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A novel high-order implementation for the Navier–Stokes equations in the vorticity–velocity formulation
is presented. It is based on the kinematic Laplacian equation (KLE) method introduced in a previous work
as a low-order finite-element approach. Different aspects of the high-order implementation by spectral
elements of this novel procedure are discussed. The well-known problem of a semi-infinite region of sta-
tionary fluid bounded by an infinite horizontal flat plate impulsively started is used in different ways to
conduct comparative evaluation tests. This time dependent boundary-layer-development problem has an
exact analytic solution, and may be regarded as a canonical problem for the subject of generation of vor-
ticity boundary conditions in vorticity–velocity approaches. Results are analyzed and conclusions
presented.
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1. Introduction

The emergence of vorticity–velocity methods might be consid-
ered one of the most recent innovations in the computational solu-
tion of time-dependent viscous flows. Even though the appearance
of what could be regarded as the first (x,v) approach may be
traced as early as 1976 [1], it is rather during the last decade or
so that a systematic research effort was applied to the develop-
ment of this family of methods (see [2,3] for a complete list of ref-
erences). Based on what is now known as the hybrid formulation of
the Navier–Stokes equations, they evolved as a natural extension of
the well-established vorticity–stream function methods which are
based on the nonprimitive-variable Navier–Stokes formulation.
The (x,v) methods present several advantages compared with
the classical formulation on primitive variables (velocity–pressure)
or with their vorticity–stream-function cousins (see [2–5], among
others). We may single out the elimination of the pressure variable
(which simplifies the study of incompressible flows on the inviscid
limit and the treatment of boundary conditions at infinity in exter-
nal flows) [4], and their intrinsic invariance against acceleration of
the frame of Ref. [5]. This makes them emerge as a very attractive
alternative to the more classical approaches, especially for the
solution of flows around bodies in complex rototranslational mo-
tion. A comprehensive study of the theoretical basis of the vortic-
ity–velocity formulation in two and three dimensions can be
found in chapter 4 of Quartapelle [4]. This reference also includes
a series of theorems proving the equivalence between the (x,v)
formulation of the incompressible Navier–Stokes equations and
their classical formulation in primitive variables (i.e. the veloc-
ity–pressure formulation). The equivalence theorem may also be
found at [6].

In a previous paper, a novel procedure belonging to the (x,v)
family was introduced [3]. This procedure, called the KLE method,
is characterized by a complete decoupling of the two variables in a
vorticity-in-time/velocity-in-space split approach, thus reducing to
three the number of unknowns to solve in the time integration pro-
cess. This time–space splitting also favors the use of adaptive var-
iable-stepsize/variable-order ODE algorithms, which enhances the
efficiency and robustness of the time integration process. The KLE
method solves the time evolution of the vorticity as an ordinary
differential equation on each node of the spatial discretization.
The input for the vorticity transport equation at each time-step is
computed by a modified version of the Poisson equation for the
velocity, which provides a linear PDE expression in weak form
called the kinematic Laplacian equation (i.e., KLE). The input of the
KLE is provided by the time integration of the vorticity.

The KLE method is more a mathematical model than a numer-
ical discretization scheme. The first implementation of the KLE
method made use of classical low-order finite-element techniques
for spatial discretization of the domain. The generality of the KLE
method allows further exploration of different techniques for dis-
cretization in space and time. A particular point interest is the
quality of the approximation of the spatial derivatives and the
accuracy of the spatial discretization, especially for nodes that lie
at the solid boundary which are the most involved in the critical
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process commonly known as vorticity creation. Notwithstanding
the results of its early low-order FEM implementation exhibit a
satisfactory agreement with the experimental measurements, the
abovementioned issues must be carefully taken into account in
the choice of space-discretization techniques for future implemen-
tations of the KLE method. Following this line of reasoning, the
purpose of this paper is to systematically analyze the particulari-
ties of a high-order implementation of the KLE by spectral-element
techniques, focusing on each different aspect of this novel method
to individualize possible weaknesses and strengths.
1.1. Vorticity boundary conditions

A common issue to all the methods based on nonprimitive or
hybrid variables is the absence of boundary conditions for the vor-
ticity in presence of no-slip boundary conditions for the velocity. In
the case of the (x,w) formulation it also implies that the Poisson
problem for the stream function with both Dirichlet and Neumann
conditions is overdetermined. There are several different ways of
overcoming this difficulty. Some earlier approaches like the bound-
ary vorticity formula or the vorticity creation methods use different
techniques to define the boundary values of vorticity in terms of
the stream function (or the velocity) by means of some approxi-
mate formula applied locally at the no-slip boundary. They are
roughly equivalent, however their implementation may differ
remarkably depending on the type of discretization used (see
[4,7–9]). An alternative viewpoint have been introduced by Quar-
tapelle and Valz-Gris [10,11]. They showed that in order to satisfy
the no-slip boundary conditions for the velocity, the vorticity
should be subject to an integral constraint. This condition is a di-
rect consequence of the boundary conditions on the velocity, and
ensures satisfaction of essential conservation laws for the vorticity.
An important aspect of the integral vorticity conditions is their
nonlocal character: the vorticity distribution in the interior of the
domain and on its boundary is affected at each time by the instan-
taneous values of the tangential and normal components of the
velocity along the entire boundary. A detailed description of the
mathematical basis and the different numerical implementations
of the orthogonal-projection operation of the vorticity field for
the (x,v) formulation can be found in [4].

In our approach, the issue of the vorticity boundary conditions
on the no-slip surface is dealt with by a sequence of two solutions
of the KLE under a different set of velocity boundary conditions. As
we shall see, inside each time step, we perform two projectional
operations of integral character applied on the velocity field that
ensure that the vorticity evolves in time in a way compatible with
the time-dependent velocity boundary values. This issue, which is
more related with the use of the KLE as the spatial counterpart in a
(x,v) scheme than with the KLE in itself as a PDE system, will be
discussed in following sections.
1.2. Outline of the KLE method

A detailed description of the mathematics and numerical imple-
mentation of the KLE method can be found in [3], including valida-
tion tests performed against analytical solutions and experimental
measurements. Here, we shall give a brief outline of our method in
order to make this article self contained. Starting from the well-
known vector identity

r2v ¼ $ � $v ¼ $ð$ � vÞ � $� ð$� vÞ; ð1Þ

we found that a variational form of this ‘‘Laplacian’’ expression
could be advantageously used as the spatial counterpart of the vor-
ticity transport equation in a new type of vorticity–velocity method.
Let us consider the full three-dimensional incompressible
Navier–Stokes equation in vorticity form for a flow domain X with
solid boundary oX and external boundary of X in the far field, in a
moving frame of reference fixed to the solid,

@x
@t
¼ �v � $xþ mr2xþx � $v : ð2Þ

If we have the velocity field v in X at a certain instant of time,
we can rewrite (2) as

@x
@t
¼ �v � $ð$� vÞ þ mr2ð$� vÞ þ ð$� vÞ � $v ; ð3Þ

and solve for x at each point of the discretization of X by integra-
tion of (3) using an ODE solver.

