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ABSTRACT: The filling of slits with identical planar walls is investigated in
the frame of the density functional theory. For this kind of slit, the confining
potential is symmetric with respect to its central plane. Closed and open
systems are studied by applying, respectively, the canonical and grand canonical
ensembles (CE and GCE). Results obtained for the confinement of fluid Ne by
alkaline surfaces are reported. The behavior of these systems is analyzed by
varying the strength of the Ne−substrate attraction, the temperature T, and the
coverage Γ . It is assumed that the one-body density of the fluid, ρ(r), is
uniform along the (x, y) planes parallel to the walls, becoming a function of the
coordinate z perpendicular to those planes. Two sorts of solutions are found for
the density profile: (i) symmetric ones that follow the left−right symmetry of
the potential exerted by the walls and (ii) asymmetric ones that break the
symmetry of the slit. The pores are wide enough for determining prewetting (PW) lines and wetting and critical PW
temperatures, i.e., Tw and Tcpw, from the analysis of symmetric solutions provided by both the CE and GCE schemes.
Asymmetric species are examined in detail for T > Tw. It is shown that for a given Ne−substrate pair at a fixed T both the CE and
GCE frames yield only one asymmetric 2-fold degenerate stable profile (formed by a “thin” wetting film at one wall and a “thick”
wetting film at the other) coexisting with two symmetric profiles (formed by “thin” or “thick” wetting films at the two walls),
while the remaining asymmetric states are at best metastable. This feature occurs along PW lines and disappears at Tcpw.

I. INTRODUCTION

The adsorption of fluids on solid walls is connected to physical
chemistry (wettability) and to statistical physics (properties of
fluids at interfaces, like wetting, spreading, and filling).1

Theoretical and experimental studies of this subject are of
considerable current interest.2 The behavior of this kind of
systems consisting of a liquid phase (l) adsorbed on solid
substrates (s) in the presence of a vapor atmosphere (v)
depends on the strength of the fluid−fluid (f−f) attraction, εff,
the well depth of the substrate−fluid (s−f) interaction, sf , the
temperature, T, and the chemical potential, μ. The inves-
tigations of this kind of system are not only interesting from the
fundamental physics point of view, but they also have
numerous technological applications.3 In the present paper,
we shall deal with the formation of films on planar structureless
substrates.
A systematic classification of the adsorption on attractive

planar surfaces, which exhibit an infinite extent in the x and y
directions, was performed by Pandit, Schick, and Wortis.4 In
practice, at a fixed T, the adsorption properties are mainly
determined by the relative strength εr = ε/sf ff . By varying
this parameter, it is possible to sweep a variety of physical

phenomena like drying, critical wetting, prewetting, wetting,
and layer formation.4,5

If a fluid is adsorbed on a single planar wall, the
physisorption potential does not exhibit any symmetry along
the z axis perpendicular to the (x, y) plane of the substrate. On
the other hand, when the confinement is produced by a planar
slit with identical walls, the s−f interaction becomes symmetric
with respect to the plane located at the slit’s center. Under such
conditions, it is quite reasonable to expect that ρ(z) would
respect the symmetry of the external potential. However,
Sikkenk et al.6,7 have found by carrying out molecular dynamics
(MD) calculations that asymmetric density profiles of the fluid
may appear in the process of filling a closed planar slit built up
of moderately attractive identical walls. This phenomenon was
named spontaneous symmetry breaking (SSB). The authors of
refs 6 and 7 explained the occurrence of structures with
different symmetries in terms of the balance of substrate−liquid
γsl, substrate−vapor γsv, and liquid−vapor γlv surface tensions.
The SSB has been analyzed over more than two decades.
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Tang and Harris8 have also performed MD calculations
confirming the finding of Sikkenk et al.6 Let us remark that
both of these MD studies were performed within the frame of
the canonical ensemble (CE) statistics, i.e., keeping the number
of particles N fixed. Asymmetric solutions have also been found
in open systems by Merkel and Löwen.9 By using both
computer simulations and a simple schematic density functional
(DF) approach in the frame of the grand canonical ensemble
(GCE), these authors demonstrated that under certain
conditions a system confined by a symmetric potential can
reach a state where the fluid shows a liquid-like density on one
side and a vapor-like density on the other side.
More recently, Berim and Ruckenstein10 have investigated

the SSB in symmetric slits by applying a DF formulated for
hard spheres (HS) by Tarazona11 in the smoothed density
approximation (SDA). These authors studied in the frame of
the CE scheme the confinement of Ar in a slit of solid CO2
setting the width of the slit, L, at 15 atomic diameters σLJ. They
found asymmetric solutions with lower free energies than that
of corresponding symmetric ones in certain ranges of coverage
which shrink for increasing temperatures and disappear at a
critical temperature Tssb. Subsequent studies of the filling of this
kind of slits with classical gases12−16 confirm that behavior.
Furthermore, Berim and Ruckenstein17 reported asymmetric
profiles for quantum 4He confined in closed symmetric planar
slits of Cs.
In all the DF−CE calculations mentioned above, the

solutions were restricted to films invariant on the (x, y)
plane, i.e., assuming ρ(r) = ρ(z) and excluding drop-like and
bridge-like fluid density distributions. Stable drop-like solutions
(single pancake) were reported by Mayol et al.18 for
condensation of 4He between parallel Cs plates. These authors
fixed the linear density of helium at 70 Å−1 and analyzed the
behavior as a function of L, finding that for L ≥ 30σLJ the most
stable phase is the single drop-like configuration that
concentrates the whole fluid at one of the walls, while bridge-
like structures remain metastable. Furthermore, in the case of
inert classical fluids, Berim and Ruckenstein19 found that for a
narrow slit of L = 10σLJ drop-like and bridge-like solutions
exhibit lower free energy than the uniform (invariant on the x−
y plane) asymmetric profiles for certain ranges of coverage.
More evidence for such structures may be found in the works
by Rzẏsko et al.20 who carried out Monte Carlo simulations (L
= 4σLJ and 8σLJ) and by Edison and Monson21 who applied a
dynamic mean field theory (L = 6σLJ). Let us remark that in refs
19, 20, and 21 the width is not sufficiently large to guarantee
that the interaction between particles located at different walls
be negligible.
Since filling and wetting are related phenomena, our aim is to

analyze the connection between the appearance of asymmetric
solutions and features of wetting. Therefore, let us now recall
some relevant properties of wetting. Given a value of the
relative strength εr, the results are usually summarized as a
phase diagram in the (T, μ) plane; typical examples are
depicted in Figure 1 of ref 5. For moderate substrates (i.e.,
when εr is about unity or slightly bigger), there is a first-order
wetting transition at the point [Tw, μw = μ0(Tw)]; here μ0(T) is
the chemical potential for saturated vapor pressure at
temperature T. The wetting temperature Tw lies between the
triple point temperature, Tt, and the critical one, Tc, and is
characterized by the appearance of coexisting thin and very
thick adsorbed fluid films. For T < Tw, the coverage of adsorbed
films is finite (incomplete wetting), while, for T ≥ Tw, there is

an associated prewetting (PW) line which extends away from
the point [Tw, μ0(Tw)] into the region of pressures below the
corresponding bulk saturation value P0(T) and terminates at
the critical prewetting (CPW) point [Tcpw, μcpw]; see Figure 1b
in ref 5. In order to study the PW regime, it is usually assumed
that the density profile of the fluid only depends on the
coordinate z perpendicular to the substrate, ρ(r) = ρ(z).22−26 A
PW transition is marked by a jump in the excess surface density
(coverage), often expressed in nominal layers as

