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Abstract
In this paper, we discuss the reduction of symplectic
Hamiltonian systems by scaling and standard symme-
tries which commute. We prove that such a reduction
process produces a so-called Kirillov Hamiltonian sys-
tem. Moreover, we show that if we reduce first by the
scaling symmetries and then by the standard ones or
in the opposite order, we obtain equivalent Kirillov
Hamiltonian systems. In the particular case when the
configuration space of the symplectic Hamiltonian sys-
tem is a Lie group𝐺, which coincideswith the symmetry
group, the reduced structure is an interesting Kirillov
version of the Lie–Poisson structure on the dual space
of the Lie algebra of 𝐺. We also discuss a reconstruc-
tion process for symplectic Hamiltonian systems which
admit a scaling symmetry. All the previous results are
illustrated in detail with some interesting examples.
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1 INTRODUCTION

1.1 Physical motivation

The analysis of symmetries is one of the most important tools in theoretical physics. Usually, the
formulation of a physical theory is given in terms of a variational principle and its associated sym-
plectic Hamiltonian description. In this context, one typically looks for “standard symmetries,”
that is, symmetries which preserve the symplectic form and the Hamiltonian function. Among
other things, this approach leads to a generalization of the Noether’s theorem and the Marsden–
Weinstein theory of reduction of the system by the action of a symmetry group (see the classical
books and monographs by Marsden and collaborators,1,2 Libermann and Marle,3 or Olver4).
Recently, there has been a growing interest in the physical literature in considering “nonstan-

dard symmetries,” that is, symmetries of the physical system that do not necessarily preserve
the symplectic structure. This is motivated mainly by the so-called scaling symmetries and by a
well-known philosophical argument according to which any minimal description of the universe
should avoid introducing a global scale into the picture, that is, it should be scale-invariant.5,6 In
this context, the theory of “shape dynamics” aims to rephrase our best description of the universe
(general relativity) in a completely scale-invariant fashion.7,8 This has led already to remarkable
results that defy the way we understand the (classical) dynamics of the universe. For instance,
the scale-reduced cosmological and black hole systems can be continued in some cases through
the corresponding singularities.9–11 Moreover, it has been further argued that the apparent dis-
sipative nature of the scale-reduced systems may have important consequences for topics such
as the origin of the arrow of time and the formulation of quantum mechanics through unitary
operators.6,12,13
Interestingly, the reduction of a symplectic Hamiltonian system by a scaling symmetry pro-

duces a contact Hamiltonian system, which has been the subject of intensive study recently for
their use in the description of, for example, dissipative, thermostatted and thermodynamic sys-
tems (see, e.g., Refs. 14–24 and the references therein). This intuition was first put forward in
Ref. 25 and then formalized more precisely in the recent work,26 where a thorough mathematical
investigation of the role of scaling symmetries in symplectic Hamiltonian systems has been per-
formed. Moreover, the relationship with the geometry of the blowups used in celestial mechanics
has also been highlighted, together with the connection with other geometric structures.27,28
However, so far the study of the joint reduction by scaling and standard symmetries has not been

considered in depth, at least from the mathematical perspective. Moreover, the case in which the
reduced manifold is nonorientable, which seems to be the important case for the resolution of
singularities in general relativity,9–11 has been elusive of a fully fledged mathematical description
(although, see Refs. 29–31). Finally, from the point of view of comparing the resulting physical
theories, it is also crucial to highlight how to reconstruct the “original” symplectic system from
the reduced one.
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BRAVETTI et al. 3

In this work, we perform a detailedmathematical analysis of all the above points. To give a feel-
ing of the objects involved in our constructions, in the remainder of this introduction we provide
a high-level description of the most important tools and results.

1.2 Standard Lie symmetries for Kirillov Hamiltonian systems

A Kirillov structure on a real line bundle is a Lie algebra structure [⋅, ⋅] on the space of sections of
the dual bundle such that, if we fix a sectionℎ on this line bundle, the operator [⋅, ℎ] is a derivation.
Thus, every section of the dual line bundle defines a vector field on the base manifold which is
called the Hamiltonian vector field associated with the section. So, a Kirillov Hamiltonian system
is a Kirillov structure on a real line bundle plus a section of the dual bundle (the Hamiltonian
section).
Examples of Kirillov structures may be produced from symplectic, Poisson and Jacobi struc-

tures, contact 1-forms and contact structures (i.e., distributions of corank 1 which are maximally
nonintegrable). Apart from the last case, in the other previous examples the real line bundle is
trivial and the sections of the dual bundle are just 𝐶∞ functions on the base manifold. Anyway,
as we show in this paper, there exist interesting examples of Kirillov structures for which the real
line bundle is not trivial. In particular, those in which the base space of the line bundle is the
projective bundle associated with a vector bundle (for more details on Kirillov structures, see for
instance, Refs. 31–35).
On the other hand, it iswell-known that dynamical systems (in particular,mechanical systems),

which are invariant under the action of a symmetry Lie group, have received a lot of attention from
researchers in mathematics and physics. For this reason, in this paper we introduce the notion of
a standard Lie symmetry for a Kirillov Hamiltonian system. It is a principal representation of a Lie
group on the line bundle such that the dual representation preserves the Kirillov structure and
the Hamiltonian section is equivariant. A Lie group of symplectic (respectively, Poisson, contact,
or Jacobi) Hamiltonian symmetries is a particular example of a standard Lie symmetry for the
corresponding Kirillov Hamiltonian system. Moreover, for a standard Lie symmetry on a Kirillov
Hamiltonian system, the space of orbits of the action on the line bundle is again a line bundle. In
fact, in the particular case when the Kirillov structure is Poisson (or Jacobi), we have a reduced
Poisson (or Jacobi) structure. This is well-known in the theory of Poisson (or Jacobi) reduction
(see, for instance, Refs. 36, 37). We remark that, very recently other (pre)contact reduction pro-
cesses have been developed. So, in Ref. 38, the authors give an intrinsic geometric approach to
reductions of contact manifolds. In fact, they discuss a precontact analog of the presymplectic
reduction (i.e., precontact-to-contact reduction), a contact analog of the constant-rank reduction
in symplectic geometry and a precontact analog of the Marsden–Weinstein reduction.

