
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x Ax Bu˙ = + , (3)

where it is redefined as x x x≔( , )′1 2 , and then A is a 2 × 2 matrix, B is a 2-
dimensional column vector and u works as the new control variable
allowed to vary in the range of experimental values. The pair A B( , ) will
be assumed controllable, their coefficients identified from current
registered data of the plant under study (see (Costanza and
Rivadeneira, 2015) for details).

The demand now functions as a target communicated by the
supervisory command to each service unit. In previous engineering
literature it was kept constant (at a prescribed fixed value u, equal to a
portion of the production required from the whole set of service units)
during a period of time, until a new demand was decided, i.e. u has
taken the form of a picewise-constant function of time. Since the ability
to follow the individual demand is accurate and fast, there is no
technical impediment to admit piecewise-continuous u (·) for the
individual demands, seeking to improve the performance of the whole
group. What is treated here is just how to continuously change the set-
point u(t) for each unit in operation, in order to meet the total demand
assigned to the group while optimizing an economic cost criterion, to
be explicitly designed below.

It must remain clear that, in trying to achieve this objective, the
conventional control instrumentation already attached to each unit
should be preserved and subject to standard maintenance regulations.
These instruments usually are long-tested PID controllers implement-
ing the strategies (2) alluded above, their tuning being a matter out of
the scope of this paper. Therefore, in what follows the objects to
optimize will be well instrumented service units, whose new inputs will
be in each case a time-varying demand u (·) affecting the evolution of
the new state variables x (·) as in linear control systems (3).

In the general case, n units in parallel will be optimized, whose
identified linear models are denoted

x A x B u y x i n˙ = + , = , = 1, … ;i i i i i i i (4)

where x x x≔( , )′i i i1 2 is the state vector for unit i, xi1: produced variable,
xi2: consumed variable, ui: demanded value, and yi: the output,
equivalent to the state. For each boiler the matrices A's are 2×2 and
2 × 1, respectively.

When a total demand α is required to be supplied by the n boilers,
then necessarily

u α u u= − −⋯− .n n1 −1 (5)

Therefore, despite the facts that n set-points are to be ordered to the n
utility units, there exist only n − 1 degrees of freedom for treating the
whole set. This leads to a possible setup for the optimal allocation
problem to n units working in parallel. After redefining

x x x x u u u≔( ′ ⋮ ′ ⋮⋯⋮ ′ )′; ≔( ,…, )′;n n1 2 1 −1 (6)

the dynamics for the set of boilers, under the restriction implied by Eq.
(4), becomes a n2 -dimensional linear-affine system with an n( − 1)-di-
mensional control variable, namely

x A x B u φ˙ = + + . (7)

with coefficient matrices
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(8)

Assuming that each model in Eq. (4) is in canonical form (controllable
and observable), it follows from the form of matrix A that the global
system will be uniformly bounded-input bounded-output (UBIBO) if
and only if the same is true for each individual subsystem (utility unit).
Therefore, under these assumptions, since the UBIBO property is
equivalent to internal stability for each boiler, the global system will be
externally stable when each identified matrix Ai is stable (its eigenva-
lues have negative real parts). It may then be concluded then that the

stability properties of the n2 -dimensional system will be the same as
those of each one of the controlled units.

2.2. Optimal allocation as a LQR problem

An optimal control problem for the utility group described in the
previous section will be posed here, aiming to minimize a quadratic
objective cost functional of the form

∫u x t x Q x t x u t Ru t dt

x T x S x T x

( ) = [( ( ) − )′ ( ( ) − ) + ′( ) ( )]

+ ( ( ) − )′ ( ( ) − ),

T

0

(9)

subject to the affine system of Eqs. (7)–(8). The reference value

x x x x≔( ′ ⋮ ′ ⋮⋯⋮ ′ )′n1 2 (10)

is a n2 -dimensional design parameter vector, whose components may
be interpreted as the average/standard desired values of production
and expense, respectively, for units i n= 1, 2,…, .

As usual, Q and S will be nonnegative n n2 × 2 symmetric matrices,
and R will be n n( − 1) × ( − 1) and positive definite. The coefficients of
Q R S, , are usually decided according to the characteristics of each
application. It seems most probable that Q and S be constructed from
2×2 symmetric submatrices displayed in diagonal, one such a subma-
trix related to each utility unit. In the same fashion,
R diag r r= ( ,…, )n1 −1 , with all r > 0i , would be a practical choice for
weighting the control energy effort associated to the problem. Notice
that, in order to take into account that there exist n units and only n − 1
available coefficients ri, a possible compromise would be to adopt

r r r
n

i n= +
− 1

, = 1,…, − 1,∼ ∼
i i

n
(11)

where r∼i is the weight of the control corresponding to the demand
assigned to the individual unit i, for i n= 1, … . Formula (11) would
then satisfy

