
Down-hill creep of a granular material under expansion/contraction cycles

E. A. Jagla
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We investigate the down-hill creep of a layer of granular material on a slope caused by an oscillatory
variation of the size of the particles. The material is modeled as an athermal two dimensional
polydisperse system of soft disks under the action of gravity. The slope angle is below the critical rest
angle and therefore the system reaches an equilibrium configuration under static external conditions.
However, under a protocol in which particles slowly change size in a quasistatic oscillatory way the
system is observed to creep down in a synchronized way with the oscillation. We measure the
creep advance per cycle as a function of the slope angle and the degree of change in particle size.
In addition, we consider a situation in which the particle size oscillation amplitude decreases with
depth, as it may be argued to occur in the case of a granular soil in an inclined terrain. In this case
creep profiles that are maximum at the surface and smoothly vanish with depth are obtained, as it
is observed to occur in the field.

I. INTRODUCTION

Soil slopes have a natural tendency to flow down hill
in time, in order to reach more stable configurations.
In some cases this manifests as abrupt rearrangements
in the form of avalanches that occur during relatively
short periods of time, involving the displacement of huge
amounts of material across large distances. Leaving aside
these catastrophic events, there is a well documented ten-
dency of hill slopes to creep down as a function of time,
in a slow process that becomes apparent only in typical
periods in the scale of years. [1, 2] In these processes the
upper layers of an inclined soil is observed to creep down,
in such a way that vertically introduced tracer markers
acquire a typical bent form, indicating that the surface
layer creeps the most, while progressively deeper layers
are less affected.[3]

Models of hillslope creep is grounded in the work of
Culling[4] who focused on the role of the porosity in-
troduced by cycles of variation of ambient conditions
(freeze–thaw, wet–dry, hot-cold). Eventually, the impor-
tance of cyclic processes in the creep behavior was well
established, but the details of the process are not to-
tally clear. Beyond the continuum approach proposed
by Culling and followed by others[2, 3, 7–9], the impor-
tance to incorporate details of the grain-scale dynamics,
has become progressively acknowledged.[5, 6]

In recent years, theoretical and experimental advances
on the understanding of granular materials[10, 11] have
opened new routes for the study of soil creep phenom-
ena. Granular materials, as many kind of soils, can be
described as yield stress fluids,[12–14] namely, materials
that are solid and can withstand an applied stress if this
is lower than some critical value, but that flow in a fluid-
like way if this stress is overcome. The critical stress of
these materials links very neatly with the rest angle in
a hill (or heap) geometry, and typically it is expected
that the observed angle in field be just slightly below the
rest angle, in such a way that abrupt avalanche processes
are nominally not able to occur. Yet, it is precisely in
this sub-critical configuration that the soil creep process

occurs.[15]

One source of creep in yield-stress fluids is thermal
activation. In fact, in the presence of stochastic ther-
mal forces, energy barriers can be eventually surmounted,
producing particle re-accommodations that would not be
possible in the absence of thermal effects.[16–18] This
generates that the material is able to weakly flow even if
below its critical stress.[19, 20] The flow rate caused by
thermal activation is typically much smaller than that
in the true flow regime (above σc), and this is one of the
characteristics of what is called a creep regime. The effect
of thermal fluctuations is intimately related to the size of
the elemental constituents in the system. It can have a
sizeable effect in cases in which the elementary grain size
is very small, as for instance in metallic glasses, but its
effect becomes less and less important as the grain size
increases. In granular materials with grain sizes larger
than about tens of microns it is hard to justify that it
plays any role. Therefore, it is generally accepted that
thermal activation is not a crucial ingredient in the dy-
namics of soil slopes.

Mechanical perturbations are natural candidates to be
considered as a possible origin of the creep phenomenon.
For instance, vibrations caused by a variety of sources
such as walking of animals, movement of vegetation
caused by wind, water falling and flow during rain, and
even earthquakes, all have the potential to produce creep
to some extent.[21–25] These sources of mechanical per-
turbations share some similarities with thermal fluctua-
tions, namely that they all have some degree of stochas-
ticity. While this may be an important source of creep,
it is not the one on which we will focus in the present
work.

