
RESEARCH ARTICLE

Model based on COVID-19 evidence to predict

and improve pandemic control

Rafael I. GonzálezID
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Abstract

Based on the extensive data accumulated during the COVID-19 pandemic, we put forward

simple to implement indicators, that should alert authorities and provide early warnings of an

impending sanitary crisis. In fact, Testing, Tracing, and Isolation (TTI) in conjunction with

disciplined social distancing and vaccination were expected to achieve negligible COVID-19

contagion levels; however, they proved to be insufficient, and their implementation has led

to controversial social, economic and ethical challenges. This paper focuses on the develop-

ment of simple indicators, based on the experience gained by COVID-19 data, which pro-

vide a sort of yellow light as to when an epidemic might expand, despite some short term

decrements. We show that if case growth is not stopped during the 7 to 14 days after onset,

the growth risk increases considerably, and warrants immediate attention. Our model exam-

ines not only the COVID contagion propagation speed, but also how it accelerates as a func-

tion of time. We identify trends that emerge under the various policies that were applied, as

well as their differences among countries. The data for all countries was obtained from our-

worldindata.org. Our main conclusion is that if the reduction spread is lost during one, or at

most two weeks, urgent measures should be implemented to avoid scenarios in which the

epidemic gains strong impetus.

Introduction

The COVID-19 pandemic has dramatically affected all of humanity, but it also provided an

enormous amount of data which may provide valuable lessons on how to effectively face future

events of similar characteristics. Already a wealth of statistical data analysis has been published,

and models to predict epidemic evolution have been developed. A few recent examples are the

work of Biggerstaff et al. [1] who obtained from early insights values for the range of incuba-

tion period and doubling time, and observed that due to sanitary interventions the effective

reproductive number varied significantly. Brizzi et al. [2] pointed out that there is a tendency
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to overestimate the parameter R0 and the basic effective reproduction Rt during the onset of an

epidemic. Gopalakrishnan et al. pointed out that data otherwise reliable obtained for a specific

geographical region, no matter how large, does not necessarily apply in other locations [3].

Moreover, they stress that state-level data are defective, when applied to policy decisions for

smaller areas, since they lead to errors which can be as large as 200 to 300%.

McCabe et al. [4] mathematical transmission models, while widely used, are pieces of evi-

dence that have to be applied carefully, since they are uncertain and cannot be adopted uncriti-

cally to develop public policy interventions. These conclusions are moderated by the

development of increasingly complex data treatments, but they always should be critically

examined. Later on [5] they focused their interest on Great Britain, but expanded its scope to

develop a more complete understanding of the complex relationships between models, deci-

sion-making, the media and the public. Their interest was to document the history of COVID-

19, and draw lessons to improve response when future pandemic outbursts occur. They also

stressed scientists responsibility to ensure that their models are of the highest scientific quality,

but at the same time acknowledge and point out their limitations.

Much along the same lines Poletto, Scarpino and Volz [6] observed that in spite of tremen-

dous advances, predictions of epidemic evolution are prone to errors, and justify their asser-

tion indicating that to make their use reliable the variables to be estimated have to be clearly

defined, and the people who use the predictions must have a full understanding of their limita-

tions. Similarly, Brooks-Pollock et al. [7] discuss how modelling can help to develop adequate

policy making. In addition, they also examine pitfalls of publishing practices and academic

credit and stress the importance of transparency and reproducibility. Brauner et al. [8] exam-

ined government interventions during the first COVID-19 wave. They did so in 41 different

countries and observed that the effect varied widely from one country to another, but provided

insights into which interventions could help to maintain social and economic activities during

the pandemic. Sonabend et al. [9] studied the requirements and duration for the lifting of non-

pharmaceutical interventions (NPI), and developed a mathematical model to examine the pro-

cess. On this basis they predicted the onset of a new COVID wave, which actually materialized.

Parag et al. [10] focused on early epidemic warning signals, or when a new wave looms, to

put forward an early warning approach to reduce as much as feasible its negative impacts.

Their strategy is to employ, as far as possible, the information extracted from low-incidence

periods data, which is by nature scarce, in order to better handle a forthcoming event. In fact

our approach, which uses a completely different methodology, is quite analogous in terms of

objectives. We make use of the vast amount of data that is now available in order to extract

information that could be useful in similar future event. Detailed analysis of the policies used

in different countries are now available [11]. However, challenges to estimate the threat posed

by the pandemic in order to plan effective interventions [12, 13], that are specific and have pre-

cise timing [14, 15], remain an open challenge.