∫ρ ρ ρΓ = −
∞

z z(1/ ) d [ ( ) ]l
2/3

0 B (1.1)

where ρB is the asymptotic bulk vapor density and ρl the liquid
density at saturation for a given temperature. The jump occurs
between coverages of the thin and thick coexisting wetting
films. This discontinuity defined as ΔΓ = Γ − Γ(thick) (thin)
shrinks for increasing T and eventually vanishes at Tcpw, where
the coexisting thin and thick wetting films become identical.
For more attractive substrates (larger εr), the phase diagram
presents several convergent PW lines like in the scheme shown
in Figure 1d of ref 5 or in the case of the Xe/Li system depicted
in Figure 3d of ref 27. For very strong substrates, the coverage
increases from zero, either in monolayer steps or continuously.
In simultaneous studies of wetting and filling in the DF−CE

scheme, we found some evidence for a correspondence
between Tcpw of PW lines and Tssb determined for the
disappearance of SSB in slits.14,16 Moreover, Rzẏsko et al.20

have also suggested that the SSB is a result of the first-order
nature of the transition. If the transition were of the second
order, SSB would not occur. A DF with HS described by the
fundamental measure theory (FMT) of Rosenfeld−Kierlik−
Rosinberg28,29 has been very recently used in the frame of the
GCE for studying confinement of Xe in open symmetrical slits
of alkali metals.27 These DF−GCE calculations provide, in the
convex domain of the Helmholtz free energy, asymmetric
solutions which are mainly metastable. These results
encouraged the present more extended and detailed inves-
tigation.
In the present work, we report a systematic search for

establishing to what extent PW and SSB are related in the case
of the adsorption of Ne on alkali-metal surfaces. The behavior
is examined as a function of εr and T. The calculations were
performed for wetting regimes of adsorption on a single wall.
Coincidences and differences between results obtained with the
CE and GCE schemes are discussed. It is confirmed that
whenever a given adsorbate−substrate pair exhibits a first-order
wetting transition then asymmetric profiles appear in the filling
of the slit and, in addition, both these phenomena, PW and
SSB, terminate at the same temperatures. Moreover, it is shown
that, as far as the stable structures are concerned, for both
statistics the SSB is reduced to an asymmetric profile coexisting
with symmetric wetting films.
The theoretical background together with utilized algorithms

is outlined in section II. Section III is devoted to report and
analyze the results of our calculations performed in the frames
of both the CE and GCE statistics; in addition, it also provides
an interpretation of the SSB phenomenon. A review of the
findings is given in section IV.

II. THEORETICAL FRAME

The present calculations have been carried out in the frame of
the DF theory recently applied for studying physical adsorption
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of Ne and Ar.14−16,30,31 This theory is based on the existence of
a grand canonical functional Ω(T, μ, [ρ(r)]) of the one-particle
density ρ(r),32 which depends parametrically on the two
thermodynamic variables T and μ

μ ρ ρ μΩ = −T F T Nr r( , , [ ( )]) ( , [ ( )])DF (2.1)

where FDF is the DF for the Helmholtz free energy and N the
number of adatoms

∫ ρ=N r r( ) d
(2.2)

The equilibrium density profile ρeq(r) of the adsorbed fluid is
obtained by solving the Euler−Lagrange (E−L) equation
derived by minimizing (at fixed T and μ) the grand
thermodynamic potential

δ μ ρ
δρ

Ω =
ρ ρ=

T
r

( , , [ ])
( )

0
r( )eq (2.3)

The value of the functional at equilibrium, Ω(T, μ, [ρ = ρeq]), is
the real equilibrium grand canonical free energy Ωeq.
II.1. Density Functional. In the DF theory, there is no

recipe for an exact expression of the intrinsic free energy FDF
corresponding to a fluid immersed in an external potential
Usf(r).

33 We adopted the form utilized by Ancilotto and
collaborators (see eq 4 in ref 23)

∫
∫
∬

∫

ρ ρ ρ

ρ ρ

ρ ρ

ρ

= Λ −

+ Δ ̅

+ ′ ′ Φ | − ′|

+

F T v k T

f d

U

r r r r

r r r

r r r r r r

r r r

( , [ ( )]) d ( ){ln[ ( )] 1}

d ( ) [ ( ); ]

1
2

d d ( ) ( ) ( )

d ( ) ( )

DF id B
3

HS HS

attr

sf (2.4)

with only one change concerning the effective attractive pair f−f
interaction described below. The first term is the ideal gas free
energy, where kB is the Boltzmann constant and Λ is the de
Broglie thermal wavelength. Factor νid was introduced in ref 23
(in the standard theory, it is equal to unity). The second term is
the repulsive f−f interaction approximated by a hard-sphere
(HS) fundamental measure theory (FMT) functional taken
from Kierlik and Rosinberg (KR),29 which has proven to be
very successful even in highly inhomogeneous situations. Here
dHS is the HS diameter. The KR version is completely
equivalent to the original FMT formulated by Rosenfeld.28

Notice that in the literature there are more recent versions of
the FMT like, for instance, the White Bear proposal34 where
the Mansoori−Carnahan−Starling−Leland35 bulk equation of
state was included. This fact makes the White Bear version
more adequate for studying binary mixtures, but in the case of
one-component HS fluid, the difference with the original
Rosenfeld functional is negligible, as depicted in Figure 3 of ref
34. The third term is the attractive f−f interaction treated in a
mean-field approximation (MFA), which is written in terms of a
recently proposed version30 of the separation of the spherically
symmetric Lennard-Jones (LJ) 12-6 potential originally
introduced by Weeks, Chandler, and Andersen (WCA)36

ε

ε
σ σΦ =

− ̃ ≤

̃
̃ − ̃ >⎜ ⎟ ⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

r

r r

r r
r r

( )
4attr

WCA

ff m

ff
ff

12
ff

6

m
(2.5)

where r = |r − r′| and rm = 21/6σ̃ff is the position of the LJ
minimum. We set dHS = σ̃ff. Let us note that Ancilotto et al.23

adopted for Φattr(r) another expression; the advantage of the
present one is explained in ref 30. The last contribution to eq
2.4 is due to the adsorbate−substrate interaction.
The well depth ε̃ff and the interaction size σ̃ff are considered

as free parameters because the use of its standard bare values22

εNeNe/kB = 33.9 K and σNeNe = 0.278 nm in the present WCA
frame overestimates the experimental result Tc = 44.49 K (see
Figure 1 in ref 15). The three adjustable parameters (namely,
νid, εf̃f, and σ̃ff) were simultaneously determined by imposing
that on the l−v coexistence curve of Ne at fixed T the data of
ρl(T), ρv(T), and P0(T) = P(ρl) = P(ρv) taken from ref 37 be
reproduced. In addition, since two bulk phases can coexist at a
given T if and only if their chemical potentials are equal at P0,
i.e.,