∑ ∑E r u r u E≔ = ≔∼ ∼
u

i

n

i i
i

n

i i u
=1

−1
2

=1

2

(12)

when u α n≡ /i (a typical choice for xi1), i n= 1, … , and Eu would be a
good approximation of E∼u for general values ui under the following
restrictions: (i) u α∈ [0, ]i , and (ii) u u α+⋯+ =n1 , as it is the case here.
As expected, this choice of ri always verifies: r rlim = ∼

n i i→∞ , for i n= 1, … .
An interesting question concerning the optimal control design is

how to choose the parameters Q, R and S involved in the cost function.
The choosing of these matrices must lead to ‘acceptable’ levels of x t( ),
u t( ), and x T( ). A classical approach (Bryson and Ho, 1975) initializes
Qii, Rii and Sii tentatively, and then modify these values by trial and
error, to reach a compromise among response time, damping and
control effort. In more recent literature, there are several papers
covering this subject, for instance (Das et al., 2013; Robinson, 1990).
Here, simple diagonal weights were adopted for Q and S, so that they
indicate how much each state and input deviation contribute to the
overall cost, i.e.

Q diag q q q q S diag s s s s= ( , ,…, , ), = ( , ,…, , )1 2 1 2 1 2 1 2 (13)

The following index

∫
η

x T x

x t dt
=

∑ ( ( ) − (0))

∑ ( )
i
n

i i
T

i
n

i

=1 1 1

0 =1 2 (14)

will be used to tune the parameters Q, S, and R in order for η to be
maximized. This index can be seen as a measure of the efficiency during
a period T , since it relates the net production of the production variable
and the total consumption of the combustible variable.

To treat the problem under a more convenient theoretical setup, the
affine-linear system (7) describing the dynamics of the group will be
transformed into a linear one by introducing the following variable
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vector z

∫z t e φ τ dτ( )≔ ( ) ,
t

A t τ
0

( − )
(15)

which satisfies the initial-value problem

z t A z t φ t z˙ ( ) = ( ) + ( ), (0) = 0, (16)

After a change of variables x t x t z t( ) → ( ) − ( ), and r t x z t( ) → − ( ), the
control dynamics becomes, for the ‘new’ state variable x

x A x B u x x˙ = + , (0) = ,0 (17)

and the cost objective (9) can be written in the form:

∫u x r Q x r u Ru dt

x T r T S x T r T

( ) = [( − )′ ( − )) + ′ ]

+ ( ( ) − ( ))′ ( ( ) − ( )),

T

0

(18)

Now, the problem defined by Eqs. (17), (18) is equivalent to the
original one embodied in Eqs. (7), (9). The optimal tracking problem
aims to drive the new state x, now governed by a linear dynamics,
towards the newly defined reference trajectory r(t). The performance of
the control will be assessed by a quadratic cost with the same
coefficients than in the original one.

The linear-quadratic tracking problem retains some features of the
classical LQR problem (Costanza and Rivadeneira, 2014; Sontag,
1998). For instance, its Hamiltonian H

H x λ u L λ f x r Q x r u Ru λ A x B u( , , )≔ + ′ = ( − )′ ( − ) + ′ + ′( + ) (19)

which is minimized by the same expression as in the LQR case, namely:

u x λ R B λ( , ) = − 1
2

′ ;0 −1
(20)

and the u-minimal Hamiltonian H0 results

H x λ H x λ u x λ x r Q x r λ W λ λ A x( , )≔ ( , , ( , )) = ( − )′ ( − ) − 1
4

′ + ′ ,0 0
(21)

where the usual notation W B R B≔ ′−1 has been introduced.

2.2.1. The optimal tracking solution
The appearance of x r( − ) instead of just x (regulator problem)

proposes a complete quadratic dependence for the value function V

V t x x P t x ξ t x σ t( , )≔ ′ ( ) + 2 ′( ) + ( ), (22)

with time-varying coefficients P ξ σ( , , ); a (in principle symmetric)
n n2 × 2 matrix P, an n-dimensional column vector ξ, and a scalar
factor σ .

The Hamilton-Jacobi-Bellman (HJB)

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

V
t

t x H x V
x

t x∂
∂

( , ) = − , ∂
∂

′( , )0

(23)

and its final condition

V T x x T r T S x T r T( , ) = ( ( ) − ( ))′ ( ( ) − ( )) (24)

must be satisfied by the proposed value function and its partial
derivatives

V
t

t x x P t x x ξ t σ t∂
∂

( , ) = ′ ˙ ( ) + 2 ′ ˙( ) + ˙ ( ),
(25)

⎛
⎝⎜

⎞
⎠⎟

V
x

x t P t x ξ t∂
∂

′( ( )) = 2[ ( ) + ( )],
(26)

which requires that for all admissible (t,x)

x P t x x ξ t σ t x r Q x r

P t x ξ t W P t x ξ t

P t x ξ t A x

′ ˙ ( ) + 2 ′ ˙( ) + ˙ ( ) = −( − )′ ( − )