There are many NPIs, but reducing human interactions [15], as well as reducing super-

spreading events [16] and to consider the relevance of airborne transmission of the virus [17,

18], have proven to be crucial. In addition, also powerful pharmaceutical resources became

available, in particular the development of the highly effective drug Paxlovid played a major

role. The Test, Trace, and Isolate (TTI) strategy has been shown to contribute to decrease epi-

demic growth [11, 19], when the number of new cases is low and they are feasible to trace. Oth-

erwise, confinement is a control alternative when the number of new cases is threatening to

overload health services, but has an enormous social and economic cost [20]. The NPI aims at

reducing the number of infections and/or reaching the “ideal” of zero infected cases. Available

data shows that a type of NPI that succeeds in one country might not be effective in another.

Quite often, the data are unreliable [21, 22] due to different methodologies used to collect and
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process the data, among other reasons (asymptomatic cases, lack of testing, and false-negative

RT-PCR tests) [23–28]. But, in spite of the latter, actions are needed. With this purpose, we put

forward a model focused on identifying the early risk signals that the available data reveal. To

do so, we consider, in addition to the number of cases and their time evolution, how the

increase or decrease of cases varies with time. In other words, in close analogy to the dynamics

of motion, we incorporate in our model the speed of change of the number of infections. Ironi-

cally, we use tools developed by Isaac Newton during the great plague epidemic that occurred

in England during 1665–1666.

At this point, it is essential to clarify our approach. Having zero contagion should not be

taken literally; COVID-19 will likely continue to circulate for a long time [29]. However, while

there is no fully effective treatment, or while massive and equitable access to immunization

with an effective vaccine, and novel treatments, are not universally available [30, 31] it is rea-

sonable to aim at contagion reduction. Therefore, there is a lesson that can be applied to future

pandemics: do your best to eliminate contagion while science works on solutions that prevent

the epidemic spread, illness, and death.

To control the pandemic in 2020 the WHO recommended to achieve “. . .a decline of infec-

tions of at least 50% over a 3-week period since the latest peak, and a continuous decline in the

observed incidence of confirmed and probable cases. . .” [32]. This is sound advice from a

global health perspective, but difficult to implement. Our paper intends to contribute to the

development of a set of indicators that provide quantitative criteria in line with the WHO rec-

ommendation, and therefore, should be helpful parameters for decision and policy makers.

Based on the extensive data accumulated during the COVID-19 pandemic we put forward

simple to implement indicators, that should alert authorities and provide early warnings of an

impending sanitary crisis.

Methods of data analysis

We start defining the seven-days reduction, illustrated in Fig 1, as

RdðtÞ ¼
NðtÞ � Nmax

NðtÞ
ð1Þ

where t labels a specific day, N(t) is the 7-days rolling average number of cases from date t − 6

to t (both included), and Nmax corresponds to the maximum of N(t) during the previous seven

days, i.e., between days t − 7 and t − 1. This way, when the average number of infections

decreases Rd< 0.

The growth G instead is the weekly increase relative to the minimum average number of

infections Nmin, that is

GðtÞ ¼
NðtÞ � Nmin

Nmin
ð2Þ

where Nmin corresponds to the minimum N(t) during the previous seven days (from date t − 7

to t − 1). The variation V is usually defined as follows:

VðtÞ ¼
NðtÞ � Nðt � 7Þ

Nðt � 7Þ
ð3Þ

The advantage of defining Rd(t) and G(t) before V(t) is that the first two can be symmetric.

As a simple example, if we have an average linear increment of cases with one case at day 0, 8

at day 7, and 1 at day 14, we obtain G(7) = 7, Gð14Þ ¼ � 1

2
, Rdð7Þ ¼

1

8
, Rd(14) = −7, V(7) = 7,

Vð14Þ ¼ � 7

8
. We observe that G(7) = −Rd(14), but the variation is not symmetric. We propose
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to use G(t) and Rd(t), instead of the usual V(t) because, in the best-case scenario, we can

observe symmetric growth and reduction. In practice, we generally observed a larger growth of

cases rather than their reduction. With this in mind, we stress the importance of maintaining

the case reduction for as long as possible.