μ μ μ= =T P T P T( , ) ( , ) ( )l 0 v 0 0 (2.6)

this condition was also imposed. In previous works, we fitted
values from Table 3 of ref 38; however, in the present work, we
used the output of the NIST Webbook37 because the latter
survey allows one to get data corresponding to non-integer
values of T. For determining the optimal σ̃ff, all the
contributions to the Helmholtz free energy containing this
parameter, i.e., all the corresponding terms in both the
Δf HS[ρ̅(r); dHS = σ̃ff] and Φattr

WCA(r; ε ̃ff, σ̃ff) energies, were
considered. It is worth noticing that the sets of parameters (νid,
ε̃ff, and σ̃ff) obtained by fitting data of refs 37 and 38 are
consistent. The obtained parameter νid is essentially unity near
Tt and decreases to about 0.9 in the regime close to Tc (see
Table 1 in ref 15), where there is a well-known departure from
the ideal gas behavior.39 Thus, one can guess that changes in νid
indicate in some way effects of thermal fluctuations which are
important mainly close to Tc. On the other hand, since νid is
not strictly unity the Henry’s law for adsorption at very low
densities40 is slightly violated in the present formulation. All in
all, the present DF version should be considered as a relatively
easy phenomenological approach with parameters introduced
to account for experimental bulk data.

II.2. Euler−Lagrange Equations. The equilibrium density
profile ρ(r) of the fluid is determined from the variational eq
2.3 written as

∫δ
δρ

ρ μ ρ′ − ′ ′ =F
r

r r r
( )

[ [ ( )] d ( )] 0DF
(2.7)

This functional minimization leads to

δ ρ
δρ

μ
′

=
F T r

r
[ ( , [ ( )])]

( )
DF

(2.8)

This variational condition yields the following E−L equation
for a planar geometry

ν ρ μΛ + =k T z Q zln[ ( )] ( )id B
3

(2.9)

with
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∫

∫

ρ

ρ
δ ρ

δρ
δρ
δρ

ρ

= Δ ̅
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Δ ̅ ′

̅ ′
̅ ′

+ ′ ′ Φ̅ | − ′| +
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z z
f z d

z
z
z
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d ( )
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( )
( )
( )

d ( ) ( ) ( )

L

L

HS HS

0

HS HS

0
attr sf (2.10)

Here L is the size of the box adopted for solving the E−L
equation. In addition, the number of particles by wall area A
becomes

∫ ρ= =n N A z z/ ( ) d
L

0 (2.11)

II.2.1. Grand Canonical Ensemble. In an experimental setup
devised to investigate adsorption, the fluid is usually exposed to
a reservoir at fixed Tbath and Pbath (i.e., μbath), allowing an
unrestricted particle exchange with the environment. Under
such conditions, the system at thermodynamic equilibrium
exhibits fixed V, T = Tbath, and μ = μbath; hence, the adequate
procedure for studying such a phenomenon is to apply the
GCE statistics. In such a scheme, the E−L equation should be
solved by fixing μ and searching for the optimal solutions for
ρ(z) and n.
Given a value of the independent variable μ, the density

profile may be evaluated by inverting eq 2.9

ρ μ
ν

=
Λ

−⎛
⎝⎜

⎞
⎠⎟z

Q z
k T

( )
1

exp
( )

3
id B (2.12)

and the self-consistent solution is obtained iterating this
relation up to convergence. The number of particles per unit
area is calculated with the expression

∫μ
ν ν

=
Λ

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟n

k T
z

Q z
k T

1
exp d exp

( )L

3
id B 0 id B (2.13)

II.2.2. Canonical Ensemble. However, in practice, it is
usual10,13,22 to solve the adsorption problem by fixing n
together with V and T, that is, by applying the CE scheme,
which is much easier to manage numerically than the GCE one.
Notice that μ and n are conjugate Legendre variables. In the CE
statistics (strictly valid for closed systems), μ is treated as a
Lagrange multiplier μce to be determined from the solutions
together with ρ(z). Thus, in this case, one should solve

δ ρ
δρ

μ
′

=
F T z

z
[ ( , [ ( )])]

( )
DF

ce (2.14)

which leads to the E−L equation

ν ρ μΛ + =k T z Q zln[ ( )] ( )id B
3

ce (2.15)

Then, the density profile ρ(z) can be written as

ρ ρ
ν

= −
⎛
⎝⎜

⎞
⎠⎟z

Q z
k T

( ) exp
( )

0
id B (2.16)

with

ρ
μ

ν
=

Λ

⎛
⎝⎜

⎞
⎠⎟k T

1
exp0 3

ce

id B (2.17)

Since in the CE scheme the calculations are performed at fixed
n, while μce is an unknown quantity, then eq 2.17 is used to

evaluate μce and ρ0 is obtained from the integrated density
profile

∫ρ
ν

= −
⎛
⎝⎜

⎞
⎠⎟n z

Q z
k T

d exp
( )L

0 0 id B (2.18)

which leads to

∫
ρ =

−
ν( )

n

zd exp
L Q z

k T

0

0
( )

id B (2.19)

Equating expressions 2.16, 2.17, and 2.19, one gets

∫
ρ

ν
=

−
−

ν

⎛
⎝⎜

⎞
⎠⎟( )

z
n

z

Q z
k T

( )
d exp

exp
( )

L Q z
k T0
( ) id B

id B (2.20)

for the density profile and

∫μ ν
ν

= −
Λ

−
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥k T

n
z

Q z
k T

ln
1

d exp
( )L

ce id B 3 0 id B (2.21)

for the chemical potential. In this scheme, ρ(z) is determined
by iterating eq 2.20 until the required convergence is achieved,
and then, μce is calculated with eq 2.21.