+ [ ( ) + ( )]′ [ ( ) + ( )]

− 2[ ( ) + ( )]′ , (27)

and at the end of the time-horizon

x Sx Sr T r T Sr T x P T x ξ T x σ T′ − 2 ( ) + ( )′ ( ) = ′ ( ) + 2 ′( ) + ( ). (28)

Since these equalities involve second order polynomials in x, their
coefficients must also be equal, resulting in the following system of
ODE's:

P PW P A P PA Q P T S˙ = − ′ − − , ( ) = , (29)

ξ A W P ξ Qr ξ T Sr T˙ = −( − )′ + , ( ) = − ( ), (30)

σ ξ W ξ r Qr σ T r T Sr T˙ = ′ − ′ , ( ) = ( )′ ( ), (31)

Their solutions allow to express the optimal control u* in the form

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟u t u x t V

x
t x t R B P t x t ξ t*( ) = *( ), ∂

∂
′( , *( )) = − ′[ ( ) *( ) + ( )],0 −1

(32)

where x* denotes the optimal state, and also to calculate the optimal
cost from

V x x P x x ξ σ(0, ) = ′ (0) + 2 ′ (0) + (0).0 0 0 0 (33)

Eq. (29) coincides with the Riccati Differential Equation for the
LQR problem with coefficients A B Q R S( , , , , ), and results uncoupled
from the remaining two ODEs. It should be noted that, even though the
problem at hand does not possess the LQR structure, still the Eq. (32)
can be interpreted as a linear-affine feedback law uf , precisely

u t x R B P t x ξ t( , )≔− ′[ ( ) + ( )],f
−1 (34)

and from Bellman's Principle it could be asserted that, notwithstanding
that at some time t the actual state x may differ from the expected
optimal state x t*( ), yet the optimal control at that time, denoted u*x , can
be computed as u t u t x*( ) = ( , )x f . This property makes the previous
results robust against sporadic state errors.

It is well known that, for infinite-horizon, constant-target, constant-
coefficients LQR problems, the optimal feedback will stabilize the
system provided that the pair A B( , ) is controllable (which has already
been assumed), and the state-penalty matrix Q, is positive definite
(which will be assumed in what follows) as it is stated in Sontag (1998),
Theorem 41. Therefore, the resulting strategies for such problems are
asymptotically stable. Now, in our finite-horizon context, we can also
guarantee that the state trajectories will be bounded during each
optimization period of duration T, due to the compactness of T[0, ]
and the continuity (actually differentiability) of the solutions to the
closed-loop dynamics.

2.2.2. Handling changes in the total demand α
Eqs. (29), (30) have final (instead of initial) conditions and there-

fore can not be numerically integrated online with the process. They
need to be solved offline and stored in the memory of the controller.
This is an inconvenience common to the LQR, servo, and tracking
problems, for which the feed-through terms and similar objects must
be updated for the whole time-horizon in case the reference signal is
modified. Fortunately, in the present case the calculation of the time-
varying coefficient ξ (·) of the feedback law is required to be computed
only once, namely for a unitary total demand (α = 1), and the same
thing applies to the cost coefficient σ (·). These assertions are conveyed
in precise terms by the next two equations:

u t R B P t x t αξ t*( ) = − ′[ ( ) ( ) + ( )],∼−1 (35)

J V x x P x αx ξ α σ* = (0, ) = ′ (0) + 2 ′ (0) + (0),∼ ∼
0 0 0 0

2 (36)

where ξ σ,∼ ∼ denote the coefficients calculated for α = 1, or equivalently
for z t z t α( )≔ ( )/∼ , r t r t α( )≔ ( )/∼ , and x x α x x x≔ / = ( ˇ , 0, ˇ , 0,…, ˇ , 0)′∼

n1 2 ,
x∑ ˇ = 1i

n
i=1 . Eqs. (35), (36) can be justified as follows:

(i) the solution to Eq. (30) with final condition
ξ T Sr T αSr( ) = − ( ) = − ∼ is

⎧⎨⎩
⎫⎬⎭∫ξ t αΨ t T Sr T Ψ t τ Qr τ dτ αξ t( ) = ( , ) − ( ) + ( , ) ( ) = ( ),∼ ∼ ∼

T

t

(37)
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where Ψ t T( , ) is the fundamental matrix associated with the linear
(time-varying) system ψ A W P t ψ˙ = −( − ( ))′ ;

(ii) and similarly, for Eq. (31),

⎧⎨⎩
⎫⎬⎭∫σ t α r T Sr T ξ τ W ξ τ r Qr dτ α σ t( ) = ( )′ ( ) + [ ′( ) ( ) − ′ ] = ( ).∼ ∼ ∼ ∼∼ ∼ ∼

T

t
2 2

(38)

Now it should be decided how to handle changes in the total
demand when they occur in some interior point t of a period t t T[ , + ]0 0 .
Let us assume that, in such a case, the optimization of the system is
desired to be continued, at least for another interval of duration T .
Some ‘receding-horizon’ decision has to be made (see Costanza and
Rivadeneira, 2015) for practical implementation of this result).