Finally, all these time variations can be associated with a corresponding “velocity.” We

define the growth velocity as

vGðtÞ ¼
dGðtÞ
dt

ð4Þ

where the derivative is computed numerically using finite differences.

The data for all countries were obtained from ourworldindata.org [33] on January 17, 2022,

including deaths and population data. As in the early stages of the epidemic the data does vary

a lot, all the calculations of variations were made once a country reported more than 100 accu-

mulated cases. Similarly, considering that the data can vary significantly from day to day, we

calculate the seven days moving centered case average [34]. The rest of the variation averages

are obtained as the rolling seven day average.

The reduction, growth, and variation were computed from the average daily cases. We

define the daily changes of the variation, named as velocity, by means of finite differences. For

Fig 1. Diagram to illustrate how the proposed performance variables are defined and calculated. The variables are the reduction Rd, the growth G,

and the variation rate V.

https://doi.org/10.1371/journal.pone.0286747.g001
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example, the reduction velocity is computed as follows:

vRðtÞ ¼
dRdðtÞ
dt

�
Rdðt � 2Þ � 8Rdðt � 1Þ þ 8Rdðt þ 1Þ � Rdðt þ 2Þ

12

ð5Þ

where Rd is the reduction and t is the date. In this case, we use a 4-day central finite difference.

During the first weeks of the epidemic, the velocity data can be quite noisy, so we decided

to average the velocity reduction, growth, or variation (as appropriate) during the first three

weeks once 100 cases have been reached. During the rest of the days, it is calculated directly on

the variations without averaging. We present the averaged speed every seven days in the

curves, so that they look smoother.

To calculate the total variation of Fig 5 we added all the daily reductions without averaging,

and they were divided by the total number of days since the first 100 accumulated cases were

exceeded. The reduction was multiplied by 100 and expressed as a positive number for clarity.

Finally, it is worth mentioning that for six countries (China, France, Uganda, Mexico,

Spain, and United Kingdom) we found some anomalous data that caused the calculation of

the variations to be altered (details are given in the S1 File). This is because these countries

made data corrections during the emergency. As the spirit of this work is to keep it simple, we

decided to replace those values with the average number of cases during the previous 7 days.

For France this had to be done several times, and some were less than 7 days apart. Therefore,

this procedure had to be implemented repeatedly in time. Some special days for France were

October 25 and 26, as well as between November 2 and 4, and what we did was to replace each

day with the average of cases around those days. All in all, we tried our best to correct the data

only as strictly necessary, and as little as possible. The total cases we used are the ones reported

on January 17, 2022. In the S1 File we include all the modified data, marked in yellow, to clarify

the modifications we have made. The virus variants provide a dynamic scenario. We used the

https://covariants.org/ (January 26, 2022) page as a reference of the variants evolution dis-

cussed for each country over time.

The analysis presented here focuses mainly on what happened before Omicron. For this

reason, the data used in Figs 2, 3 and 5 include information up to December 1, 2021. This

point is critical to keep in mind for the comparison between countries that is presented in 5. In

Figs 4 and 6, as in the figures of the S1 File, data are included up to the first days of January

2022.

Results and discussion

Several different indicators have to be incorporated in the analysis to enhance the probability

of effectively controlling COVID-19, but essentially what is required is to reduce the number

of cases as fast as possible. When a new contagion focus is found, TTI or equivalent measures

may be applied, but if they do not yield prompt results (i.e., a significant reduction within 1–2

weeks), it means that the strategy will fail to control the contagion. Therefore, it is convenient

to analyze the time variation of the variables above, i.e., the time variation of the reduction.

To demonstrate the usefulness of these variables we examine four countries with different

COVID-19 evolution as prototypes: Vietnam, Singapore, Australia, and the UK. To simplify

the analysis and visualization, we plot in Fig 2 both growth and reduction as a single plot; that

is, we plot Rd(t) if Rd(t)<0, and G(t) otherwise. Hereinafter, we will denote RR/G to the combi-

nation of the reduction/growth as just defined.
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At the time of this writing the Omicron variant is dominant around the world, and with the

Omicron variants constantly appearing, we believe that it will take a few more months to draw

appropriate conclusions about Omicron. Given that the case growth has been explosive, the

recent data may distort our current analysis. Therefore, we analyze the data until December 1,

2021, when Omicron outbreaks began in earnest. Nevertheless, in the S1 File, we include the

data for more than 50 countries until January 16.