III. ANALYSIS OF FILLING
Before entering into the analysis of physisorption, we validated
the obtained parameters by evaluating the surface tension of the
free liquid−vapor interface, γlv. For such a purpose, we set
Usf(z) = 0 and followed the procedure outlined in previous
works. Along the calculations, dimensionless variables and z* =
z/σ̃ff and L* = L/σ̃ff for distances, n* = Nσ̃ff

2/A for areal
density, and ρ* = ρσ̃ff

3 for volume density are used.30,31 Present
results for γlv agree well with experimental data23,37,41 over the
entire temperature range Tt (=24.56 K) ≤ T ≤ Tc similarly to
that displayed in Figure 2 of ref 30.
For the analysis of physisorption, we utilized the ab initio

potential of Chismeshya, Cole, and Zaremba (CCZ), i.e., Usf(z)
= UCCZ(z), given by eq 3 in ref 42 with the potential parameters
listed in Table 1 therein. We report here results obtained when
slits of Rb, Na, and Li are filled with Ne. This set of substrates
exh ib i t s an inc rea s ing re l a t i ve s t reng th , be ing
ε ε= =/ 0.71r sNe NeNe , 1.10, and 1.49, respectively.30 Let
us mention that Sinanog ̌lu and Pitzer43 suggested that the
strength of the pair f−f potential is modified by interactions
with solid substrates. This effect is discussed in detail in ref 44.
In the present paper, we neglect the adsorption-induced
interactions and, along with other earlier authors,10,22−26 adopt
for studying physisorption the pair f−f potential of eq 2.5 with
the empirical parameters ε̃NeNe and σ̃NeNe determined in the
previous section.
A study of adsorption of Ne on single walls has already been

reported in ref 30. In that paper, PW lines and Tw temperatures
were determined. Hence, in this work, we shall apply the
outlined CE an GCE procedures to examine filling of
symmetric pore slits only. In this geometry, Ne atoms are
confined by two identical solid walls separated by a distance L.
Hence, the s−f interaction becomes Usf(z) = UCCZ(z) +
UCCZ(L − z) and repulsion at the walls leads to ρ(z = 0) = ρ(z
= L) = 0. The reported solutions of the E−L equations were
calculated for slits with L* = 40 in the cases of Li and Na and
L* = 60 for Rb. These widths are wider than L* = 29.1 adopted
for the pioneering molecular dynamics calculations6 guarantee-
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ing that the direct pair interaction between two atoms located
close to opposite walls be negligible.
Adsorption isotherms at fixed temperatures, i.e., the reduced

chemical potential Δμ(T) = μ(T) − μ0(T) and Γ , were
calculated using both the GCE and CE schemes. We adopted a
step ΔT = 0.5 K for slits of Li and Na and ΔT = 0.25 K for slits
of Rb. After describing the method of analysis, we shall first deal
with symmetric solutions in order to determine PW lines and
wetting temperatures Tw which will be compared with that
obtained in the previous study of adsorption on planar
surfaces.30 Next, all symmetric and asymmetric solutions for
T > Tw will be examined.
III.1. Method of Analysis. Let us now outline the method

of analysis of the adsorption isotherms by describing the
treatment of the results obtained when a slit of Li is filled with
Ne at a fixed T. For this illustration, we selected T = 38.5 K
which is the highest temperature exhibiting a van der Waals
loop. Data corresponding to symmetric solutions are displayed
in Figure 1. In this drawing, the solid lines stand for results

obtained with both the GCE and CE calculations. Notice that
the GCE scheme only provides solutions with positive slope
dμ/dn guaranteeing convexity of FDF. This property is also
exhibited by variational microscopic calculations performed in
the framework of the paired-phonon analysis in conjunction
with the hyper-netted chain expansion.45−48 Between the
sp inoda l point s S S 1 and SS2 (charac te r i zed by

μ μΔ Γ = =nd /d d /d 0), there is a regime marked by a dashed
curve where FDF is not convex exhibiting dμ/dn < 0. These data
were obtained from CE calculations.
The fact that at each step of the CE scheme ρ(z) is

normalized to the required number of particles means that
within this statistics one needs a smaller number of iterations
than in the GCE case to get convergence. Therefore, the CE
scheme is widely used in the literature to study adsorption. A
theoretical justification for the broad use of CE was provided by
White et al.49 These authors have shown that for stable or
metastable solutions the results of the GCE and CE statistics
may differ only if one considers situations of extreme
confinement with a small number of particles.
The CE scheme provides Δμ(T) for all values of n. When in

this frame the data exhibit S-shaped van der Waals
isotherms,50−54 the two coexisting stable states (thin and

thick films) located at nthin and nthick (i.e., at Γ ,thin and Γ ,thick ,
respectively) satisfying

μ μ μ= = Ωn n A( ) ( ) ( / )thin thick eq eq (3.1)

are determined by applying the Maxwell rule of equal areas as
in refs 25, 50, and 52

∫ μ μ μ− = Δ −T T n T n n[ ( ) ( )] d ( )[ ]
n

n

0 pw thick thin
thin

thick

(3.2)

This Maxwell construction is depicted in Figure 1, where the
points MS1 and MS2 stand for symmetric states which films
formed at both walls coincide, respectively, with the thin and
thick structures got at coexistence for adsorption on a single
wall.
In the case of substrates with intermediate strength, for n ≤

nthin, the system grows continuously and, for n ≥ nthick (i.e., for
Γ ≥ Γ ,thick), the film’s growth does not present any further
jump in coverage.
In the case of the GCE scheme, due to the lack of data in the

non-convex region, it is impossible to apply the equal area
Maxwell rule given by eq 3.2. Hence, some alternative method
should be utilized to get the coexisting states. In the following
lines, we shall outline an adequate procedure based on
thermodynamics.
For a surface system at fixed T, thermodynamic relations

yield for the chemical potential27,47,48
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and for the surface energy per unit area σA
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The equilibrium condition for a single-component fluid at T is
that μ be uniform throughout the system. Two phases can
coexist at a given T if and only if both phases have the same μ
and ω as required by eq 3.1. From a set [n, μ, f ] obtained in the
convex regime of F, i.e., along the sectors CS1−SS1 and SS2−CS2
of the curves traced in Figure 1, one can evaluate the
corresponding ω. In turn, these data can be used to perform the
“so-called” tangent Maxwell construction.50,51 This method is
based upon drawing tangent lines y to the curves of f vs n−1 for
both sectors CS1−SS1 and SS2−CS2. Since according to eq 3.4
the tangent (∂f/∂n−1) is equal to ω, at coexistence it must hold
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Starting from the slope of the straight line y which matches
coexisting points of f at 1/nthin and 1/nthick, one may arrive at
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Figure 1. Adsorption isotherm showing results for symmetric
solutions for a slit of Li filled with Ne at T = 38.5 K. Solid curves
were obtained with both the CE and GCE schemes, while the dashed
line is obtained in the CE scheme only. Labels SS1 and SS2 show the
location of spinodal points, while CS1 and CS2 are two generic stable
states in the thin and thick film regimes, respectively. MS1 and MS2
stand for the coexisting thin and thick films determined from the
equal-areas Maxwell construction indicated by the dash-dotted line.
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Since two coexisting layers must exhibit the same μ and ω, then
tangent lines for both layers coincide. Hence, by using eqs 3.3
and 3.4, one gets