Now, let us revisit (1) but this time impose a given distribution
for the vorticity field and the rate of expansion:

r2v ¼ $D� $�x; ð4Þ
$ � v ¼ D; ð5Þ
$� v ¼ x: ð6Þ

Here x is the vorticity field in X given by (3) and D is the corre-
sponding rate of expansion (i.e. the divergence field). The KLE is
essentially defined as a solution of (4) in its weak form under the
simultaneous constraints (5) and (6).

The imposition of the corresponding distributions for both the
rate of expansion and the vorticity is needed in order to obtain a
unique solution for the complete velocity field from Eq. (4). The
first constraint defines the irrotational-not-solenoidal component
of the velocity field, and the latter the solenoidal-not-irrotational
component. If those two components are given, the remaining
component (which is both solenoidal and irrotational) is uniquely
determined for prescribed boundary conditions. A comprehensive
treatment of this subject may be found in [12] Sections 2.4–2.7.
Usually, in other vorticity–velocity approaches the Poisson equa-
tion (4) is solved simultaneously with the vorticity transport equa-
tion together with an imposition of the incompressibility condition
(i.e. a constant zero rate of expansion). With the KLE, instead, the
objective is to uncouple the velocity and vorticity solutions. Hence,
the imposition of the vorticity distribution is needed as a second
constraint in order to obtain an independent solution of the veloc-
ity field. To clarify this point, let us consider the orthogonal decom-
position of the velocity field in its irrotational not-solenoidal
component vD, its solenoidal not-irrotational component vx and
its irrotational and solenoidal (i.e., harmonic) component vh. Under
prescribed boundary conditions for the normal component of the
velocity and given distributions for the vorticity x and the rate
of expansion D, this decomposition v ¼ vD þ vx þ vh is uniquely
determined [12]. Constraints (5) and (6) ensure that vD and vx

are properly solved:

$ � v ¼ $ � vD ¼ D; ð7Þ
$� v ¼ $� vx ¼ x: ð8Þ

Now, applying the orthogonal decomposition to the total veloc-
ity field v in (4) we have,

r2ðvh þ vD þ vxÞ ¼ r2vh þ $ð$ � vDÞ � $� ð$� vxÞ
¼ $D� $�x: ð9Þ

Substituting (7) and (8) in (9) yields,

r2vh ¼ 0; ð10Þ

which provides the solution of the harmonic component vh. Thus,
the KLE construction ensures that all three components of the
velocity field are properly solved.
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For incompressible cases, such as discussed here,D is simply set to
zero. For compressible cases,D can be a general distribution given by a
solution analogous to (3) but for the divergence transport equation (i.e.
the momentum equation in divergence form) together with a solution
of themass transport equation and adding to (2) and (3) the terms elim-
inated by the application of the incompressibility condition.

Now, provided that we can find a way of imposing on the veloc-
ity field the no-normal-flow condition,

v � n ¼ 0; ð11Þ

and the no-slip condition,

v � s ¼ 0; ð12Þ

on the solid boundary oX in a way compatible with the vorticity dis-
tribution at that time, we obtain a compatible solution for the veloc-
ity. Then, from this velocity field we produce the right-hand side of
(3) required to advance the time-integration process to the next
step. In order to impose the no-normal-flow and no-slip conditions
on oX together with the correspondingly compatible boundary con-
ditions on the vorticity, we designed an algorithmic sequence based
on two consecutive solutions of the KLE: the first under free-slip and
the second under no-slip boundary conditions on the solid surface.
This algorithmic sequence is repeatedly performed inside the
time-iteration process commanded by an adaptive variable-stepsize
ODE solver. The solution is checked by the adaptive stepsize control
by monitoring of the local truncation error, which proved to be quite
stable for this application. During this process we apply the corre-
sponding time-dependent, Dirichlet conditions for the velocity on
oX1, the external boundary of X in the far field.

Our algorithmic sequence is the analog of the vorticity creation
process typically found in the early hybrid and nonprimitive meth-
ods mentioned above, where vorticity is created in response to the
induced slip [7–9]. But, in our case, we produce our compatible
vorticity boundary conditions on the solid surface by sequence of
two solutions of the KLE under a different set of velocity boundary
conditions. These two projectional operations of integral character
applied on the velocity field (and performed inside each time step)
ensure that the vorticity evolves in time in a way compatible with
the time-dependent velocity boundary values.

It is interesting to note that all the physics of the problem is con-
tained in the time integration of (3) and it is solved as an ODE prob-
lem on the vorticity. The rest of the algorithm is concerned with the
computation of a discrete spatial solution for the velocity field bV
which is compatible with both: the time-evolved vorticity distribu-
tion obtained from (3) and the time-dependent boundary condi-
tions for the velocity. This algorithmic sequence has the
advantage of producing a complete decoupling between the time
integration of the vorticity transport equation and the space solu-
tion of the Poisson equation for the velocity field. A detailed scheme
of the complete algorithmic sequence may be found in [3].

The linear spatial solution defined in (4)–(6) (i.e., the KLE) can be
implemented in just one variational formulation. We start by
applying the standard Galerkin method to (4). Then, integrating
by parts, applying the Gauss theorem, and taking into account the
boundary conditions, we arrive to a basic variational formulation
associated to (4). One important property of the Laplacian operator
is that its variational formulation yields a symmetric and coercive
bilinear form with good stability and convergence properties. It also
has an equivalent minimization formulation, which gives, for the
variational form of (4), the following associated functional:

U ¼
Z

X

1
2

$v : $v dX�
Z

X
ð$�xÞ � v dX: ð13Þ

The next step is the imposition of the constraints (5) and (6). To
this end we explored several alternatives and we finally settled on
the penalty method for the imposition of the constraints. The pen-
alty method, though less rigorous than other alternatives with re-
gard to the imposition of constraints, appears very well suited to
this approach. It provides a solution in one step keeping the posi-
tive definiteness of the final bilinear form, it has proven to work
properly in this coupled scheme of two simultaneous constraints
and shows a wide range of stability for the values of the penalty
constant used to impose the constraints without inducing ill-con-
ditioning on the final stiffness matrix.

Thus, we modified the functional (13) by adding the penalty
terms related to the constraints (5) and (6),

eU ¼ Uþ
Z

X

aD
2
ð$ � vÞ2 þ ax

2
ð$� v �xÞ � ð$� v �xÞdX; ð14Þ

where eU is the modified functional and aD and ax the correspond-
ing penalty constants. We satisfactorily tested values of aD from 102

to 105 (choosing 103) and values of ax from 101 to 106 (choosing
102).