We start with Vietnam, a successful crisis management example before May 2021, with a

solid NPI that kept the total number of cases at 30 per million and the total number of deaths

at 0.4 per million (35 deaths). A close examination of Fig 2a reveals that since March 2020,

they have been able to maintain a strong reduction by reacting promptly to the infections rise.

In fact, they managed to keep the reduction/growth RR/G, in the negative territory except for

short growth periods, followed by a rapid reaction, with peaks below 1 case per million a day.

From May 1, 2021 up to December 1, 2021 they faced their worst outbreak by far, reaching

more than 150 cases per million inhabitants per day, and reporting an average over 350 deaths

Fig 2. Illustration of the COVID19 evolution in four countries with different progressions. a) Vietnam b) Singapore c) Australia and d) United

Kingdom.

https://doi.org/10.1371/journal.pone.0286747.g002

PLOS ONE COVID-19 model

PLOS ONE | https://doi.org/10.1371/journal.pone.0286747 June 15, 2023 6 / 16

https://doi.org/10.1371/journal.pone.0286747.g002
https://doi.org/10.1371/journal.pone.0286747


per day, around 10 times larger than their May 2021 cumulative figures. Also, RR/G became

positive at the beginning of May. It seems that everything that had worked previously with the

Delta variant, did not work afterwards.

The evolution of Singapore is shown in Fig 2b, with an excellent performance until the end

of June 2021. Furthermore, at the end of August 2021, they reached more than 75% population

with a complete vaccination schedule. Although the Delta variant had become predominant in

the country in May 2021, they managed to maintain control of the pandemic. At the beginning

of July of that year, they had 36 cumulative confirmed deaths due to COVID-19. In July, strong

case growth was observed for 15 consecutive days. This should explain the increase to 55

deaths accumulated at the beginning of September. Everything worsens from August 26, when

46 consecutive days of growth began. As a consequence, on December 1, 2021, they reported

726 accumulated deaths throughout the pandemic and increasing. In summary, more than

95% of Singaporean deaths have been reported during the second half of 2021. In S8 Fig in S1

Fig 3. New Zealand. Time evolution of the variables. The date t = 0 is chosen throughout as the day the particular country exceeds 100 infections. a) Weekly

averages of the number of cases, variation, reduction and growth as a function of time. Notice that the growth is many times larger than the reduction. b)

Number of cases, their growth velocity and reduction velocity vs. time. c) Number of cases, their reduction/growth vs. time. New Zealand was able to react

quickly to each wave before the arrival of the Delta variant. Starting in September 2021, New Zealand had a spike in cases that it was unable to control with

the previous effectiveness.

https://doi.org/10.1371/journal.pone.0286747.g003
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File, we show the evolution of Singapore until mid-January 2022. The focus of our work is not

on the effectiveness of vaccines, which have been tested in studies designed for that. What is

clear from the Singaporean case is that vaccines alone are not sufficient to prevent large out-

breaks, a factor that if ignored can have severe consequences. Therefore, NPI measures should

be implemented in parallel with vaccination.

We now turn our attention to Australia, illustrated in Fig 2c, which was hit by COVID-19

in early March 2020. The reaction was swift, but the weekly average number of cases reached

*15 per million by the end of March and was contained by the end of April. However, by

mid-June of 2020 RR/G became positive for 48 days, and the reaction was not speedy enough to

prevent a second wave, which peaked at 21 cases per million in mid-August and extended to

early October, but was under control until June 2021. By the end of June 2021 Delta became

predominant in Australia, with about 10% of the population fully vaccinated. They suffered

the worst outbreak in a year, and during many weeks the reduction was not driven into nega-

tive terrain. Actually, we count 86 days in a row without reduction since June 20, 2021. Until

June 2021 Australia reported a cumulative of 910 confirmed COVID-19 deaths, that is, before

Fig 4. Illustration of the COVID-19 exponential growth moments. Velocity growth was multiplied by 3 to facilitate visualization on the same reduction/

growth scale. a) Singapore b) South Africa c) Australia and d) Romania.

https://doi.org/10.1371/journal.pone.0286747.g004
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the Delta variant. As of December 1, they had already exceeded 2,000 accumulated deaths. On

this same date Australia had already reached more than 70% full vaccination. In S1, S2 Figs in

S1 File we show Australia’s evolution until January 16, 2022, including the effects of the Omi-

cron variant. In the last days of January 2022 there were over 3,150 confirmed deaths reported

in Australia, and rising sharply. Even with partial data, the Omicron wave variant appears as

the worst Australia has faced to date.