μ ω

μ ω μ ω
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= + = +
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From this matching condition, one can determine μeq, ωeq, and
densities nthin and nthick. However, the outlined tangent Maxwell
construction is not the most used procedure for determining a
phase transition.
An alternative way consists of using the known μ and ω as a

function of n for plotting ω vs Δμ for both phases and
determining μeq and ωeq at coexistence from the crossing. See,
for instance, the crossing diagrams displayed in Figure 3 of ref
47, Figures 2−4 of ref 55, and the zigzag construction drawn in
Figure 2 of ref 56. Our data with positive dμ/dn (obtained in
both CE and GCE schemes) are plotted in Figure 2, where the

point labeled by Mcross indicates Δμpw(T) [=μeq − μ0(T)] and
ωeq at coexistence. At this crossing point, there is a
characteristic knee of a first-order transition. Of course, the
values of Δμpw(T) obtained in Figures 1 and 2 coincide.
Moreover, the points MS1 and MS2 merge into Mcross. The states
along the CS1−Mcross−CS2 line are stable, while those lying in
the sectors Mcross−SS1 and SS2−Mcross are metastable. According
to Hansen and McDonald, this kind of metastable states could
be reached experimentally if sufficient care is taken to prevent
formation of the thermodynamically stable phase (see Chapter
5.6 in ref 39) and in such a way hysteresis cycles may be
obtained. More details about measurements of states located
along S-shaped isotherms can be found in refs 53 and 54.
The numerical consistence between results obtained from

the procedure displayed in Figure 2 and the “pure” tangent-
based Maxwell construction was checked. The difference
between the evaluated f DF and the straight line y of eq 3.7 is
plotted in Figure 3 as a function of 1/n*. This difference
becomes zero at 1/nthin* and 1/nthick* as required by eq 3.6.
III.2. Prewetting lines and wetting temperatures from

symmetric solutions. In the present work, we determine
wetting properties from the analysis of energetics of the
symmetric solutions. In order to perform this kind of analysis,
the width of slits should be sufficiently large to guarantee that at
a given T the density ρB of vapor formed in the central region

be equal to the asymptotic density obtained in the adsorption
on a single wall. The considered widths L* = 40 for Ne/Li and
Ne/Na and L* = 60 for Ne/Rb satisfy this condition. The main
results are displayed in Figure 4; these data were calculated in
both the CE and GCE schemes.
Figure 4a shows adsorption isotherms for Ne/Li evaluated at

several temperatures above Tw. Vertical lines indicate Δμpw(T)
determined from Maxwell constructions described above. One
may observe the evolution of the PW phenomenon
characterized by the jump in coverage ΔΓ = Γ − Γ,thick ,thin
at Δμpw(T). The largest jump occurs close to Tw, then it shrinks
for increasing T, and it eventually disappears at Tcpw where the
thin and thick films merge. Thus, ΔΓ serves as an order
parameter which vanishes at the critical prewetting point
obeying a power law52

ΔΓ = −T b T T( ) ( )pw cpw
1/2

(3.8)

the critical exponent 1/2 corresponds to the MFA adopted in
the present work for the atractive f−f interaction and bpw is a
model parameter. Figure 4b shows Δμpw as a function of
temperature. This simple PW line corresponds to the case
depicted in panel b of Figure 1 in ref 5, and it has been
measured in several systems.57 The relative chemical potential
Δμpw approaches tangentially zero at Tw; thermodynamic
arguments5 lead to the form

μ μ μΔ = − = −T T T a T T( ) ( ) ( ) ( )pw pw 0 pw w
3/2

(3.9)

with apw being a model parameter. In practice, this expression is
used to fit data of Δμpw(T) for determining Tw. A fit of data
displayed for Ne/Li in Figure 4b yielded Tw = 35.9 K and apw/
kB = −0.22 K−1/2. In addition, from eq 3.8, we got Tcpw = 38.8 K
and bpw = 5.9 K−1/2.
Adsorption isotherms for the Ne/Na system are displayed in

Figure 4c, and Δμpw vs T is plotted in Figure 4b. Fitting the
latter data to eq 3.9, one gets a PW line with parameters Tw =
39.6 K and apw/kB = −0.23 K−1/2. The use of eq 3.8 yielded the
CPW point at Tcpw = 41.2 K with bpw = 9.5 K−1/2.
Adsorption isotherms calculated for Ne/Rb are shown in

Figure 4d, and the corresponding Δμpw vs T is included in
Figure 4b. In the case of this system, we obtained Tw = 42.25 K
and apw/kB = −0.24 K−1/2 for the PW line and Tcpw = 43.02 K
with bpw = 13.9 K−1/2 for the CPW point.
The PW lines displayed in Figure 4b are in good agreement

with those previously obtained from the analysis of adsorption

Figure 2. Grand potential per unit area as a function of the chemical
potential for a slit of Li filled with Ne at T = 38.5 K. The data
correspond to solid lines in Figure 1. Here we define ω+ = ωσ̃ff

2. The
curve containing the points CS1 and SS1 represents thin films, while
that with SS2 and CS2 stands for thick films. The crossing point labeled
by Mcross indicates coexisting films.

Figure 3. The difference between the evaluated f DF and the straight
line y given by eq 3.7 as a function of 1/n* for a slit of Li filled with Ne
at T = 38.5 K. This difference becomes zero at coexisting inverse
coverages 1/nthin* and 1/nthick* . The meaning of the set of labeled points
is the same as in Figure 1.
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on a single wall (cf. Figure 5 of ref 30). The values of Tw given
above are in concordance with that quoted in Table 1 of ref 30.
These facts confirm that the width of adopted slits is sufficiently
large for studying wetting properties. The conclusions obtained
from comparisons of present results with those of previous DF
calculations of Ancilotto and Toigo22 and GCMC simulations
of Curtarolo et al.58 remain the same as that already reported in
ref 30. Therefore, here we shall restrict ourselves to stress that
our calculations predict wetting of Rb by Ne with a Tw close to
Tc in agreement with the experimental result of Hess, Sabatini,
and Chan.59

III.3. Asymmetric Solutions. Symmetry breaking solutions
are obtained for both closed and open slits, which are treated
by applying CE and GCE statistics, respectively. Above Tw,
asymmetric solutions occur along PW lines.

III.3.1. Closed Slits - Canonical Ensemble. Let us now focus
on the analysis of asymmetric solutions obtained for the filling
of closed slits studied by applying the CE statistics keeping
fixed the set [n, T, V], as described in section II.2.2. In a first
step, we shall examine in some detail two adsorption isotherms
obtained for a slit of Li at T = 37.5 and 38.5 K. These data are
displayed in Figure 5a. Symmetric solutions are indicated by
solid curves running over the points SS1 and SS2, while
asymmetric ones are represented by dashed curves starting at
points SS1 and running over spinodal points of asymmetric
solutions SA1. Thus, asymmetric solutions just begin at the
maximum of Δμsym, i.e., asymmetry appears in the region where
the slope dΔμsym/dn becomes negative, while the slope of μasym
is positive over a large portion of that region satisfying the
stability condition there. The regime with positive slope
dΔμasym/dn begins at SA1, where the free energy FDF(asym)

Figure 4. (a) Adsorption isotherms for a slit of Li filled with Ne as a function of coverage Γ at temperatures from 36.5 K (down triangles) to 39 K
(circle) in steps of 0.5 K. (b) PW lines for the Ne/Li (diamonds), Ne/Na (squares), and Ne/Rb (circles) systems. (c) Same as part a but for Ne/Na
at T from 40 K (down triangles) to 41.5 K (circle) in steps of 0.5 K. (d) Same as part a but for Ne/Rb at T from 42.5 K (down triangles) to 43.25 K
(circle) in steps of 0.25 K.