Before applying the KLE scheme to the solution of flows around
complex geometries, we conducted a series of experiments using
the so-called Patch-Test technique to verify the accuracy of the
imposition of constrains (5) and (6), and the absence of spurious
modes when the mesh is distorted. Originally proposed by Irons
and Razzaque [13] in the context of structural mechanics, the idea
of the Patch-Test involves solving a structural problem subjected to
boundary conditions that lead to a constant-stress state, with the
minimum set of restrictions in order to avoid rigid translations.
This problem is solved on a simple domain or patch discretized
by an arbitrarily-distorted mesh of a small number of elements.
If for any arbitrary patch of elements given the stresses and dis-
placements are correctly predicted, the element is said to have
passed the test. The idea originated from the observation that some
incompatible elements (i.e. elements which present inter-elemen-
tal discontinuities) typically used in the analysis of plates and
shells, still worked perfectly fine despite those incompatibilities,
and the patch-test offered a way of determining which elements
satisfy that condition (for a detailed description of the Patch-Test
technique see [14], among others).

In the case of displacement-based elements correctly assembled
in a compatible mesh, the satisfaction of the test is automatic. This
is what happens in our case, even though our interpolated variable
is the velocity, the analogy is a direct one. Nevertheless, conducting
a patch-test in the case of a new type of element is a healthy prac-
tice to ensure that no spurious modes are going to appear when the
mesh is distorted and, particularly for the KLE, to verify the correct
satisfaction of constrains (5) and (6). To this end, we conducted an
extensive series of tests over 1000 different patches consistent of
meshes which were arbitrarily-distorted by adding randomly-gen-
erated displacements to the original locations of the nodes, sub-
jected to boundary conditions of uniform stream. Fig. 1 shows
two examples of 9-node isoparametric-element meshes used. The
mean of the error in the divergence of the flow, i.e. the satisfaction
of constrain (5), was 5.5536 � 10�15 with a maximum of
1.6135 � 10�14. For the curl of the flow, i.e. the satisfaction of con-
strain (6), the results were 2.6207 � 10�14 for the mean and
1.3805 � 10�13 for the maximum. These results show that both
conditions were satisfied almost up to the limit of precision of
the floating-point representation, and no spurious modes were
induced.

Invoking the stationarity of eU with respect to v, and reordering
the terms we finally haveZ

X
$v : $dv þ aDð$ � vÞð$ � dvÞ þ axð$� vÞ � ð$� dvÞdX

¼
Z

X
ð$�xÞ � dv þ axx � ð$� dvÞdX; ð15Þ



Fig. 1. Two examples of arbitrarily-distorted meshes used in the Patch-Test analysis obtained by adding randomly-generated displacements to the original locations of the
nodes.
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which is the expression for the variational formulation correspond-
ing to the system (4)–(6) for the incompressible flow case.

This implementation leads to a global matrix which is indepen-
dent both of time and of the particular constitutive relation of the
continuum media. Then, this matrix can be factorized at the mo-
ment of assembling and its triangular factors used as many times
as needed so long as we are using the same grid. As we said, this
is so even for problems with different constitutive relations be-
cause all the physics of the problem is taken into account only in
the time-integration process for the vorticity, i.e. the spatial solu-
tion is purely kinematic. Thus, the spatial solution computed at
each time step reduces to a pair of back-substitution processes
where we simply change the right-hand side vector of the linear
system in order to impose consecutively the boundary conditions
(11) and (12). This scheme simplifies the issue of obtaining a vor-
ticity distribution on the no-slip boundaries in a way that satisfies
the time-dependent boundary conditions for the velocity. Note
that this procedure is not a purely-local manipulation performed
on individual points on the boundary, this double solution of the
velocity field is calculated over the entire domain involving two
projectional operations of nonlocal character. In that sense, our
procedure is more related with the abovementioned integral-con-
straint technique introduced by Quartapelle and Valz-Gris [10,11],
than with the purely-local operations of early vorticity-creation
approaches.

The basic formulation of the PDE system (4)–(6), i.e. the KLE, is
three-dimensional. Then, the extension of the spatial solution pro-
vided by the KLE to three-dimensional problems is straightforward
(the theoretical basis of the (x, v) formulation in three dimensions
and its equivalence with the classical velocity–pressure formula-
tion may be found in Quartapelle [4], chapter 4). The fact that in
(x,v) approaches the velocity is supplemented by unique bound-
ary conditions, substantially simplifies the question of computing
a velocity field compatible with the vorticity boundary conditions.
This is not the case with the vorticity–stream function methods,
where the variety of boundary conditions that may be chosen for
the velocity potentials due to the nonuniqueness of the velocity
representation is much more complicated in three-dimensions
than in two [4]. The KLE method has no special requirements on
the rate-of-expansion distribution imposed. It implies that the
method can be extended to the analysis of compressible flows, pro-
vided that we implemented an algorithmic sequence to compute
compatible boundary conditions for the rate of expansion in an
analog way as we do with the vorticity.

Even though in previous paragraphs we referred to the KLE
method as a ‘‘vorticity-in-time/velocity-in-space split approach’’,
this is more a general description of its time–space/vorticity–
velocity uncoupled nature than a strict definition of its algorithmic
structure. Strictly speaking, time-marching splitting or fractional-
step methods replace simultaneous processes by sequential steps
as a means to increase efficiency [15]. Split may be by dimensions
(e.g. a three-dimensional process split into three one-dimensional
substeps), or by physics (e.g. advection on one fractional step, pres-
sure adjustment on another, and diffusion on a third). For the
hydrodynamic equations, the advantage of splitting-by-process is
that the nonlinear advection process can be treated by a different
algorithm than pressure adjustment, which in turn can be different
from diffusion, the latter two involve a linear solution each. The
advective step is usually advanced explicitly and the adjustment
of fields, is integrated implicitly. A typical example of this tech-
nique is the very successful AB3CN (third-order Adams–Bash-
forth/Crank–Nicholson) three-step scheme (see [16,17], among
others). The choice of appropriate boundary conditions is impor-
tant in minimizing the splitting error [18].