What happened in the United Kingdom is also worth a critical examination. The reduc-

tion/growth was in positive terrain RR/G> 0 in early March 2021, and the number of cases per

million N(t) grew to *100 per million by April 2021, without decreasing until the end of June.

Unfortunately, in August RR/G grew again, indicating that a second wave was approaching,

which became quite serious by November.

Fig 5. Data of 50 countries in scatter plots. a) Weekly average percentage of case reduction vs. average daily COVID-19 cases per million. Countries

that have done well are consistently found upper left. b) Weekly average of the number of days COVID is reduced vs. average daily COVID-19 deaths

per million; again we observe a similar country distribution as in a). c) Number of days where the reduction was large than 10% as vs. average daily

COVID-19 deaths per million. There is a clear difference between the countries that have successfully controlled infections (upper left) and the ones that

have not done so well (lower right). For each country, the daily average was calculated after they exceeded 100 accumulated cases.

https://doi.org/10.1371/journal.pone.0286747.g005
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Having reviewed what happened in Vietnam (a success story before the Delta variant), Sin-

gapore (a success until they lifted a lot of NPI measures), Australia (initial success followed by

a second wave and long months of control up to the Delta variant), and the United Kingdom

(where control of the situation was lost), we can now infer some general patterns about epi-

demic management.

The data examined above suggests that, if one pays close attention to the reduction/growth,

two general conclusions can be drawn. The first inference is that keeping the reduction Rd con-

stant is not sufficient; instead, one must aim toward the greatest reduction possible and pay

attention when the variation of the reduction begins to increase. Theoretically, working on the

largest reduction possible would quickly lead us to 0 cases, but in practice, we observed that in

each outbreak G tends to be higher than any previous Rd rate, quickly returning to values of

cases from previous weeks. Also, timely action is required as soon as the reduction Rd> 0.

Below we discuss how to generalize these prescriptions by examining additional available data.

New Zealand has been singled out as a success story in handling COVID-19, perhaps even

with the Delta variant as predominant, which proved to be very problematic for the countries

Fig 6. Comparison of the effective reproduction number (R) with the reduction/growth for four countries. a) Israel, b) Singapore, c) South Africa,

and d) Japan. The dashed line the value R = 1, which indicates that contagion is expanding. When Reduction/growth is zero (RR/G = 0) it coincides with

R = 1; therefore, adding 1 to RR/G both curves display similar behavior around R = 1.

https://doi.org/10.1371/journal.pone.0286747.g006
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we analyzed above. We now present a detailed study of what happened there, as illustrated in

Fig 3, in the light of the methodology put forward above. There was a significant outbreak in

March 2020, which prompted a vigorous reaction that reduced spectacularly, within a month,

the number of cases, which then remained low for nearly two months. Thereafter, every time

there was an outbreak, it was contained within a few days, as occurred with the August and

October peaks. Each time a new outbreak, no matter how small, there was a swift response,

mainly implementing TTI, with a strong effort to trace contacts, locate the infected and isolate

them. A similar strategy was also followed in Iceland (See S4 Fig in S1 File). In Fig 3a, we

observe that rapid action is advisable as soon as the reduction Rd> 0, and always keeping Rd<

0 for as long as possible. The dynamics are more evident when Fig 3b is inspected since the

mid-August action and reaction are more apparent when the velocity is plotted vs. time. These

conclusions are reinforced by Fig 3c, where we show that it is enough to follow the reduction

and growth to analyze trends in a simple way as mentioned before (we plot Rd if Rd< 0, other-

wise we plot G, .i.e., RR/G).

Since the arrival of the Delta variant, the behavior of the New Zealand curve has changed.

For the first time, RR/G> 0 lasted for more than a month. This resulted in the highest case rise

and a longer wave. In S7 Fig in S1 File, shows the evolution of New Zealand until January 16,

2022.