Figure 5. (a) Reduced chemical potential for symmetric (solid curves) and asymmetric (dashed curves) solutions at two temperatures, starting from
the top T = 37.5 and 38.5 K, as a function of the dimensionless number of particles per area. For the meaning of labels SS1, SS2, and SA1, see the text.
Vertical dash-dotted lines indicate the largest n* at which SSB occurs. (b) Difference between free energies per particle of asymmetric and symmetric
solutions obtained in the CE frame at T = 37.5 K (lower curve) and 38.5 K (upper curve) as a function of n*. In the regime delimited by SS1 and SA1,
the chemical potential of asymmetric solutions exhibits a negative slope, and above n*(SA1), the slope becomes positive; the latter results are also
obtained in the GCE scheme.
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becomes a convex function of n. Notice that there is an
important qualitative difference between results for asymmetric
species at these temperatures. The clue is that at T = 37.5 K the
reduced chemical potential at SS1 is positive, while at 38.5 K it is
negative. This fact causes that at the later temperature the
regime of occurrence of asymmetric solutions finishes when
Δμasym reaches the value of Δμsym obtained at SS1. On the other
hand, at T = 37.5 K, Δμasym of asymmetric states approaches
zero from below until eventually the transition to capillary
condensation occurs.
The difference between free energies per particle, f DF = FDF/

N, of asymmetric and symmetric solutions obtained at T = 37.5
and 38.5 K is displayed as a function of n* in Figure 5b. The
asymmetric solutions have lower free energies than the
symmetric ones over the entire range SS1−SA1−SS2−SA2. States
along the dashed sector of the curve between SS1 and SA1
exhibit a negative slope dΔμasym/dn, indicating a negative
compressibility and sometimes are called internal states.56

It is important to mention that between SS1 and SA1 the
symmetry breaking is always obtained spontaneously; i.e., even
when the calculations are initialized with symmetric inputs, the
iterations lead to asymmetric solutions. Moreover, in order to

get symmetric profiles in this regime of n*, one must impose
symmetry at each step of the procedure. This behavior
resembles the finding reported in ref 21 where the symmetry
breaking was spontaneous within the dynamics and did not
have to be seeded. On the other hand, in the regime from SS2 to
SA2, the asymmetric profiles have to be seeded, whereas
between SA1 and SS2 the pattern is not well-defined.
In order to facilitate a comparison between asymmetric

solutions for different absorbers, selected asymmetric profiles
are displayed in a compact manner in Figure 6. Thus, panels a,
c, and e depict the growth of asymmetric ρ(z) at a fixed T for
Li, Na, and Rb, respectively. The degree of asymmetry of the
density profiles is measured by the coefficient
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In fact, there are two energetically equivalent asymmetric
solutions which satisfy ρasym2(z) = ρasym1(L − z), yielding
ΔN[ρasym2] = −ΔN[ρasym1]. Calculated asymmetry coefficients

Figure 6. (a) Asymmetric density profiles of Ne in a closed slit of Li at T = 38 K for several coverages Γ . The fat curve is the asymmetric profile
which coexists with symmetric ones (see text). The dashed curve is the largest metastable thin symmetric profile. (b) Asymmetry parameter for Ne/
Li as a function of coverage at temperatures from 36.5 K (highest curve) to 38.5 K (lowest curve) in steps of 0.5 K. The meaning of points SA1 and
SA2 is that of Figure 5. (c) Same as part a but for Ne/Na at T = 41 K. (d) Same as part b but for Ne/Na at T from 40 K (highest curve) to 41 K
(lowest curve) in steps of 0.5 K. (e) Same as part a but for Ne/Rb at T = 42.75 K. (f) Same as part b but for Ne/Rb at T from 42.5 K (highest curve)
to 43 K (lowest curve) in steps of 0.25 K.
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ΔN for T ≥ Tw are shown in panels b, d, and f of Figure 6 as a
function of coverage.
Figure 6a shows the asymmetric filling of a slit of Li at T = 38

K between the states SS1 and SA2 defined before. Looking at the
growth of the thick film for increasing Γ , one may observe that
it reaches the saturation liquid density. The asymmetry
coefficients for the examined temperatures above Tw are
plotted in Figure 6b. Three regimes are individualized for every
one of the displayed curves. From its beginning up to SA2, as
mentioned previously, the asymmetric solutions satisfy
f DF(asym) − f DF(sym) < 0; above Γ(S )A2 , the sign of this
difference is reversed. Below Γ(S )A1 , the slope dΔμasym/dn is
negative, while between SA1 and SA2 this slope becomes
positive. On the other hand, a view at Figure 6b indicates the
following for increasing T: (i) the asymmetric ρ(z) appears at
larger coverages, and (ii) the coverage’s range where f DF(asym)
− f DF(sym) < 0 diminishes. Furthermore, these structures can
be related to the corresponding PW line in the displayed in
Figure 4b. The SSB effect is present along the PW line until it
eventually disappears at a critical temperature Tssb which
coincides with Tcpw.
In the case of Ne/Na, asymmetric profiles obtained at T = 41

K are plotted in Figure 6c and asymmetry coefficients are
displayed in Figure 6d. Finally, asymmetric profiles calculated
for Ne/Rb at T = 42.75 K are shown in Figure 6e, while

asymmetry coefficients for this system are given in Figure 6f.
The overall characteristics of results for the systems Ne/Na and
Ne/Rb are similar to that found for Ne/Li. The main difference
is that for Rb, which is the weakest studied substrate, the
profiles do not show typical peaks denoting layering close to
the walls.
In summary, we can state that a comparison of all the

asymmetry coefficients displayed in Figure 6 to the first-order
transition lines depicted in a (T, Δμ) plane in Figure 4b
indicates that for all substrates the SSB effect extends along PW
lines terminating at a critical Tssb in concordance with Tcpw.

III.3.2. Open Slits - Grand Canonical Ensemble. Open slits
are also in thermodynamic equilibrium with an environment at
fixed T, but in this case, the confined system is exposed to an
unrestricted fluid exchange with the reservoir at fixed μ. Under
such circumstances, the adsorption occurs at a constant set [μ,
V, T]. As mentioned before, this kind of system is studied by
applying GCE.
Let us now comment in detail on the results obtained for

Ne/Na at T = 41 K. This value is the highest temperature
exhibiting a first-order transition. The corresponding adsorp-
tion isotherm calculated with both the CE and GCE schemes is
displayed in Figure 7a, where the equal-areas Maxwell
construction performed with symmetric CE solutions is also
shown. All the states marked with solid lines were obtained
from both CE and GCE schemes. Hence, GCE does provide

Figure 7. (a) Adsorption isotherm for symmetric and asymmetric solutions plotted as coverage Γ versus reduced chemical potential. The symmetric
solutions go through the set of points (CS1, SS1, SS2, CS2), while the asymmetric ones join the points (SS1, SA1, SA2, SS2). The vertical dash-dotted line
is the Maxwell construction joining the symmetric stable coexisting states MS1 and MS2, while MA stands for the asymmetric stable coexisting state
(see text). (b) Grand free energy per unit one wall area as a function of reduced chemical potential for symmetric and asymmetric solutions. The
meaning of the points (CS1, SS1, SA1, SA2, SS2, CS2) is the same as in panel a. The symmetric solutions lay on the curves CS1−SS1 and SS2−CS2, while
the asymmetric solution determines the line SA1−SA2. The point Mcross indicates the location of the crossing of the three lines determining the
coexistence of symmetric and asymmetric solutions labeled, respectively, by MS1, MS2, and MA in panel a.