On the other hand, there is no splitting in the KLE method. All
terms in the physical problem are solved simultaneously during
time integration of the vorticity field, and all the spatial compo-
nents of the velocity are solved together by the KLE. The fact that
the linear spatial solution provided by the KLE is purely kinematic,
with all the nonlinearities and the material constitutive properties
remitted to the high-order adaptive time integration, favors the
solution of problems with more complex nonlinear constitutive
relations like non-Newtonian, plastic or viscoplastic flows. And
the same argument may be applied to the adoption of turbulence
models for a future LES implementation of the method. The KLE
is based on a universal vectorial relation, so it can be used to solve
any vector field provided that we may solve a transport equation
for its divergence and curl. This, together with the fact that time
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is the only iteration variable present, makes it possible to extend
its application to other physical problems like, for instance, elec-
tromagnetic fields. It is also possible to couple the fluid analysis
with other physical processes (e.g., heat transfer or chemical reac-
tion) by adding more equations to the ODE system. In that sense,
the flexibility of the KLE to deal with different problems, using
what is in fact the same spatial formulation, substantially simpli-
fies the analysis of its numerical performance: What we are doing
is essentially solving the same PDE with different source terms.
Hence, several conclusions obtained here regarding the numerical
behavior of the KLE as a PDE system acquire a more general char-
acter which goes beyond the Navier–Stokes problem.

KLE also shows a substantial tolerance to the use of unstruc-
tured meshes which allows a more suitable meshing of complex
geometries than structured-mesh approaches would permit. The
KLE method was applied successfully to the study of the Strou-
hal–Reynolds number relationship for vortex streets [19], to the
analysis of vortex structures in the wake of oscillating cylinders
[20], and as a basis of a vortex-identification technique [21].
2. Spectral-element implementation of the KLE method

The spectral element method is a particular implementation of
the p-version of the hp-finite element method. It was originally
introduced about two decades ago (see [22,23]) in order to avoid
the restriction suffered by global spectral methods of being only
applicable to simple domains. This multidomain high-order meth-
od allows for local refinement, preserving the fast convergence
properties of spectral discretizations [24]. It may handle compli-
cated geometries while showing an exponential convergence rate
which is faster than any algebraic method for smooth solutions.
Due to their high accuracy, spectral methods are memory-minimiz-
ing [15]. Even when a relatively-crude accuracy is needed, the high
order of spectral approximations makes it possible to attain the
modest error required with a considerably lower number of nodes.
Hence, even though spectral elements generally require more com-
putations per degree of freedom than low-order approximations,
when an in-core solution is needed (either for a sequential proce-
dure or as a subdomain computation within a parallel scheme), the
use of spectral elements may be advantageous.

The spectral element method may use any type of Jacobi poly-
nomial to compose its basis functions, the most common options
are either Chebyshev or Legendre polynomials. Gauss–Lobatto
quadrature points are commonly selected as collocation points
leading to orthogonal basis functions which means that mass
matrices are diagonal. An advantage of this procedure is that any
order polynomial can be generated automatically concurrently
with its numerical integration rule. There is also no need to define
the basis functions explicitly because we may define implicit rela-
tions a priori for the inner products of the functions and their deriv-
atives [25].

Here, we use typical two-dimensional isoparametric spectral
elements where high-order Lagrangian polynomial interpolants
are used to approximate the solution variables in each direction.
The Galerkin method is applied to form the KLE equations for the
solution of the velocity field at the nodal points (see the implemen-
tation of the KLE variational formulation included in [3]). The
nodes correspond to the Gauss–Lobatto points, which for high-or-
der elements is far more economical than equispaced nodes [26].
The integrals involved are evaluated by Gauss–Legendre–Lobatto
(GLL) quadrature. Even though, strictly speaking, GLL is a non-ex-
act integration rule, this approach is particularly economical in
computational terms because only a limited number of the ele-
ment nodes contribute to the equations formed at a certain node.
GLL quadrature have been in use for several years showing excel-
lent results (see [17,26–28], among others). Experiences conducted
by Giraldo [25] indicate that, for polynomial orders p P 4, results
show no differences between non-exact GLL integration and classi-
cal exact Gauss–Legendre integration. We implemented a series of
spectral element basis for increasing orders from p = 2 to p = 21.
For p P 4, our first results showed no differences between non-ex-
act GLL integration and exact GL. Hence, we continued using exact
GL integration for p < 4 and GLL integration for p P 4.

Following the standard procedure for finite-element discretiza-
tion of the velocity field and its gradient we have

v ¼
vx

vy

� �
¼ H � bV e; $v ¼

@vx
@x
@vx
@y

@vy

@x
@vy

@y

2666664

3777775 ¼ B � bV e; ð16Þ

where bV e is the elemental array of nodal velocity values, H is the
interpolation-function array and B the array of interpolation-func-
tion derivatives:

bV e ¼

v̂1
x

v̂1
y

v̂2
x

..

.

v̂N2
GL

x

v̂N2
GL

y

2666666666664

3777777777775
; H ¼ h1 0 h2 � � � hN2

GL 0
0 h1 0 � � � 0 hN2

GL

" #
; ð17Þ

B ¼

@h1

@x 0 @h2

@x � � � @h
N2

GL

@x 0

@h1

@y 0 @h2

@y � � � @h
N2

GL

@y 0

0 @h1

@x 0 � � � 0 @h
N2

GL

@x

0 @h1

@y 0 � � � 0 @h
N2

GL

@y

2666666664

3777777775
; ð18Þ

where NGL = p + 1 is the number of nodes of the Gauss–Lobatto
interpolation.

The partial derivatives of the interpolation functions are given
by

@hk

@x

@hk

@y

24 35 ¼ J�1 �
@hk

@r

@hk

@s

" #
; k ¼ 1; . . . ;N2

GL; ð19Þ

where J is the elemental Jacobian matrix

J ¼

XN2
GL

k¼1

@hk

@r x̂k
XN2

GL

k¼1

@hk

@r ŷk

XN2
GL

k¼1

@hk

@s x̂k
XN2

GL

k¼1

@hk

@s ŷk

26666664

37777775; ð20Þ

and ðx̂k; ŷkÞ the geometrical coordinates of the nodes. For the diver-
gence of the velocity field we have

$ � v ¼ m � B � bV e; m ¼ 1 0 0 1½ �; ð21Þ

and for the velocity curl the only non-zero component is xz, ob-
tained as

$� v ¼ r � B � bV e; r ¼ 0 �1 1 0½ �: ð22Þ

Following a similar procedure for the discretization of the vor-
ticity field and the x and y components of its curl we have

x ¼ Hx � x̂e; $�x ¼
@x
@y

� @x
@x

" #
¼ Bx � x̂e; ð23Þ
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where x̂e is the elemental array of nodal vorticity values provided
by the time-integration process, Hx is the vorticity interpolation-
function array and Bx the array of interpolation-function deriva-
tives for the computation of x and y components of the vorticity
curl:

x̂e ¼

x̂1

x̂2

..