The case increase in New Zealand has had consequences. As of August 31, 2021, the country

reported 26 COVID-19 confirmed deaths after about 17 months since the first case reported in

the country. As of January 16, 2022, 3 and a half months later, it increased to 52 accumulated

deaths.

The derivatives of the exponential function are themselves exponential functions, and we

believe that in a scenario where cases, their variation and growth are all showing an upward

trend, they are a clear indication that maximum attention is required. In Fig 4 we show four

countries in which exponential growth appeared. The worst situation is sustained exponential

growth for many days, and if this occurs, a country must work to quickly stop the spread. In

Singapore, this clearly occurred during the July 2021 rise, where exponential growth was

observed for about 2 weeks. With the appearance of the Omicron variant, the same thing hap-

pened in South Africa for about two weeks, during the second half of November. Similar

behavior was observed in Australia and Romania due to this same reason.

In summary, we computed four variables and focused on their time evolution: case growth,

reduction, variation and the velocity of each one of them. In particular, New Zealand’s growth

velocity is, in general, significantly larger than the other two variables and allows for a rapid

pinpointing of the instant case reduction occurs. Therefore, the reduction is central to our

analysis and furthermore allows warning authorities and the population with a simple mes-

sage: if reduction stops, trouble lies ahead.
We now turn to a more global outlook. The data plotted in Fig 5 for many countries is

intended to show that our analysis is consistent with the worldwide evolution of COVID-19.

We plot the average weekly reduction percentage (Rd as a percentage) vs. the logarithm of the

average number of cases, in Fig 5a, and the logarithm of the average number of deaths in Fig

5b. The average is a daily average after the country reported more than 100 cumulative cases.

The countries that have fared best are located on the top left while the worst performers are

mostly found bottom right. Again it is quite apparent that a quick response and a prolonged

time with a negative reduction (Rd< 0) yield better results. Additionally, we present the time

evolution of cases and reduction/growth for 54 countries in the S1 File.

Reduction alone did not predict performance well enough in some countries, like Japan;

additional indicators are required. We display some countries such as South Africa and India,

which in the second quarter of 2021 have shown a sharp rise in cases and deaths. We also
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graph Israel’s case that, with the arrival of the Delta variant and despite a high percentage of

vaccination, shows a strong case growth that should be a reminder that NPI measures and vac-

cination are needed together. It is quite likely that the intensive vaccination helped to reduce

the number of deaths, but caution indicates that it is better to always act early.

It is important to point out that Fig 5 corresponds to a snapshot taken at a precise moment

and varies in time; however, the average reduction evolves slowly enough to portray more than

40 countries in just one figure. These plots do not constitute a final verdict, but they allow to

spot the cases that strongly deviate from the norm. They could be related to poor tracing [35,

36], different ways to keep statistics and/or sub-reporting.

Now we compare the evolution of the reduction/growth with the estimation of the effective

reproduction number (R) calculated by Arroyo-Marioli et al. [37] and obtained from ourworl-
dindata.org [33]. In the usual models, the epidemic is said to be expanding if R> 1. Above we

showed that when reduction/growth RR/G> 0 the situation is getting worse. If we add 1 to RR/

G we can compare it directly with R. In Fig 6 we compare the evolution of RR/G + 1 vs. R for 4

countries. We observe that both curves coincide quite well for these 4 countries for values of R
around 1. Our analysis for COVID-19 are quite comparable with this usual number in epide-

miology. We believe it is prudent to emphasize that if RR/G is used for other epidemics, a good

indicator to compare should be R, to be sure that what we observed for COVID-19 can be

transferred to new epidemics.

In the Fig 6 we show the evolution of 4 countries until the first days of January 2022. The

appearance of the Omicron variant at the end of 2021 and the beginning of 2022 is quite appar-

ent. RR/G is calculated with respect to the situation 7 days before, and average smoothed with

data of the previous 14 days. So it is a value related to recent history. This way a strong rise is

observed in Israel in the mid-2021 with the arrival of the Delta variant, that even greater than

what was observed later with the arrival of Omicron. In the latter case, the wave began when

there was a much larger number of cases. On the other hand, RR/G seems to us a motivating

indicator when the situation improves. In this way, in Singapore a very pronounced reduction

is observed by August 2020, which translates into a large negative value of RR/G = −2.3. In con-

trast, R was just reduced to 0.54. To communicate to the population the value of reduction/

growth also seems more motivating and simpler to explain.