The kind of perturbation giving rise to creep that will
be considered here is the variation of one global param-
eter in the system. The idea of subcritical creep in-
duced by cyclic variations of one parameter was recently
presented in a mesoscopic model of a yield-stress ma-
terial in [26]. It was shown in there that the periodic
variation of the stiffness of an elastic surface that lays
on top of an inclined, disorder energy potential can in-
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duce creep, even if the surface would stay completely
at rest in the absence of such a perturbation. Here we
apply this idea to a model granular material in which
the size of the particles changes slowly in time in an os-
cillatory way, mimicking an expansion/contraction be-
havior caused for instance bay a day/night variation of
humidity, or temperature[27]. We implement this idea
in a model two-dimensional granular material formed by
a poly-disperse collection of discs, through molecular dy-
namics simulation. We set subcritical conditions, namely
in a configuration in which the system reaches a long last-
ing stable configuration if parameters are kept constant.
However, if the size of the particles is changed periodi-
cally in time, a creep behavior correlated with the cyclic
variation of size is observed. We provide quantitative
details of this process, in particular how the creep rate
depends on the oscillation amplitude of particle size, and
on the closeness of the material free slope to the rest
angle.

II. NUMERICAL DETAILS

We model a granular material under the action of grav-
ity, with a free surface forming with the horizontal an
angle θ lower than the critical rest angle θ0. The numer-
ical model we use is a two-dimensional system of poly-
disperse circular particles interaction through two body
central forces. Radius of the particles are chosen from
a uniform distribution in the range between rmin and
rmax = 2rmin. The interaction potential between par-
ticles i, j (with radius Ri, Rj) is described by a purely
repulsive potential of the form

Vij = V0[d− (Ri +Rj)]
2 if d < (Ri +Rj)

Vij = 0 if d > (Ri +Rj) (1)

where d is the separation between particles, and V0 sets
the energy scale. From now on, we use dimensionless
units setting rmin = 1, V0 = 1. The time evolution of
the system is a fully overdamped dynamics where the
instantaneous velocity of each particle is proportional to
the total force acting on it:

dri
dt

= −
∑
j 6=i

dVij
drj

+ πR2
i g (2)

The force acting on the particles includes the one origi-
nated in the interparticle interaction potential, and that
coming from a gravity acceleration g, considering par-
ticles of the same density to avoid differential buoyancy
effects. This relaxational dynamics is appropriate in view
of the quasi-static conditions of the problem.

As the system is supposed to be located on an inclined
plane with an angle below the rest angle (see the im-
plementation below), it eventually reaches a fully stable
equilibrium configuration. On this configuration qua-
sistatic variation of the particle radius are applied as
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FIG. 1: The triangle represents a granular system with the
surface having a finite slope θ. Dashed regions are the pieces
actually simulated in the homogeneous (a) and layered (b)
simulation protocols.

explained below, and this drives the slow creep of the
system. This basic model is applied in two different situ-
ations, that we call the homogeneous simulation, and the
layered simulation configuration.

III. RESULTS

A. Homogeneous simulations

In the homogeneous configuration we intend to model
a small homogeneous portion of material at a fixed depth
(Fig. 1(a)). We do so by orienting the simulation box (of
size lx × ly) with the x axis along the downslope direc-
tion, and y axis perpendicular to the free surface. As the
simulation box represents a small piece of a homogeneous
material we use in this case periodic boundary conditions
and disregard the y component of gravity, since it is a ho-
mogeneous force. The x component of gravity represents
a shear stress in the system that we include in the form
of Lees-Edwards boundary condition along y. To this
end, calling δ the shift in the boundary condition, we use
the following scheme: the actual stress value σm mea-
sured along the simulation is used to update the shift δ
according to

dδ

dt
= η(σ − σm) (3)

where σ is the target stress value we want to reach, and η
is an appropriately chosen convergence factor (η = 0.03
in the simulations below). The shift δ determines the
strain ε in the system as ε = δ/ly. As σ is supposed to
be lower than the critical value σc, the system is guaran-
teed to reach a stable configuration (with a constant ε)
and would stay there forever in the absence of additional
external perturbations.