.

x̂N2
GL

266664
377775; Hx ¼ h1 h2 � � � hN2

GL

h i
; ð24Þ

Bx ¼
@h1

@y
@h2

@y � � � @h
N2

GL

@y

� @h1

@x � @h2

@x � � � � @h
N2

GL

@x

264
375: ð25Þ

Now, considering (15) at each elemental subdomain (Xe) and
substituting the velocity and vorticity fields and their differenti-
ated magnitudes by their discretized counterparts we have

dbV eT � ðKe
L þ Ke

D þ Ke
xÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ke

�bV e ¼ dbV eT � Re
L þ Re

x

� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Re

�x̂e; ð26Þ

where

Ke
L ¼

Z
Xe

BT � BdX ¼
Z 1

�1

Z 1

�1
BT � BjJjdr ds;

Ke
D ¼

Z 1

�1

Z 1

�1
aDBT �mT �m � BjJjdr ds;

Ke
x ¼

Z 1

�1

Z 1

�1
axBT � rT � r � BjJjdr ds;

Re
L ¼

Z 1

�1

Z 1

�1
HT � BxjJjdr ds;

Re
x ¼

Z 1

�1

Z 1

�1
axBT � rT � HxjJjdr ds;

and dbV e is the elemental array of nodal values for the arbitrary
function dv.

Assembling the elemental matrices and arrays defined in (26)
and taking into account that dv is arbitrary and so is its discretized
counterpart dbV , we arrive to the global system

K � bV ¼ R � x̂: ð27Þ

Neither K nor R depend on x̂ nor t, so they can be computed
once for a given mesh, stored and used as many times as needed
to compute the solution for bV . Matrix K is symmetric and positive
definite, so it lends to factorization by Cholesky decomposition and
its triangular factor is repeatedly used to solve bV through back-
substitution.

Substantial economy is additionally achieved, by the use of the
static condensation procedure. Static condensation is particularly
attractive for spectral element methods because of the natural
division between the equations associated with element–boundary
nodes and those associated with element-interior nodes. The con-
densed system is essentially the Schur complement of the interior-
node submatrix in the non-condensed original system [24]. This
technique reduces the size and complexity of the stiffness matrices
arising in finite-element and spectral-element methods and im-
proves the condition number of the final condensed system (see
Section 5.4.2 in [29], among others). The Schur complement inher-
its the symmetric positive definiteness of the original system.
Those are desirable properties for application of both iterative
and direct solvers. We use static condensation at elemental level
during the final assembly of the global system.

In Section 4.1, we test the accuracy of the spectral implementa-
tion of the KLE by performing a p-refinement study, comparing
against the analytical solution of a canonical boundary-layer prob-
lem described in Section 3.

Shock waves in compressible flow and other singularities which
induce the so-called Gibbs phenomenon constitute a source of
trouble for both the spectral and the spectral-element methods
[30]. Irregularities due to the presence of nonsmooth coefficients,
nonsmooth forcings and abrupt changes in boundary shape or
boundary conditions, degrade the accuracy of the spectral element
method and exponential convergence is lost. This is a consequence
of the intrinsic problem of using high-order polynomial interpola-
tions for nonsmooth functions. In Section 4.1, we have payed spe-
cial attention to this subject, analyzing the error induced at the
early stages of a boundary-layer development where an impulsive
start introduces a singularity at the solid surface.

2.1. Evaluation of the right-hand side of the ODE system

For the two-dimensional implementation of the time-integra-
tion procedure, we rewrote the vorticity transport Eq. (3) in a more
convenient way,

@x
@t
¼ F x; tÞ ¼ $� ðm$ � $v � v � $vð Þ: ð28Þ

We evaluated the right-hand side of (28) applying the corre-
sponding differential operators onto the discrete velocity field bV
that was computed by the algorithmic sequence described in Sec-
tion 1.2. For the low-order FEM implementation, we applied the
normal procedure to calculate derivatives on the nodes of a mesh
of isoparametric elements consisting in computing the derivatives
at the standard Gaussian points adjacent to each node and interpo-
late their results. A detailed description of the this procedure can
be found in [31]. In our case we used area-weighing interpolation
which prove to be very effective. For the spectral-element case, the
Gauss–Lobatto points coincide with the nodes. Thus, for the nodes
on the inter-element boundaries, we used a simple average of the
values from adjacent elements. For the interior nodes, calculation
is straightforward.

The contribution of each Gaussian point to its corresponding
node only depends on the geometry of the mesh and can be calcu-
lated at the moment of assembling. Hence, a set of arrays is assem-
bled simultaneously with the finite-element matrices. Those arrays
perform the differential operations on any vector or tensor field, as
a dot product with the corresponding discrete solution of that field.
For instance, the discrete form of the curl of the velocity field $� v
is given by the dot product bC url � bV . Thus, the right-hand side of
(28) takes the discrete form,

Fðx̂; tÞ ¼ bC url � mbDiv � bV adv

� �
� bGrad � bV ; ð29Þ

where bC url; bGrad and bDiv are respectively the arrays that compute
the curl, the gradient and the divergence of the gradient, and bV adv

is simply a reordering of bV array to perform the product v � $v in
the advective term. The accuracy of these operators constitutes a
particular point of interest for us. In Section 4.3, we show accuracy
tests for a p- and h-refinement study.

Neither bC url; bGrad nor bDiv depend on x̂ nor t, so they can also be
computed once for a given mesh, stored and used as many times as
needed to provide evaluation of (29) for an advanced package ODE
solver. We choose a multivalue variable-order Adams–Bashforth–
Moulton predictor–corrector (ABM-PECE) solver with adaptive
stepsize control which proved to be quite efficient for this applica-
tion. We also tried a fifth order adaptive-stepsize Runge–Kutta
algorithm with good results. For the first DNS low-Reynolds-num-
ber applications of the KLE method, the function prove to be
smooth enough for the adaptive ABM-PECE algorithm to work very
efficiently, in these smooth cases the predictor–corrector outper-
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forms other alternatives [32]. In Section 4.4, we analyze how the
use of the spectral-element discretization affects the accuracy of
the time-dependent solution by the adaptive-stepsize ABM-PECE
solver. We shall also discuss some future options for the time-inte-
gration process further on.
3. Boundary-layer evolution as a canonical problem for testing
(x,v) approaches