Finally, it is important to emphasize that the indicators calculated here can be applied in the

same way to the evolution of hospitalizations and deaths. The downside is that these are late

indicators.

Conclusions

Mitigating the impact of epidemic and achieving zero contagion is a primordial public health

goal. Here we focus on the COVID-19 pandemic, but our analysis can be applied to other epi-

demic scenarios. Developing sound methodological tools to alert policymakers is essential to

implement NPIs while vaccines are still under development, fabrication, and administration.

Moreover, it has been shown that the effectiveness of vaccines is low in stopping contagion,

being rather a factor in reducing severity and death. In this way, it seems almost impossible to

achieve group immunity that allows preventing reactivation/mutation of the virus and new

waves of contagion. Vaccines were at times considered a silver bullet for the COVID-19 pan-

demic. However, the lack of worldwide vaccination, the large anti-vaccine factions, and the

emergence of new variants, which could lower vaccine effectiveness, have all led to more cau-

tious expectations [38]. Moreover, amid the growing concern about new COVID variants [39–

43], with renewed strong flu seasons, a short and mid-term estimate of evolution as the one
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presented here can help to guide public policy, independently of economic and cultural

contexts.

We have presented performance indicators applicable to any NPI: reduction, growth, and

variation (or velocities). These indicators complement other existing ones, such the effective

reproduction number (R), and complex epidemic models [44, 45]. In fact, the application of

these indicators to a large number of countries does allow early warning about a likely epi-

demic growth. We have identified conditions of maximum alert regarding epidemic evolution,

when the cases, their variation and the growth velocity simultaneously increase.

Just above this Conclusion section, we compare the combined reduction/growth indicator

RR/G with the estimate of the effective reproduction number (R). We do not intend to replace

the useful index R in epidemiology, but to point out advantages of RR/G as far as explaining the

health situation to the population, and to policy makers. Near R = 1 both indicators agree

quite well. However, when contagion increases abruptly RR/G grows strongly and R does not

change significantly. On the other hand, when the situation improves significantly, while R
varies between 0 and 1 (in a very favorable scenario it reaches�0.5), RR/G drops strongly into

negative terrain.

Obviously, experts do understand all cases correctly, but the interpretation of R seems more

difficult to convey to the general population, since it involves knowledge of the behavior of

exponential functions. Consequently, the concepts of reduction and growth are much easier to

communicate to the wide public, and could help to explain why precaution or restrictive poli-

cies are working, or are necessary. Formally, both R and RR/G are easily estimated.

To reach control of the epidemic, in addition to the NPI implemented and of the progress

in the vaccination process, significant case reduction for extended periods is primordial. The

indicators in this paper display country-wide behaviors, but can also be applied at a more local

level, and might contribute to a better management of the epidemic when only a subpopula-

tion, for example based on age or income, is included in the analysis. The indicators we exam-

ined are i) the seven day rolling reduction Rd(t); ii) the growth G(t); iii) the growth velocity V
(t) which describes the velocity of the variation of the number of contagions; and, iv) the veloc-

ity vG(t) with which the growth G(t) varies in time. Moreover, the loss of vaccine immunity

with time together with emerging variants of the virus implies that additional tools to reduce

the impact of a forthcoming pandemia are of crucial importance. Within the complex context

of likely future events the indicators proposed here could offer some easy to implement guide-

lines to reduce epidemic impact, and they are formulated in a simple and direct fashion.
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PLOS ONE COVID-19 model

PLOS ONE | https://doi.org/10.1371/journal.pone.0286747 June 15, 2023 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286747.s001
https://doi.org/10.1371/journal.pone.0286747


Methodology: Rafael I. González, Pablo S. Moya, Eduardo M. Bringa, Gonzalo Bacigalupe,

Muriel Ramı́rez-Santana.

Validation: Gonzalo Bacigalupe.

Writing – original draft: Rafael I. González, Pablo S. Moya, Eduardo M. Bringa, Gonzalo

Bacigalupe, Muriel Ramı́rez-Santana, Miguel Kiwi.
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