Such a perturbation is introduced in the form of an
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FIG. 2: One cycle of the process of increasing particle size
(step 1, effectively modeled by reshaping the simulation box,
see text for explanation), and decreasing back to the origi-
nal situation (step 2). In the process, the value of shift δ in
boundary conditions needs typically to be increased in order
to maintain the same value of σ.

oscillatory (homogeneous) change in the size of the par-
ticles, that pass from original values Ri to maximum final
values Ri(1 + ∆) (with ∆ > 0), and then return to their
original sizes, the process being repeated in time. In
the homogeneous geometry of the simulation (Fig. 1(a)),
an increase in particle size implies an increase of normal
stress along the x direction, that induces an expansion
along y (allowed by the existence of the free surface).
The process can be modeled by effectively keeping the
particle size as fixed, but reducing the length lx down in
a factor 1 + ∆, and increasing the ly size by the same
factor so as to keep the average system density as fixed.
This is the numerical protocol that is implemented. Un-
der this process, and keeping the applied stress value σ
as fixed, the value of the strain ε increases with the cyclic
variation of ∆. The average increase of ε on each cycle,
notated δε, is the main outcome of the simulations.

We simulate a system of 2000 particles, that are ini-
tially placed randomly in a box of size lx = ly = 125.
The configuration is relaxed until all particles reach a
stable position. We first apply an equilibration protocol
by applying a stress σ such that the system yields per-
manently (i.e., δ does not reach a constant equilibrium
value, but increases linearly in time). Then σ is reduced
in small steps until we detect that δ remains constant,
meaning that we have just reached (from above) the crit-
ical stress value σc. It turns out that σc ' 0.009 in our
case. [28] Then a value of stress σ < σc is applied, and
the oscillation protocol is started: the simulation box is
deformed from its original square form (lx = ly = 125) to
a rectangular shape [lx(1 + ∆), ly/(1 + ∆), with typical
values of ∆ up to 0.15] at a slow constant rate, keeping
the applied shear stress σ as constant (Fig. 2, step 1).
Once the final configuration is reached, and no particle
reacommodations are detected, the box is returned back
to its original shape (Fig. 2, step 2). In this cyclic pro-
cess, plastic particle rearrangements can occur as Fig. 3
shows, and this produces that the applied shift δ (and
strain ε = δ/ly) typically increases after each cycle in
order to maintain the shear stress constant.

The value of strain ε is recorded during many cycles
of the process. Results obtained for the average strain

FIG. 3: Non-affine displacements of the particles during a full
cycle of the homogeneous simulation, at σ = .0045, ∆ = .06.
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FIG. 4: Average increase in strain per cycle δε as a function
of the constant applied stress σ, for different values of the
deformation parameter ∆, in the case of homogeneous simu-
lations.

increase per cycle (or creep rate) δε for different values
of σ and ∆ can be seen in Fig. 4. We observe in this
figure systematic trends that coincide with the results
found in [26] using an effective mesoscopic model of cyclic
perturbations. The main points are the following. At a
fixed value of the oscillation amplitude ∆, creep rate is an
increasing function of σ, becoming very large as σ → σc
(where the system tends to flow even in the absence of
oscillation), and reducing to zero at some lower stress
σ0 < σc. The value of σ0 vanishes if ∆ is large enough
(∆ & 0.1 in our case). [29] On the other hand, if ∆ is
too small (∆ . 0.02) we have observed in the simulations
that although creep occurs during a few cycles, eventually
the system reaches a perfectly periodic behavior and δε
vanishes. Based on the results of [26], we believe this is
related to the finite size of the system, and expect that
for larger system sizes some creep exists for any non-zero
∆, although only very close to σc.

Simulations in the homogeneous configuration give a
thorough description of how the material responds lo-
cally, under a given degree of variation in particle size.
However, it is important also to consider the combined
effect of different layers of material experiencing different
degree of particle size variations. This is the aim of the
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layered simulations presented in the next Section.