2.3. Optimal filtering

Disturbances in the parameters of each device, and in the measure-
ment and transmission of signals, are known to occur during real
process operation. The common set up for these influences over the
deterministic models assumed in previous sections is the following

x t A x t B u t r˙ ( ) = ( ) + ( ) + ,∼
1 (39)

y Cx r= + ,2 (40)

where the notation ẋ should be understood as the differential of a
Brownian process associated with the state of the utility group,
resulting from the existence of zero-mean white noise r1 fluctuations
on the environment conditions; u∼ denoting the input variable
u u u= ( ,…, )∼ ∼ ∼

n1 −1 , u α u≔ − ∑∼ ∼
n i

n
i=1

−1 ; and where r2 are the zero-mean white
noises in the measurements of the outputs y, which in this case are
conceptually the same thing as the states, i.e. it is assumed that each
subsystem i is observable (which is clearly true in most modern plants).
Notice that y is the output vector of the whole group.

In this context, the least-squares optimal filtering problem for the
unit group is known to be solvable (Fleming and Rishel, 1975) through
the following pair of equations

x A x B u L y Cx t x x= + + ( − ( )), (0) = [ ]∼·
0 (41)

Π A Π ΠA Q ΠD Π Π Cov x˙ = + ′ + − ; (0) = ( ),0 (42)

D C R C L ΠC R≔ ′ , ≔ ′ ,−1 −1 (43)

where x is the best estimation of the state x;  r[ ] = 01 ,
 r t r τ Q δ t τ[ ( ). ′ ( )] = . ( − )1 1 , with Q the r1 covariance matrix, and
 r[ ] = 02 ,  r t r τ R δ t τ[ ( ). ′ ( )] = . ( − )2 2 , with R the r2 covariance (in-
vertible) matrix; L denotes the ‘gain’ of the filter, which works
analogously to an observer; x0 is now a random vector with mean
 x x[ ] = (0)0 and initial covariance  x x x x Π[( − (0))( − (0))′] = (0)0 0 ,
and finally Π is the dynamical covariance, solution to the Riccati-type
ODE (29). The matrices C , Q , R , L and Π are n n2 × 2 ; and can be
conveniently partitioned in the form

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟G

G G

G G
=

⋯
⋮ ⋱ ⋮

⋯
,

∼ ∼

∼ ∼

n

n nn

11 1

1 (44)

with G∼ij a 2×2 block. Let us adopt, for simplicity, the notation G G≔∼ ∼
ii i

i n= 1,…, .
The following features are naturally assumed for these matrices:
i) The observation matrix C is

C diag C C≔ ( ,…, )∼ ∼
n1 (45)

and C I=∼
i 2, i n= 1,…, .

ii) The noises affecting output and state in each unit are indepen-
dent from those affecting the other units, then the covariance of noises
between units is zero (each unit works in parallel). This is expressed
through the choice

Q diag Q Q R diag R R≔ ( ,…, ), ≔ ( ,…, ),∼ ∼∼ ∼
n n1 1 (46)

the matrices Qi, and Ri are the covariance matrix of r1i and r2i in each
unit, respectively. Besides, as R is now a diagonal matrix its inverse is

R diag R R= ( ,…, )∼ ∼
n

−1
1
−1 −1

.
iii) The fluctuations in the initial condition depends only on the

enviroment of each unit, then the initial covariance of the estimation is:

Π diag Π Π diag Cov x Cov x(0)≔ ( (0),…, (0)) = ( ( ),…, ( )).͠ ͠ n1 0 0n1 (47)

Notice that Eq. (42), in partitioned form, results

Π A Π Π A Π D Π Q Π Cov x δ= + ′ − + , (0) = ( ) ,͠͠ ͠ ͠ ͠ ͠∼ ∼ ∼
ij ik kj ik kj ik kl lj ij ij ij

·

0i (48)

where

⎧⎨⎩δ i j= 1 =
0 otherwiseij

and i j k l n, , , = 1,…, .
The nondiagonal terms of Π are irrelevant, as shown next. Consider

the case i j≠ , and recall that A , D , andQ are ‘diagonal’matrices (in the
sense of Eq. (44)), then Eq. (48) becomes

Π A Π Π A Π D Π Π= + ′ − , (0) = 0.͠͠ ͠ ͠ ͠ ͠ ͠∼ ∼
ij i ij ij j ik k kj ij

·

(49)

Let us show that the functions Π t( ) ≡ 0͠ ij satisfy Eq. (49), which will
allow us to discard the non-diagonal sub-equations of Eq. (48). Notice
that the terms A Π͠∼

i ij, and Π A͠ ∼
ij j vanish when applying this solution. The

remaining term Z Π D Π= ͠͠ ͠ij ik k kj is also zero, because making k i= ,
Π D Π = 0͠͠ ͠i i ij due to the last Π͠ij, and for k=j, also Π D Π = 0͠͠ ͠ij j j due to the
first Π͠ij. Besides for k i j≠ , the result is obvious. Therefore, for i j≠ , the
conclusion is that Z = 0ij .