Figure 8. (a) The difference between the evaluated f DF and the straight line y given by eq 3.7 as a function of 1/n* for a slit of Na filled with Ne at T
= 41 K. The meaning of the marked points is the same as that in Figure 7. This difference becomes zero at inverse coverages of coexisting symmetric
and asymmetric states. (b) Density profiles of Ne confined in a slit of Na as a function of z*. These data correspond to coexisting systems at T = 41
K. Both the CE and GCE statistics provide these results. The labels MS1 and MS2 indicate symmetric solutions, while MA indicates the asymmetric
one.
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both symmetric and asymmetric solutions in the regimes where
the corresponding Helmholtz free energy, FDF, is convex,
yielding positive dΔμ/dn. The lack of GCE data in the non-
convex region makes it necessary to apply the tangent Maxwell
construction for seeking out the coexisting states. Figure 7b
shows ω as a function of Δμ for both symmetric and
asymmetric solutions with positive dΔμ/dn displayed in Figure
7a. The crossing of the lines labeled by CS1−SS1 and SS2−CS2 in
Figure 7b occurs at Mcross and determines the coexisting
symmetric solutions MS1 and MS2 already identified in Figure
7a. Furthermore, the line SA1−SA2 corresponding to asymmetric
solutions crosses the symmetric ones also just at Mcross; i.e., this
point is indeed determined by the intersection of three lines in
Figure 7b. Hence, the state MA quoted in Figure 7a has the
same equilibrium grand free energy per unit area, ωeq, like the
coexisting symmetric states MS1 and MS2. All three of these
phases satisfy the equilibrium condition

μ ω μ ω μ ω

μ ω

Δ = Δ = Δ

= Δ

T T T

T

( , ) ( , ) ( , )

( , )

S1 eq S2 eq A eq

eq eq (3.11)

where Δμeq(T, ωeq) = −0.3899 K with ωeq/kBT = −32.90
nm−2. The density profile of the state MA is marked with a fat
line in Figure 6c.
It is worth mentioning what happens when in the unstable

region from SS1 to SA1 if one carries out a GCE calculation
taking the CE asymmetric solution as a starting point. In the
GCE scheme, μ is kept fixed; hence, the solution will move
changing Γ along a vertical line in Figure 7a until either the
CS1−SS1 curve or the SA1−SA2 one can be reached. The result
will depend on the landscape of the free energy.
For the sake of completeness, we also produced a drawing

similar to Figure 3 but including all three coexisting states.
Thus, Figure 8a shows differences between the Helmholtz free
energy per particle for the sectors displayed in Figure 7b and
the straight line given by eq 3.7, i.e., y = μeq + ωeqn

−1, evaluated
with μeq/kBT = −6.972 [μ0/kBT(T = 41 K) = −6.963] and ωeq

+ /
kBT = −2.227. One may realize that the three “parabolas” come
into contact with the horizontal zero line just at the coexisting
points MS1, MA, and MS2. Hence, there is complete agreement
among the results extracted from data of Figures 7a, 7b, and 8a.
The density profiles of the states MS1, MA, and MS2 are

compared in Figure 8b. In the case of MA, the spectrum exhibits
at the right wall the coexisting thick wetting film and at the
other wall the coexisting thin one. However, it should be
stressed that the asymmetric solution is twofold; there is
another asymmetric profile which presents a thin film at the
right wall and a thick film at the left one and has the same
energetics like the plotted one.
It is important to notice that the data plotted in Figure 7b

indicate that, away from Mcross for each value of Δμ, the
asymmetric metastable states always have a lower grand
potential energy, ω, than the symmetric metastable ones. On
the other hand, it is well-known that above Tw for a given μ the
states with lowest grand potential lie on the line determined by
CS1−Mcross−CS2 and wetting implies that the structures of the
states are uniform films over the (x, y) plane. Therefore, no
structure breaking symmetry on the (x, y) plane would have
lower ω at μeq than the coexisting symmetric and asymmetric
states obtained at Mcross. For temperatures in the range Tw < T
< 41 K, the Ne/Na system also exhibits Mcross points denoting
coexisting symmetric and asymmetric states. The features

exhibited by the isotherms for Ne/Na were also found in the
cases of the Ne/Li and Ne/Rb systems. Asymmetric coexisting
profiles for Ne/Li at T = 38 K and for Ne/Rb at T = 42.75 K
are also marked with fat curves in parts a and e of Figure 6,
respectively.
Figure 9 shows the phase diagram for coexisting states at

temperatures T > Tw for all the analyzed substrates. These data

were obtained by applying both the CE and GCE schemes.
One may realize that the coverage Γ corresponding to the
symmetric thick films as well as to the asymmetric ones goes to
infinity when the temperature approaches Tw. On the other
hand, both symmetric and asymmetric species merge at Tssb ≃
Tcpw. Above this critical temperature, only one sort of
symmetric state is obtained.
Finally, Figure 10 shows the evolution of the coexisting

asymmetric profiles as a function of temperature in the range
Tw < T < Tssb. For decreasing temperatures, one may observe
how the thick part of the profile grows, while simultaneously
the thin part becomes smaller. It is expected that for T → Tw
the width of asymmetric films will diverge, leading to Γ → ∞.

Figure 9. Phase diagram of coexisting states of Ne confined in slits of
Li, Na, and Rb at temperatures between Tw and Tcpw (all of these
temperatures are lower than Tc). These data were obtained with both
the CE and GCE statistics. Circles are symmetric states, while
diamonds are asymmetric ones. The dotted lines are plotted to guide
the eye; these lines merge at the corresponding Tssb ≃ Tcpw indicated
by stars.