B. Layered simulations

In the layered configuration (Fig. 1(b)) we intend to
model a thick piece of material, from surface to a deep
layer that is supposed not to be affected by the oscillatory
change in ambient conditions that drive the variation of
particle size. The x boundary conditions continue to be
periodic, but now the conditions along y are free, and the
y component of gravity is explicitly included. This means
that a free surface naturally appears. At y = 0 in the sim-
ulation box (the bottom layer) a rigid wall that particles
cannot penetrate is assumed. In addition, a buffer layer
of particles between y = 0 and y = yb = 10 is included, in
such a way that these particles remain fixed, and serve as
a connection of the upper part of the system to the frozen
bulk. The x component of gravity is explicitly included
as a constant x force on each particle. Notice however
that particles with y < yb do not move at all, therefore
avoiding a uniform slip of the whole system. The pa-
rameter ∆ quantifying the change in particle size is now
y-dependent, namely we have a ∆(y) function. The jus-
tification of such a dependence is that it is expected that
external conditions driving the change of particle size act
from above the system, and their effect is progressively
reduced in deeper layers. Therefore we will use for the
∆(y) function a monotonous function that is maximum
at the surface and vanishes at some finite depth. For
concreteness we use a ∆(y) function that decays linearly
from the surface (where it attains its maximum value ∆0)
to 0 at some depth y0 > yb. In this way we can evaluate
to what extent the system responds locally to the degree
of change in particle size, or if there are important effects
that can be ascribed to a non-local rheology (as would
be the case for instance if creep below y0 is observed).

We use a system with N = 2000 particles, in a simu-
lation box with lx = 125. To obtain the starting sample
we drop the particles randomly and allow them to set-
tle under the vertical component of gravity force. After
this initial stage, the positions of particles below y0 = 10
are set as fixed, and full gravity force is applied. g (Eq.
2) has now x and y components, such as gx/gy = tan θ,
where θ is the slope angle of the surface. We use a fixed
value of gy, namely gy = 0.01. Applying progressively
larger values of gx, and after some local reaccommoda-
tions, the system reaches stable configurations up to val-
ues of gx/gy . 0.09. This corresponds to a ”rest an-
gle” θ0 ' 5◦. [31]. We therefore restrict to values of
gx . 0.09gy = 0.0009 to define the starting sub-critical
system.

Figure 5(a) displays the actual particles in a portion
of the system (the rectangular box in panel (b)) at the
beginning of the cycle, after expansion, and after final
contraction. The vertical down-force is gy = 0.01, and
the horizontal force is gx = 0.0008. The degree of expan-
sion/contraction ∆ is zero below y0 and increases linearly

0

y

y

b

0

FIG. 5: (a) The actual particles within the rectangular box
in (b) at the beginning of the cycle, at maximum expansion,
and after contraction. (b) Particles at the beginning of the
cycle in the full simulation box (dots) and their displacements
in one expansion/contraction cycle (segments).

up to ∆ = 0.1 at the surface. Also the layer between
y = 0 and yb corresponds to the buffer layer, where par-
ticles are not allowed to move at all. The swelling of the
system caused by the increase in particle size is clearly
seen in the uplift observed in the configuration after ex-
pansion. Panel (b) shows the change in particle positions
after the full expansion/contraction cycle. A systematic
shift in the +x direction is clearly visible. The effect is
the largest at the surface, and decreases in depth. Note
that although particles below the black line were not af-
fected by size change, some particles below this line suf-
fered a change in their horizontal position influenced by
the position change of particles above them.

Running this expansion/contraction process during
many cycles for different values of ∆0 and y0, we con-
structed Fig. 6. The points represent the profile of creep
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FIG. 6: (a) Advance rate δu in units of particle radius per
cycle (averages over 100 cycles) as a function of depth in the
system when particle change their radios in the factor 1 + ∆,
with ∆(y) as indicated in the right part of the plot. Different
curves correspond to different horizontal forces (gx = 0.0008,
0.0007, 0.0006, 0.0005, from right to left curves). (b) Same as
panel (a) but keeping gx = 0, 0008 as fixed, and varying the
width of the surface layer on which breathing is applied.

advance δu (i.e., the increase in the x coordinate of the
particles per cycle) as a function of depth. In panel (a) we
show four curves, obtained by averaging over 100 cycles
of increase/decrease particle size, for a value of ∆0 = 0.1,
y0 = 45, and different values of gx, corresponding to dif-
ferent values of the slope angle θ. We observe a creep
profile that is maximum at the surface and progressively
decreases in depth. However, there is no strict vanishing
of the creep at the depth at which the particle size does
not oscillate. An attempt to obtain creep at a value of
gx = 0.0004 eventually produced a cyclically stable con-
figuration, namely, a zero advance per cycle. In panel
(b) we keep the same value of gx = 0.0008 in the three
curves, but vary the value of y0 above which breathing is
applied. The profile of ∆(y) is indicated in the rightest
part of the figure. Also in this case, if y0 is increased
above ∼ 90 the cyclic advance vanishes.