Now, consider the case i=j. Eq. (48) reads

Π A Π Π A Q Π D Π Π Cov x= + ′ + − , (0) = ( ),͠͠ ͠ ͠ ͠ ͠ ͠∼ ∼ ∼
i i i i i i i i i i

·

0i (50)

which depends only on i, therefore only the objects of the unit i are
involved. As a consequence, Π t diag Π t Π t( ) = ( ( ),…, ( ))͠ ͠ n1 is the solution
of Eq. (42) for the whole group.

Since the filter gain can be written as L diag L L= ( ,…, )n1 , where

L Π t C R= ( ) ′i i i i
−1

for i n= 1,…, , then each state vector x t( )i in Eq. (41)
verifies

x t A x t B u t L y t C x t x x( ) = ( ) + ( ) + ( ( ) − ( )); (0) = [ ],∼
i i i i i i i i i i
·

0i (51)

independently from the other units.
The practical consequence of this set-up is that the filtering and

estimation problems can be solved for each unit of the group, so
avoiding the integration of n n2 × 2 coupled differential equations.

2.4. Stochastic control

In this section it is shown that the control law derived in the
deterministic context is also ‘optimal’ under random perturbations in
measurement devices and model parameters. This optimality of the
control is understood in the stochastic sense, i.e. by taking into account
that the random perturbations force the model, specially the state x (·),
to be considered as a stochastic process.

The stochastic optimal control problem attempts to minimize the
functional


⎡
⎣⎢

⎤
⎦⎥

∫u x r Q x r u Ru dt

x T r T S x T r T

( ) = {( − )′ ( − ) + ′ }

+ ( ( ) − ( ))′ ( ( ) − ( ))

sto
T

u u

u u

0

(52)

with respect to the deterministic control u (·), where  denotes the
usual expected-value, r(t) is a given deterministic reference trajectory,
and subject to the dynamical constraint
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x A x B u r x x˙ = + + , (0) = ,1 0 (53)

where the input variable u u u= ( ,…, )n1 −1 , u α u≔ − ∑n i
n

i=1
−1 , and x0 is a

random vector with mean  x x[ ] = (0)0 and initial covariance
 x x x x Λ Π[( − (0))( − (0))′] = = (0)0 0 0 . The variables x , and Π are
the solution to the filtering and estimation problems discussed in the
previous subsection.

For the deterministic case (in Section 2.2), it was shown that the
optimal control is

u R B P t x t ξ t* = − ′[ ( ) ( ) + ( )],−1 (54)

where P ξ, are the optimal deterministic coefficients described by Eqs.
(29) and (30). By analogy to the regulation case, the separation
hypothesis proposes that the optimal control for the stochastic set-up
would be

u R B P t x t ξ t*≔− ′[ ( ) ( ) + ( )].−1 (55)

Next, the hypothesis will be proved, and furthermore it will be shown
that the optimal cost is

∫ ∫u x Tr PQ dt Tr P Λ Tr PW PΠ dt* ( *) = * ( ) + ( ) + ( (0) ) + ( ) .sto

T T

det 0
0

0
0

(56)

where x V x* ( ) = (0, )det 0 0 (see Eq. (33)). The proof resorts to the
following change of variables

u u u≔ + ,∼ (57)

and re-expresses the dynamics and the cost function. The dynamics
results

x A W P x W P x x W ξ Bu r˙ = ( − ) + ( − ) − + + .∼
1 (58)

If A A W P≔( − )∼
, and x x x≔( − )∼ , then Eq. (58) becomes

x A x W Px W ξ Bu r˙ = + − + + .∼∼∼
1

From Eq. (29) and the latter transformations, the next equalities
are obtained:

Q PW P P PA A P+ = − ˙ − − ,∼ ∼
(59)

x Qx x P PA A P x x PW P x′ = − ′( ˙ + + ) − ′( ) .∼ ∼
(60)

The following calculations involving the terms of the cost function
will be needed:

u u R u u u Ru u Ru u Ru( + )′ ( + ) = ′ + 2 ′ + ′ ,∼ ∼ ∼ ∼ ∼ (61)

u Ru x PW Px x PW ξ ξ W ξ′ = ′ + 2 ′ + ′ , (62)

x PW Px x PW Px x PW Px x PW Px′ = ′ + ′ − 2 ′ ,∼ ∼ ∼ (63)

x PW ξ x PW ξ x PW ξ2 ′ = 2 ′ − 2 ′ ,∼ (64)

u Ru x PBu x PBu ξ Bu2 ′ = −2 ′ − 2 ′ − 2 ′ .∼ ∼ ∼ ∼∼ (65)