To conduct our comparative evaluation tests, we choose the
well-known problem of a semi-infinite region of stationary fluid
bounded by an infinite horizontal flat plate at y = 0, which is sud-
denly given a velocity U in its own plane and thereafter maintained
at that speed. This problem has an exact analytic solution (see [12],
Section 4.3, among others). The velocity field described in a frame
of reference fixed to a plate moving in the minus-x direction is

uðy; tÞ ¼ Uerf
yffiffiffiffiffiffiffiffi
4mt
p

 �

; ð30Þ

where erf is the error function and y is the vertical coordinate.
Rewriting (30) in terms of the normalized velocity u/U, the normal-
ized vertical coordinate y/Y, and the parameter s ¼

ffiffiffiffiffiffiffiffi
4mt
p

=Y , we
have

u
U
¼ erf

y=Y
s


 �
; ð31Þ

where Y is the height of the test mesh. Fig. 2 shows the velocity pro-
file at successive values of the parameter s for the exact solution gi-
ven by (31). For comparison purposes, the normalized boundary-
layer thickness d is given for each value of s. Here we follow the
classical definition of d as the height at which u/U = 0.99 (i.e. the
height at which the velocity deficit is 1%). The normalized vorticity
distribution for this incompressible flow is given by the Gaussian
function

x
U=Y

¼ 2
s
ffiffiffiffi
p
p e�

y=Y
sð Þ

2

: ð32Þ

This problem is closely related with the key process of (x,v)
methods, i.e. the vorticity generation at a solid surface due to the
induced slip and its further propagation to the body of the fluid.
And in that sense, may be regarded as a canonical problem on
Fig. 2. Velocity profile at successive values of the viscous time s for the exact
solution given by (31). For each value of s the normalized boundary-layer thickness
d is also given.
the subject. For a specified time, the analytic solution for the veloc-
ity and vorticity fields are given, respectively, by the Gaussian and
the error function of the spatial coordinate. The latter prevents the
occurrence of the trivial case in which the analytic solution coin-
cides exactly with any of the polynomial interpolant functions
associated to the spectral-element technique. Thus, besides analyz-
ing the time-dependent problem, we used the spatial analytic solu-
tion at specific times to test several aspects on the spatial
discretization of the KLE.
4. Numerical tests

In this section we shall describe several tests we performed to
analyze the particularities of the high-order implementation of
the KLE method by spectral-element techniques, focusing on dif-
ferent aspects of the method.
4.1. Accuracy of the spatial solution of the KLE

The first series of tests are aimed to exploring the accuracy of the
spatial solution provided by the KLE as a PDE system. As it was de-
scribed in Section 1.2, the KLE consist in a reformulation of (4) in its
weak form subject to the simultaneous constraints (5) and (6). In its
actual implementation, the variational formulation of the KLE
makes use of the penalty method to impose both constraints (5)
and (6). The penalty method, though less rigorous than other
alternatives regarding the imposition of constraints, is very well
suited to this coupled scheme of two simultaneous constraints of
the KLE approach, producing results that are in good agreement
with experiments (a detailed description of these issues may be
found in [3]). Expression (4) by itself is no more than the classical
Poisson equation for the velocity, which represents a special case
of the well known Helmholtz equation that has been thoroughly
studied (and even used as a benchmark) for spectral-element appli-
cations. Nevertheless, with two penalty forms applied simulta-
neously on the variational formulation, a more detailed analysis is
required in order to verify if the ability of exponential convergence
of the spectral-element discretization is in hindered in any way. To
this end, we designed an experiment in which we compared the
theoretical velocity distribution given by expression (31) with the
numerical solution for the velocity field provided by the KLE when
the corresponding vorticity distribution (32) is used as source term.
We solved the spatial problem at several stages of the development
of the boundary layer computing the infinity norm of the error over
the nodes of the mesh. We used a minimal regular mesh of two
spectral elements in each dimension in order to keep the
multidomain nature of the discretization. Fig. 3 shows the error
curves for a p-refinement study for 2 6 p 6 20 and successive val-
ues of s at the early stages of development of the boundary layer,
where the effects of the impulsive-start discontinuity are present.
The h-refinement curves for a Q2-FEM discretization for s = 0.01
and s = 0.15 are included for comparison purposes. As in spectral
elements the nodes are not equidistant, here we plotted the error
against the number of intervals in each dimension N⁄, which is
equal to the number of nodes minus one and represents the inverse
of the average internodal distance.

Previous experiences with Q2-FEM approximations on impul-
sively-started cylinders [3,19–21] showed that, after a small over-
shot at the very early stages immediately following the initial
shock, the algorithm quickly recovers and the solution continues
quite satisfactorily up to the end for long simulations involving,
for instance, the development of 70-diameter-long vortex-street
wakes. Here it is worthwhile to note that, when used inside the
time-marching process of the vorticity–velocity scheme, the
source term for the KLE solution at a given time is provided by



Fig. 3. Chart of the p-refinement error curves for 2 6 p 6 20 and successive values
of s at the early stages of development of the boundary layer, where the effects of
the impulsive-start discontinuity are present. The h-refinement curves for a Q2-FEM
discretization for s = 0.01 and s = 0.15 are included for comparison purposes.

Fig. 4. Chart of the p-refinement error curves for 2 6 p 6 20 and successive values
of s at several stages of development of the boundary layer. The h-refinement
curves for a Q2-FEM discretization for s = 0.2 and s = 0.9 are included for
comparison purposes.
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a computation made by the ODE integrator from an approxima-
tion in weak form of the velocity field at the previous time step.
This has the tendency to smooth out the shock introduced at the
initial stage. Hence, forcing the theoretical vorticity distribution
given by expression (32) at the initial stages as a source term
for the KLE posses a very strict trial on the KLE solution. This
sharp forcing is actually more challenging than KLE’s normal
operational requirements as the spatial counterpart in a vortici-
ty–velocity scheme. Taking into account the well-known difficul-
ties of spectral elements when approximating nonsmooth
functions, a particular point of interest here is the response of
the spectral-element discretization to the initial discontinuity.
As it was expected, at the early stage s = 0.01 the p-refinement
curve shows a rather modest improvement (of roughly one order
of magnitude) with respect to the Q2-FEM h-refinement curve.
Nevertheless, this situation quickly changes, and for s = 0.15 the
improvement is already of six orders of magnitude.

Fig. 4 shows the error curves for a p-refinement study for
2 6 p 6 20 and successive values of s at several stages of develop-
ment of the boundary layer. The h-refinement curves for a Q2-
FEM discretization for s = 0.2 and s = 0.9 are included for compar-
ison purposes. From s = 0.2 on, all the curves show exponential
convergence. As the function gets more smooth with increasing
values of s = 0.2, the rate of convergence increases and the curves
become more and more smooth. All the curves progress with a
decreasing of the error up to the point where they hit the lower
limit imposed by the accumulation of roundoff error involved in
the matrix-inversion procedure. In this case, we used a Cholesky
decomposition followed by backwards substitution, which locates
the lower limit in the range of 10�14 � 10�13. From that point on,
all the curves follow the same path.
4.2. Effects of domain truncation

Domain truncation represents the simplest strategy for solving
problems on unbounded regions because it requires no modifica-
tions of the standard techniques for bounded domains. In particu-
lar, if the solution decays exponentially with the geometrical
distance as one moves outwards form the origin, then the error
in approximating the infinite domain by a finite (but sufficiently
large) one will decrease exponentially with the domain size [15].
The benefits of using what is essentially the same code to solve
both bounded and unbounded domains are huge, and domain
truncation is actually a widespread adopted strategy. Following
the definition given in [15], a suitable estimate for the domain-
truncation error for the problem presented in Section 3 is
EDTðYÞ �max
yPY
ðj1� uðyÞ=UjÞ: ð33Þ