The profiles in Fig. 6 have a strong resemblance of
experimental results in different kind of soils. [1–3] Of
course, it can be argued that we are setting here by hand
a linear variation profile ∆(y), and it may be argued that
other forms of this function could produce different forms
of δu(y). Yet we notice that the profiles in Fig. 6 are to a
good extent compatible with a local rheology behavior in
which the local strain creep rate δε ≡ d(δu)/dy responds
to the local value of ∆ (and the applied value of gx).
For instance, the data in Fig. 6(b) can be replotted by
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FIG. 7: Results for δε ≡ d(δu)/dy, calculated for the three
curves in Fig. 6(b), and plotted against the local value of ∆.
The approximate coincidence of the three curves indicated
that local rheology behavior is fulfilled to a good extent.

numerically calculating d(δu)/dy and plotting it against
the local ∆ value (notice that gx is the same in all three
curves). The result, shown in Fig. 7 shows a rather good
collapse, indicating that the local rheology assumption is
rather good. We notice that a small degree of non-local
behavior is observed in the cases in which we observed
creep in layers that do not expand. This residual creep is
induced by layers expanding some distance above. Local
rheological behavior thus implies that an observed profile
of ε(y) should correlate with the local degree of expansion
through

δε ≡ d(δu)

dy
= F (∆(y)) (4)

where the form of the F function can be read out from
the homogeneous results in Fig. 4. The usual quasi-
exponential profiles observed in field can thus be consid-
ering as appearing from a combination of the form of the
function F (∆), and the perturbation profile ∆(y). In any
case, it is interesting to note that in the present model
the typical width of the surface layer affected by creep
corresponds to the width of the surface layer that experi-
ences appreciable expansion/contraction effect. This fact
seems to be amenable to experimental verification.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented numerical simulations
of a two-dimensional system of poly-disperse soft disks,
interacting through two-body central forces, under the
action of gravity. The aim was to model the behavior
of a heap of material or a hill slope of terrain and the
possibility that it experiences slow creep motion driven
by a periodic variation of ambient conditions. Change of
external conditions was effectively simulated by changing
the size of the particles quasistatically in time, in a pe-
riodic way. Since we work at slope angles θ smaller than
the rest angle θ0 of the model, at any step in the simula-
tion process the system can achieve a static equilibrium
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configuration (if particle sizes are not changed). How-
ever, our main result is that after a complete expansion
contraction cycle the system experiences some degree of
creep in the downhill direction.

Quantitative results have been provided for two differ-
ent set ups. In the first case of homogeneous simulations
we focus on a small portion of soil, at a given depth, under
the action of a finite shear stress, yet below the critical
value necessary to enter the flow regime. On this con-
figuration a periodic and homogeneous increase/decrease
in size of the particles is applied and we observe how the
system yields a finite amount on each cycle, therefore
justifying the existence of a sub-critical creep caused by
the oscillation of particle sizes. The creep rate is inves-
tigated in this case as a function of the degree of change
in particle size, and the value of stress.

In the second set of results, we model a full thick layer
of soil, from free surface to an unperturbed layer in depth,
under the action of the same increase/decrease size of the
particles now acting only on a superficial layer, i.e., more
akin to a realistic situation where humidity or temper-

ature variations act from the free surface, and its effect
progressively decays in depth. The main results in this
case indicate that the system responds mostly locally, i.e.,
the strain increase per cycle at any given depth is a func-
tion of the local degree of particle size change, the same
that was obtained in the homogeneous simulations. The
main outcome of these results is that they clarify the fact
that the thickness of the surface layer that yields corre-
sponds to the layer that is affected by the perturbation.
In other words, non-local effects in which a perturbed
surface layer produces yielding in layers well below it do
not occur in our simulations. Non-local effects are limited
to small distances of a few particle radius.
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