From Eq. (30), the expression ξ A ξ Qr˙ + =∼
is obtained, and then

x r Q x r x Qx x ξ x A ξ r Qr( − )′ ( − ) = ′ − 2 ′ ˙ − 2 ′ + ′ .∼
(66)

The cost function (52), after these algebraic manipulations, be-
comes u( ) = [ + + ]∼

sto sto sto sto
1 2 3 , where

∫ x Px x Px x Pr x PW Px x PBu dt= (− ′ ˙ − 2 ′ ˙ + 2 ′ + ′ − 2 ′ )∼∼ ∼ ∼
sto

T
1

0
1 (67)

∫x T Sx T x PW ξ ξ Bu ξ A x x ξ ξ W ξ

r Qr dt

+ ( )′ ( ), = − (2 ′ + 2 ′ + 2 ′ + 2 ′ ˙ − ′

− ′ ) ,

∼∼ ∼
sto

T
2

0

(68)

∫ u Rudt r T Sr T x T Sr T= ′ + ( )′ ( ) − 2 ( )′ ( ).∼ ∼
sto

T
3

0 (69)

In sto
1 by taking into account that the error x∼ is orthogonal to the

measurements y, and to x , it follows that (see (Oksendal, 2005)),

 
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∫ ∫x PBudt x Pr dt′ = 0, ′ = 0,∼∼T T

0 0
1

(70)

and by Ito's integral properties (Oksendal, 2005)

d x Px x Pxdt x Pdx Tr PQ dt( ′ ) = ′ ˙ + 2 ′ + ( ) . (71)

and


⎡
⎣⎢

⎤
⎦⎥∫ ∫x PW Pxdt Tr PW PΠ dt′ = ( ) .∼ ∼T T

0 0 (72)

Then the first term sto
1 can be processed to obtain

 



⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫ ∫

∫ ∫

∫

d
dt

x Px dt x T Sx T Tr PQ dt

x PW Pxdt x P x Tr PQ dt

x PW Pxdt

[ ] = − ( ′ ) + ( )′ ( ) + ( )

+ ′ = (0)′ (0) (0) + ( )

+ ′

∼ ∼

∼ ∼

sto

T T

T T

T

1

0 0

0 0

0 (73)

∫ ∫x P x Tr P Λ Tr PQ dt Tr PW PΠ dt= (0)′ (0) (0) + ( (0) ) + ( ) + ( ) .
T T

0
0 0

Now, the term A x∼
can be replaced by

A x x WPx Bu Wξ r= ˙ − − + −∼∼∼
1 in Eq. (68), and therefore the second

term of the cost functional becomes

∫ ξ x Wξ r ξ Wξ x ξ r Qr dt= − (2 ′( ˙ + − ) − ′ + 2 ′ ˙ − ′ )sto

T
2

0
1 (74)

∫ ξ x ξ r x ξ ξ Wξ r Qr dt=− (2 ′ ˙ − 2 ′ + 2 ′ ˙ + ′ − ′ ) ,
T

0
1 (75)

since from Eq. (31), and σ ξ Wξ r Qr˙ = ′ − ′

∫ ξ x ξ r x ξ σ dt= − (2 ′ ˙ − 2 ′ + 2 ′ ˙ + ˙) .sto

T
2

0
1 (76)

Now, from Ito's calculus (Oksendal, 2005)


⎡
⎣⎢

⎤
⎦⎥∫ ξ r dt′ = 0,

T

0
1

(77)

d x ξ x ξdt ξ dx(2 ′ ) = 2 ′ ˙ + 2 ′ . (78)

By introducing the latter implications and after adding sto
2 to sto

3 ,
the following equation is obtained

 [ + ] =sto sto
2 3 (79)


⎡
⎣⎢

⎤
⎦⎥

∫ ∫

∫ ∫

d
dt

x ξ dt x T Sr T d
dt

σ dt r T Sr T

u Rudt x ξ σ u Rudt

= − (2 ′ ) − 2 ( )′ ( ) − ( ) + ( )′ ( )

+ ′ = 2 (0)′ (0) + (0) + ′ .∼ ∼ ∼ ∼

T T

T T

0 0

0 0 (80)

Finally, if the last equation is added to sto
1 , the total cost function

results


⎡
⎣⎢

⎤
⎦⎥∫

∫ ∫

u u Rudt x P x x ξ σ

Tr PQ dt Tr P Λ Tr PW PΠ dt

( ) = ′ + (0)′ (0) (0) + 2 (0)′ (0) + (0)

+ ( ) + ( (0) ) + ( ) ,

∼ ∼ ∼
sto

T

T T

0

0
0

0 (81)

which attains its minimal value if and only if u = 0∼ . This proves the
hypothesis and establishes the ‘Separation Principle for the Stochastic
LQ Tracking Problem’.