Figure 10. Asymmetric density profiles of Ne confined in a slit of Li as
a function of z* for several values of T. These data correspond to
coexisting systems obtained from calculations performed in both the
CE and GCE statistics.
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All the main features reported in this work remain
unchanged when the width of the slit is enlarged.
III.3.3. Discussion of the SSB Effect. In general, the stability

of an equilibrium state of confined systems depends on the
constraints to which they are subjected. Thus, systems limited
to constant overall composition (closed systems) may differ in
their stability from those in which particles can unrestrictedly
enter or leave the system (open systems). Hence, states which
could be stabilized in the closed system (CE) are not
necessarily stable in the open system (GCE).
In this paper, we are dealing with a physical phenomenon

occurring for a thin to thick film wetting transition. If at a
constant temperature in the range Tw ≤ T ≤ Tcpw one increases
n = N/A starting from a small value, then a stable thin film will
be formed on each wall (symmetric density profile) until the
thin−thick film coexistence condition of eq 3.1 can be reached.
At this point, by adding more particles, the thin films would
enter in a metastable regime competing with the formation of
drops at the walls until the spinodal point SS1 of Figure 5a is
reached. Beyond this point, the symmetric films become
unstable, by increasing n in the CE scheme, a thin film at one
wall (the right wall in panels a, c, and d of Figure 6) does not
grow, remaining at its stable coexisting size, while at the other
wall the thicker film grows but with a negative slope dΔμasym/
dn; therefore, at the latter wall, the growth of droplets would be
preferable. Since by assuming ρ(r) = ρ(z) the system is forced
to be homogeneous along the walls, we only obtain
translational invariant layers of liquid even when the system
would prefer to phase separate (that is, to form a drop on a
wall). As it happens, having one of these unphysical layers on
one wall is energetically more favorable than having one at each
wall (see Figure 5b). Hence, one would say that such a
structure is energetically more favorable than having droplets
on both walls. More particles would make these droplets grow
until there are enough particles to form the stable thick layer;
this could be preceded by formation of a metastable thick film
after the point SA1 of Figure 7a showing SSB. The coexisting
thin and thick films form the asymmetric stable profile marked
by MA in that drawing. According to our CE calculations,
further increasing n just makes the thick layer grow as a
metastable film exhibiting SSB until a jump to the symmetric
profile at SA2. However, such an evolution would compete
unfavorably against a structure where the thick wetting layer
remains unchanged, while on the other wall droplets grow until
a thick wetting film is formed. From that point on, a symmetric
profile grows when particles are added. Let us note that
Ancilotto et al.60 showed that, if one approaches the prewetting
region from the high coverage regime reducing it gradually, a
thick film on one wall can break into low density patches
(bubbles) surrounded by high density region remnants of the
original film. It is also worth mentioning that, for instance,
Berim and Ruckenstein19 found for a narrow slit with L* = 10
that states breaking symmetry also along the x and/or y
direction may have under certain circumstances lower
Helmholtz free energy than asymmetric profiles with ρ(r) =
ρ(z).
In the GCE scheme, where no drops can be formed on the

walls (even if allowing ρ(r) to depend on x and/or y), we also
find asymmetric solutions. The only stable asymmetric profile
exhibiting SSB is that formed with coexisting wetting f ilms, i.e., a
thin wetting layer on one wall and a thick wetting layer on the
other, as shown in the structures displayed in Figure 10. The
remaining GCE asymmetric solutions (also found in the CE)

are metastable and do not fully minimize the grand free energy
of the system, as indicated in Figure 7b. In fact, they correspond
to having only one wetting layer (in either of the walls), which
of course is a better deal than having none but worse than
having a wetting layer at each of the walls. Perhaps, these
metastable states could be found in adsorption−desorption
hysteresis loops.

IV. SUMMARY

The confinement of Ne between two identical parallel planar
walls of alkaline metals was investigated within the frame of a
DF theory. The CE and GCE statistics were applied to closed
and open systems, respectively. The analysis was focused in the
wetting regime at a single wall, and it was assumed that the one-
body density is homogeneous over the (x, y) plane of the solid
walls; hence, the solutions are restricted to density profiles
satisfying ρ(r) = ρ(z). It was found that under certain
conditions the E−L equations, besides the expected symmetric
solutions, also yield asymmetric ones which exhibit the SSB
effect.
Since the width of the analyzed slits is large enough to

minimize finite size effects, symmetric solutions are used to
identify first-order phase transitions and determine PW lines.
Equilibrium chemical potential μeq, at which stable thin and
thick wetting films coexist, were evaluated by building Maxwell
constructions. The results provided by the CE and GCE
schemes are equivalent. PW lines are used to determine wetting
and critical PW temperatures, Tw and Tcpw. The values obtained
in the present work are consistent with those determined from
a study of the adsorption on single walls reported in a previous
paper30 by the authors.
At temperatures higher than Tw, solutions breaking the left−

right symmetry of the adsorption potential exerted by the slit
appear along PW lines for certain ranges of Γ . The filling of
closed slits studied by applying the CE scheme indicates that
between spinodal points of symmetric solutions the asymmetric
profiles exhibit a lower Helmholtz free energy, FDF, than the
symmetric ones for the same number of particles per unit area.
However, it is not possible to state that this kind of SSB
solution fully minimizes FDF because the imposed invariance
along the (x, y) plane parallel to the walls prevents formation of
drops at the walls. The latter structure may exhibit the lowest
FDF along the van der Waals loop according to the physical
interpretation of the phenomenon described in section III.3.3.
Nevertheless, there exists a range of Γ where the asymmetric
DF−CE solutions are metastable, as marked in Figures 5 and 6.
Open slits were studied within the GCE frame. All the

asymmetric states with positive slope of the chemical potential,
i.e., dμ/dn > 0, provided by the CE scheme were also obtained
when the GCE was applied. Hence, the asymmetric solutions
obtained within the DF−GCE frame are at least metastable and
it would be of interest to search whether they could be found in
adsorption−desorption hysteresis loops. Maxwell constructions
yield three coexisting stable states with the same chemical
potential μ and grand free energy potential ω. Two of these
states are symmetric, and one is asymmetric but 2-fold
degenerate. Symmetric solutions exhibit at both walls either
the thin or the thick wetting films obtained at coexistence in the
adsorption on a single wall. On the other hand, the asymmetric
state shows at one wall the coexisting thick wetting film and at
the other wall the corresponding thin one; let us denote this
structure the coexisting asymmetric wetting prof ile. These results
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indicate that given a sort of coexisting wetting f ilm at one wall it
is no matter whether at the other wall there is a thin or a thick
coexisting wetting f ilm. This behavior was qualified as
conceivable by Merkel and Löwen.9 It can be explained by
the fact that these thin and thick species are located far away
from each other and, therefore, each film acts like in the
adsorption on a single wall. Furthermore, it was found that for
temperatures in the range Tw ≤ T < Tcpw there is a one-to-one
correspondence between a first-order phase transition line and
the occurrence of coexisting asymmetric wetting prof iles. The
concordance between the CPW points where the PW lines
terminate and the critical temperatures Tssb at which
asymmetric solutions disappear is shown in Figure 9, while
the evolution of the coexisting asymmetric wetting prof iles as a
function of temperature for the system Ne/Li is depicted in
Figure 10.
In conclusion, the goals of the present work are the

following: (i) a detailed description of asymmetric solutions in
the convex regimes of FDF, which are mainly metastable; (ii) its
relation to PW lines; and (iii) the identification of stable
coexisting asymmetric wetting prof iles. All these results were
obtained from DF−CE and DF−GCE calculations carried out
with realistic potentials.
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