This ‘‘estimate’’ is based on a definition of the domain-trunca-
tion error as merely the maximum value of the exact solution out-
side the limits of the truncated domain. The error in the
approximate solution to a differential equation (uN(y)/U) is another
matter, and may be much larger than EDT(Y) [15]. Thus, EDT(Y)
should rather be understood as an approximation of the theoretical
lower bound for the domain-truncation error. Even though, the
Assumption of Equal Errors asserts that max jðuðyÞ � uNðyÞÞ
=Uj � O EDTðYÞð Þ for most real-world problems, one can contrive
examples for which this is not true [15]. For instance, in some
applications of global-spectral methods (see [33], among others),
boundary-condition discontinuities, even those fairly small in
magnitude compared to the speed of the unperturbed free stream,
are enough to generate oscillations associated with the Gibbs phe-
nomenon. Due to the global nature of the computations, the effect
of those oscillations is felt throughout the computational domain,
and viscous-sponge-like ‘‘filter functions’’ are needed in order to
damp the oscillations. Although the multidomain nature of the dis-
cretization technique employed here is not likely to produce such a
behavior, it is important for us to assess the actual effects of do-
main truncation on our solution, specially as p increases. Hence,
we designed a numerical experiment to test the response of the
spatial solution of the KLE when non-exact free-stream boundary
conditions are imposed on the external pseudo-infinite border of



Fig. 5. Comparative charts of the error curves for solutions using exact and non-
exact boundary conditions for 0.1 6 s 6 0.5 and p = 2,4,8,17,21.
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the mesh, in place of the exact boundary conditions used in Section
4.1 for both vorticity and velocity. Fig. 5 shows comparisons of the
error curves for solutions on a 2-element mesh using exact and
non-exact boundary conditions for 0.1 6 s 6 0.5 and
p = 2,4,8,17,21. As it was expected, the value of s at which the ef-
fect of domain truncation starts to be noticed decreases with p as
the approximation becomes more and more accurate. Neverthe-
less, in all cases both curves show no difference whatsoever until
they hit the curve of EDT(Y) in function of s. From that point on,
the expected influence of the inexactitude of the boundary condi-
tions is evident as all the curves closely follow EDT(Y), which pro-
vides the theoretical lower bound for the error. Taking into
account that the boundary-layer thickness covers 55% of the entire
domain for s = 0.3, 73% for s = 0.4, and 91% for s = 0.5, this results
show that the KLE solution is quite tolerant to the use of non-exact
boundary conditions. For comparison purposes, we conducted an
h-refinement study using our Q2-FEM discretization. The latter re-
sults are shown in Fig. 6. In Sections 4.1 and 4.2 we used the infin-
ity norm in order to be able to compare with the Assumption of
Equal Errors mentioned above, in the following sections we revert
to the classical 2-norm for the evaluation of the error.

4.3. Numerical properties of the differential operators

In this section we shall present results from the experimenta-
tion carried on in order to assess the accuracy of the differential
  

Fig. 6. Comparative charts of the error curves for solutions using exact and non-
exact boundary conditions for an h-refinement of a Q2-FEM discretization.
operators bC url; bGrad and bDiv used to compute the right-hand side
of (28) as explained in Section 2.1. We systematically applied the
operators computed for different meshes over known velocity
fields and compared the results against the exact derived fields,
i.e. the curl of the velocity, convective term and diffusive term of
the Navier–Stokes equations. In order to avoid the trivial case in
which the derived fields belong to the functional space generated
by the discretization, we used test velocity fields based on the error
function, which is equivalent to the solution of the flat plate prob-
lem described in Section 3, and on sinusoidal functions.

We assembled the differential operator matrices bC url; bGrad andbDiv for uniform meshes of square elements. p-refinement studies
were carried on meshes of 2 � 2 and 4 � 4 elements of order
2 6 p 6 21 which were compared with h-refinement for classical
Q2-FEM discretization. Periodic boundary conditions were applied
between lateral edges of the mesh in order to simulate an infinite
domain.

For the studied meshes we assembled the differential operator
matrices bC url; bGrad and bDiv and starting from a known velocity
field, with nodal values arranged in the array bV, we compute the
discrete versions of

	 the curl of the velocity as bC url
bV,

	 the curl of the convective term as bC url
bV adv

bGrad
bV , and

	 the curl of the diffusive term as bC url
bDiv

bGrad
bV.

This way we were able to study the convergence properties of
our derivation technique in variables involving 1st, 2nd and 3rd or-
der derivatives, using the spectral element discretization.

Velocity field based on the error function:
In the first test we evaluated our derivation technique using a
velocity field similar to that obtained as a solution of the flat
plate boundary layer problem given by Eq. (31) and v = 0. This
velocity field depends on the parameter s and for smaller values
it becomes less smooth as seen in Fig. 2. The z component of its
curl, which is the only nonzero, is given by expression (32). In
the right-hand side of Eq. (28), the curl of the convective term
of this given velocity field is
$� ðv � $vÞ½ �z ¼ 0; ð34Þ
and the curl of the diffusive term results
$� $ � $vð Þ½ �z ¼
4Uffiffiffiffi
p
p

s3Y3 1� 2y2

s2Y2


 �
e�

y=Y
sð Þ

2

: ð35Þ
In this case, the exact curl of the convective term is identically zero.
Thus, the error measured gives an idea of how our derivation tech-
nique, when applied together with the spectral element, gives rise
to spurious noise which comes from the round-off error of the oper-
ations involved.

Velocity field based on sinusoidal functions:
The second test was aimed to test the behavior of the derivation
technique in the case of fields with variation in both directions
(x,y). to this end we choose a velocity field based on sinusoidal
functions given by
u ¼ sinð2xypyÞ;
v ¼ sinð2xxpxÞ:

ð36Þ
This field depends on the two parameters xx and xy that give the
frequency of the oscillation in each direction. The z component of
its curl is given by
ð$� vÞz ¼ 2xxp cos 2xxpxð Þ � 2xyp cosð2xypyÞ: ð37Þ
In the right-hand side of Eq. (28), the curl of the convective term of
the velocity field of expression (36) is



(a) (b)

Fig. 7. Comparative charts of the error curves for the curl of the velocity field for (a) the error function based field from (31) and (b) the sinusoidal function from (36).
p-refinement curves for meshes of 2 � 2 and 4 � 4 elements are compared against h-refinement curve for classical Q2-FEM.