3. A case study: two boilers in parallel

Consider the following system of two boilers producing vapor in
parallel:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟A = − 0.112 0.05

− 0.2 − 0.09 , A = − 0.2 0.05
− 0.2 − 0.155

,1 2
(82)
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟B B C C= 0.05

0.315
, = 0.125

0.4 , = = 1 0
0 1 .1 2 1 2

These realizations are canonical, the eigenvalues of A1, A2 are
i−0.1013 ± 0.0993 and i−0.1775 ± 0.0974 , respectively, having the first

boiler a faster response than the second one. For each boiler, the
stationary output y∞ corresponding to a constant input u k(·) ≡ is
y A B k= −i i i

∞ −1 ,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟y k y k= 1.00847

1.25896 , = 0.960366
1.34146

.1
∞

2
∞

(83)

This shows that the slower (second) boiler will be subject to an off-
set (first component of y∞) of around 4%, bigger than the offset of the
first one. Therefore, the coefficients of each realization convey enough
information about the performance expected from each PID-controlled
boiler, for instance, a measure of the static efficiency of the unit can be
calculated as

η
y
y

=
(1)
(2)

.i

i
∞

∞

∞
(84)

3.1. Cost function and deterministic control

As it was announced in Section 2.2 the index η was maximized in
order to find the best values of Q, R and S to be used in the cost
function, and for simplicity Q=S. The optimization horizon is fixed at
T=20. All numerical calculations were performed with standard
MATLAB ODE integration tools. The maximum CPU time recorded
was 7.5689 and was measured in an ASUS Machine with 2.5 GHz Intel
Core i7-4710HQ, 8 GB RAM.

In Fig. 2 the index η defined by Eq. (14) is plotted. In the first figure
the maximum is located at q = 3.61 and q = 0.12 . In the second one, the
maximun is reached for r=1.41.

These were used in a simulation run: firstly P, ξ, σ , were calculated,
and then introduced in the dynamics to obtain the optimal control u*
shown in Fig. 2. The parameters for the simulation were

r q s q s x T

α

= 1.41, = = 3.6, = = 0.1, = 0.5, = 20,

= 150.

∼
1 1 2 2

During the early stages of the process, the resulting control puts a
high demand on the second boiler. In between, the controls to both
boilers evolve around α/2 in a nontrivial pattern, and at the end the first
boiler is preferred again. The resulting state evolutions are illustrated
in Fig. 4. The optimal cost is J* = 201629.

The optimal cost J* was compared against the outcome of applying
different constant set-points of magnitude u kα=1 , u k α= (1 − )2 , and

by calculating the corresponding costs Jk arising from Eq. (9) as it is
illustrated in Fig. 3. Relative cost savings D J J J= 100( * − )/ *k k are
reported in Table 1 .

3.2. Stochastic control simulations

Simulations for the two-boilers case, in presence of signal and
environmental noise, are illustrated in Fig. 5. The measurement noise
was simulated with zero-mean and the following covariances,

⎛
⎝⎜

⎞
⎠⎟Q Q= = 1.34674 0.0318417

0.0318417 2.621 2
(85)

⎛
⎝⎜

⎞
⎠⎟R R= = 2.76926 0.358896

0.358896 3.67155
.1 2

(86)

The meaning of Qi, Ri, i=1,2 was explained in Section 2.3. Their
numerical values were estimated from real data via standard least-
squares algorithms.

The deterministic coefficients used in the simulations were
q s q s R= = 3.6, = = 0.1, = 1.411 1 2 2 , x T α= 0.5, = 20, = 150∼ .

A numerical partial confirmation of the stochastic optimality of the
feedback law in Eq. (55) was obtained by evaluating the costs

Fig. 2. η surface for variations on q1, q2, and r. The maximum is attained for q = 3.61 , q = 0.12 , and r=1.41, (a) η versus q1 and q2. (b) η versus q1 and r.

Fig. 3. Optimal control and different constant controls as in Table 1.

Table 1
Optimal cost compared against the outcome of applying a constant set-up of different
magnitude, where k defines the magnitude of the control applied to the first boiler, and
Dk shows the percentage of cost savings.

k=0.3 k=0.35 k=0.4 k=0.45 k=0.5 k=0.6

Dk% 8.5 4.5 6.1 13.3 26.0 68.4
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corresponding to appropriate combinations of the trajectories in Fig. 3;
in precise terms,

∫J x t r t Q x t r t u t Ru t dt

x T r T S x T r T

≔ [( ( ) − ( ))′ ( ( ) − ( )) + * ( ) *( )]

+ ( ( ) − ( ))′ ( ( ) − ( ))

T
1

0

′

(87)

∫J x t r t Q x t r t u t Ru t dt

x T r T S x T r T

≔ [( ˇ ( ) − ( ))′ ( ˇ ( ) − ( )) + ˇ′( ) ˇ ( )]

+ ( ˇ ( ) − ( ))′ ( ˇ ( ) − ( ))