(a) (b)

Fig. 8. Comparative charts of the error curves for the curl of the convective term of Navier–Stokes equations corresponding to velocity fields for (a) the error function based
field from (31) and (b) the sinusoidal function from (36). p-refinement curves for meshes of 2 � 2 and 4 � 4 elements are compared against h-refinement curve for classical
Q2-FEM.
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½$� ðv � $vÞ�z ¼ ½ð2xypÞ2 � ð2xxpÞ2� sinð2xxpxÞ
� sinð2xypyÞ; ð38Þ
and the curl of its diffusive term
$� $ � $vð Þ½ �z ¼ �ð2xxpÞ3 cosð2xxpxÞ þ ð2xypÞ3

� cosð2xypyÞ: ð39Þ
Fig. 7 shows charts comparing error curves for the curl of the
two test fields and different meshes: the error function based field
with s = 0.3 and the sinusoidal field with xx ¼ 2yxy ¼ 2p

3 . The val-
ues of the parameters in the sinusoidal field were chosen to avoid
the trivial case of null curl of the convective term when xx = xy.
Figs. 8 and 9 show charts comparing error curves for the curl of
the convective and diffusive terms for the two test fields and differ-
ent meshes.

The error curves for h-refinement are straight line with slope
decreasing with the derivation order. On the other hand, curves
for p-refinement show the typical spectral convergence though as
the derivation order increases it can be notice a slightly different
behavior between even and odd order elements. This results in
irregular decreasing curves with increasing slopes when moving
to higher order elements. In these cases as shown in Section 4.1
there is a lower limit were the curves ‘‘hit’’. This limit changes for
the different derivation order being located around 10�14 for the
curl of the velocity, 10�12 for the curl of the convective term and
10�11 for the curl of the diffusive term. In the particular case shown
in Fig. 8a where the exact solution is zero, the error grows for
increasing order but remains under the limit observed in the case.
4.4. Accuracy of the time-dependent solution

The complete KLE method for the solution of the time-depen-
dent problem combines the successive application of the KLE and
the linear operators on each time step under in the integration pro-
cess controlled by the adaptive ODE algorithm. To test the com-
plete algorithmic sequence of the method as described in Section
1 we solved the problem of the infinite flat plate suddenly started
from rest as mentioned in Section 3 for different meshes obtained
by both h- and p-refinement. In order to let the boundary layer



(a) (b)

Fig. 9. Comparative charts of the error curves for the curl of the diffusive term of Navier–Stokes equations corresponding to velocity fields for (a) the error function based field
from (31) and (b) the sinusoidal function from (36). p-refinement curves for meshes of 2 � 2 and 4 � 4 elements are compared against h-refinement curve for classical
Q2-FEM.

(a) (b)

Fig. 10. Results of the time-dependent solution obtained for meshes composed by low and high order elements in: (a) a mesh with 4 � 4 elements of order p = 2 and
(b) a mesh with 2 � 2 elements of order p = 8.

F.L. Ponta, A.D. Otero / Computers & Fluids 76 (2013) 11–22 21
fully develop without the effect of domain truncation we impose
exact velocity and vorticity boundary conditions on the top face
of the domain and we run our method from s = 0 to s = 1.

In Fig. 10 the solution at different values of the time parameter
s ranging from 0.01, where the exact solution is almost a step, to
0.9, where the solution is sensible more smooth, is presented.
The solution shown in Fig. 10a corresponds to a mesh of 16
(4 � 4) elements of order p = 2, i.e. the classical Q2-FEM whereas
in Fig. 10b the solution shown correspond to a mesh of 4 (2 � 2)
elements of order p = 9.

In order to analyze the spatial convergence of the complete
method when refining the meshes we show in Fig. 11 the error
curves for h- and p-refinement at a particular intermediate value
of the time parameter, s = 0.38. The behavior is clearly different
in each curve: the h-refinement curve presents fixed slope corre-
sponding to the second order elements; on the other hand, the p-
refinement curve appears to resemble the spectral convergence
up to order 7 while for higher orders it seems to converge with
fixed slope with higher absolute value than that of the Q2-FEM h-
refinement
5. Concluding remarks and outlook for further work

We have analyzed systematically the particularities of a high-
order implementation of the KLE by spectral-element techniques.
First, we have focused our study on the accuracy of each of the
two main sub-algorithms that compose this novel method, namely,
the spatial solution of the KLE, and the linear operators used to
evaluate the right-hand side of the ODE integration. Using the solu-
tion for the boundary-layer evolution on an infinite horizontal flat
plate impulsively started as a canonical problem for testing, we
found that the spatial solution of the KLE exhibits spectral conver-
gence up to the lower limit of accuracy given by the round-off er-



Fig. 11. Chart of the error curves for p-refinement and h-refinement obtained in the
time-dependent solution process at a specific value of the time parameter s = 0.38.
p-Refinement curves were obtained for a 2 � 2 mesh with elements of order
3 6 p 6 16 and h-refinement, for a Q2-FEM discretization with several meshes from
4 � 4 to 32 � 32 elements.

22 F.L. Ponta, A.D. Otero / Computers & Fluids 76 (2013) 11–22
ror. We also tested the effects of domain truncation verifying that
the maximum error induced on the whole domain is bounded by
the minimum error given by the theoretical limit. We tested the
accuracy of the second sub-algorithm (i.e. the linear operators).
Comparing with two different families of test functions for the
velocity distribution, we verified that the successive application
of the linear operators does not ruin spectral convergence. We also
verified that the error accumulation of successive application of
the linear operators during the chain of derivations required for
each term of the ODE’s right-hand side is kept to a minimum. Espe-
cially, for the case of the convective term in the error function,
which should be theoretically zero, the error induced by the appli-
cations of the linear operators is kept at the level of the round-off
error (see Fig. 8a).

In Section 4.4 we show the results for the accuracy test for the
complete solution of the time-dependent problem, which com-
bines the successive application of the KLE and the linear operators
on each time step under in the integration process controlled by
the adaptive ODE algorithm. We could see that the numerical solu-
tion for the velocity profile is in good agreement with the theoret-
ical counterpart, closely following it during the evolutive process of
the boundary layer. Fig. 11 shows that, even after the successive
application of the main sub-algorithms and the computations of
the ODE algorithm itself, spectral convergence is maintained up
to an error of 4 � 10�4. Afterwards, the error curve seams to switch
to an algebraic-convergence behavior. Taking into account the re-
sults of the previous sections on the individual behavior of each
of the main sub-algorithms, this indicates that future efforts to fur-
ther improve the accuracy of the whole method should be centered
in the interaction between the main sub-algorithms into the ODE
process. Namely, we are going to focus on the accuracy of the vor-
ticity-creation process associated with the algorithmic sequence of
two KLE solutions performed on each time-step (see Section 1.2;
for a detailed description see [3]), and on the accuracy aspects of
the ODE integration algorithm itself. Another point that would be
interesting to analyze in future stages of the development of our
method will be the usage of zero-stress open conditions on the
outflow boundary.
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