T
2

0

(88)

where the meaning of the variables in J1 are clear, and in J2:

u t R B P t x t αξ tˇ ( )≔− ′[ ( ) ( ) + ( )],∼−1 (89)

where x (·) was a numerical zero-mean perturbation of the optimal x (·),
and x̌ (·) denotes the numerical (deterministic) solution of the state Eq.
(39) for inputs u r i nˇ (·), ≡ 0, = 1,…,i i1 . The resulting values were:

u J J u( *) ≅ = 209706 < 210487 = ≅ ( ˇ).sto sto1 2 (90)

3.3. Additional relevant confirmations

3.3.1. Assessing optimality
A numerical experiment simulating the effect of perturbations over

the optimal time-varying affine feedback law in Eq. (34) was assessed,
through the convex combination of a family of variations covering both
the optimal control and the nominal constant set-point u x α n(·) ≡ = /

u βu β x= * + (1 − ) , (91)

where, for the case of two boilers, u u= 1, u u u α u* = *, = −1 2 1, α = 150,
x β= 75, ∈ [−0.5, 2.5] and Q R S I= = = 0.5 .

Some of the control variations are plotted in Fig. 6, and their
corresponding cost values Jβ compared against the optimal cost
J J u* = ( *)1 . Results validating the optimality of u* are depicted in
Fig. 6.

3.3.2. Dynamic efficiency
In engineering practice the ‘efficiency’ η∞ (see Eq. (84)) of a boiler

in stationary service roughly measures the ratio between the heat
conveyed by the generated vapor versus the heat associated to the fuel

Fig. 4. Optimal trajectories resulting from the optimal control applied to two boilers in parallel. (a) State trajectories. (b) Control trajectories.

Fig. 5. Optimal stochastic trajectories in solid lines. Noisy trajectories in dashed lines, (a) State trajectories, stochastic with solid lines, and noisy trajectories in dash. (b) Controls for the
deterministic and stochastic problems with same coefficients.
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supply. In the present context, a dynamic (transient) version of such a
concept is represented by the following time-varying ratio, for each
boiler i n= 1… :

η t x t
x t

t
t

( )≔ ( )
( )

≃ Vapor produced at time
Fuel supply at time

,i
i

i

2 −1

2 (92)

where the variables are properly made dimensionless. For the group of
boilers, the global dynamic efficiency may then be assessed from

η t
x t
x t

( )≔
∑ ( )
∑ ( )

.i
n

i

i
n

i

=1 2 −1

=1 2 (93)

If attempts are made to generate more vapor than the optimal
allocation, then, correspondingly, more fuel should be supplied. This
leads to smaller dynamic efficiencies, as reflected in Fig. 7, showing
that LQR-optimal results are also more ‘efficient’ when adapting the
classical stationary definition to the transient analysis pursued in this
paper.

4. Conclusions

An optimal control strategy for dynamically changing the set-points
assigned to a group of service equipment working n units in parallel,
was proved and illustrated.

The resulting optimal feedback law minimizes the sum of two
competing cost objectives: the departure of the production from the
target, and the consumption of fuel (or of the main expense) during the
optimization period. This provides online time-varying allocation of
demands to each one of the units in multilayer controlled operation.

The new manipulated variable has n − 1 degrees of freedom, since all
individual targets must sum up to the total demand signal coming from
the supervisory control of the plant. This partial deficit in the degrees of
freedom generates an affine-linear structure for the dynamics of the
problem when posed for the whole group. As the next step, through a
suitable change of variables, the problem is transformed into a linear
tracking problem.

The combination of quadratic individual costs for each of the units
results in a quadratic total cost for the group. At the end, the treatment
for the linear enlarged dynamics and quadratic cost differs little from
the usual LQR setup, resembling now the equations associated with a
tracking problem. To make results meaningful under the conventional
viewpoint, a heuristic method to choose the cost weights Q, R and S
that maximizes a dynamic version of the classical efficiency criterion is
introduced.

The solution for the deterministic case is found in terms of the
solution of the Riccati equation plus a feed-through time-varying vector
that can be stored in memory once and for all, the changes in total
demand being simply handled by introducing the new value as a factor
in the feedback law. This feedback form of the control implies
robustness with respect to state perturbations. Control parameters
are calculated offline and do not need to be recalculated after changes
on the total demand.

The choice of linear models for each unit also allows to refine the
deterministic result into a stochastic one, coping with general dis-
turbances like changes in fuel composition and noisy measurements.
This is possible by a rigorous application of the Tracking Separation
Principle, show here, and after the addition of a (least-squares optimal)
Kalman filter.

In some simulations, cost savings have shown to be significant with
respect to the expenditures generated by classical piecewise-constant
strategies, above all when the optimal control indicates a departure
from the conventionally adopted equipartition of total demand. The
dynamic efficiency η t*( ) corresponding to the optimal control is always
better than that corresponding to strategies responding to excess vapor
targets (u t( )> u t*( )). In conclusion, the results presented here allow to
improve the dynamic behavior and the economic performance of
groups of service units operating in parallel.
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