1.3 Scaling symmetries for poisson Hamiltonian systems

In Ref. 26, the authors introduce the notion of a scaling symmetry for a symplectic Hamiltonian
system and they exhibit several examples where such a symmetry is present (see also Refs. 25, 39,
40).
The previous notion may be extended for the more general class of Poisson Hamiltonian sys-

tems as follows. It is a principal action Φ ∶ ℝ× × 𝑃 → 𝑃 of the Lie group ℝ× (with ℝ× = ℝ+ or
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4 BRAVETTI et al.

ℝ× = ℝ − {0}) on the Poisson manifold (𝑃,Π) such that

∧2𝑇Φ◦Π = 𝑠Π◦Φ, 𝐻◦Φ = 𝑠𝐻

for all 𝑠 ∈ ℝ×, where 𝐻 ∶ 𝑃 → ℝ is the Hamiltonian function. In the particular case when 𝑃 is
a symplectic manifold 𝑆, it is proved in Refs. 29, 30 that the space of orbits 𝐶 = 𝑆∕ℝ× admits
a contact structure. In addition, the homogeneous function 𝐻 on 𝑆 induces a section of the dual
bundle over𝐶 to theKirillov line bundle in such away thatwehave a reduced contactHamiltonian
system (see Refs. 30, 31).

1.4 Our motivation

As wementioned before, many symplectic Hamiltonian systems admit scaling symmetries. How-
ever, they do not only admit such symmetries, typically they also have standard Lie symmetries.
In addition, the scaling and the standard Lie symmetries usually commute. So, one may reduce
the dynamics by both types of symmetries, and some natural questions arise:

∙ What is the nature of the reduced system?
∙ If we reduce first by the scaling symmetries and then by the standard ones, is it the same as
doing it the other way around?

∙ Is it possible to obtain the dynamics of the original symplectic Hamiltonian system from the
dynamics of the reduced system via a suitable reconstruction process?

In this paper, we will provide answers to these questions.

1.5 The results of the paper

For a symplectic Hamiltonian system with compatible scaling and standard Lie symmetries (i.e.,
they commute plus other natural topological conditions necessary to perform reduction by stages),
we will develop two reduction processes:

∙ In the first reduction process, we start with the standard symmetry and then we apply the scal-
ing symmetry. In this case, the first reduced system is a Poisson Hamiltonian system endowed
with a scaling symmetry. The reduction of such a system by this scaling symmetry produces a
Kirillov Hamiltonian system (see Theorem 2).

∙ In the second reduction process, we use the scaling symmetry and then the standard symmetry.
In this case, the first reduced system is a contact Hamiltonian system endowed with a stan-
dard Lie symmetry. The reduction of the latter by this standard symmetry produces again a
final Kirillov Hamiltonian system (see Theorem 4). In fact, the reduction of a general Kirillov
Hamiltonian system by a standard Lie symmetry is again a Kirillov Hamiltonian system (see
Theorem 3).

∙ We also prove that the final reduced Kirillov Hamiltonian systems obtained in both processes
are Kirillov equivalent (see Theorem 5). The following diagram summarizes both reduction
processes.
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BRAVETTI et al. 5

∙ Using more general ideas on reconstruction processes for dynamical systems in the presence
of a symmetry Lie group, we present the reconstruction of the symplectic (respectively, Pois-
son) dynamics, for a system which admits a scaling symmetry, from the reduced contact and
(respectively, Kirillov) Hamiltonian dynamics (see Section 7).

∙ All the previous constructions are applied to two examples of symplectic Hamiltonian systems
which are interesting from the physical and mathematical point of view: The 2D harmonic
oscillator and standard fiberwise-linear Hamiltonian systems on cotangent bundles induced
by vector fields in the configuration space. For this last class of examples, when the cotangent
bundle is that of a Lie group 𝐺, after the two reduction processes, we obtain an interest-
ing Kirillov structure on the projective space associated with the dual space 𝔤∗ of the Lie
algebra of 𝐺. This Kirillov structure may be considered as the Kirillov version of the Lie–
Poisson structure on 𝔤∗. For this reason, it will be called the Lie–Kirillov structure (see the
last part of Subsection 4.3). The geometric nature of this structure and its applications to
Hamiltonian dynamics will be discussed in a next paper in progress. We remark that a holo-
morphic version of the Lie–Kirillov structure has been discussed in Ref. 41 (see Examples 54
in Ref. 41).

1.6 Structure of the paper

The paper is structured as follows. In Section 2, we review some notions and properties of con-
tact, Poisson, Jacobi, and Kirillov manifolds. At the end of the section, a diagram illustrates the
relations between these kinds of structures. In Section 3, we show the scaling reduction process
of a symplectic (Poisson) Hamiltonian system. This procedure is applied to two examples: The 2D
harmonic oscillator and the standard fiberwise-linear Hamiltonian systems on cotangent bun-
dles. In Section 4, we will discuss the reduction of symplectic Hamiltonian systems which are
invariant under the action of a Lie group and, in addition, admit a scaling symmetry which is
compatible with the standard symmetry. The reduction process starts by using first the standard
symmetry and then the scaling symmetry. The process in the other direction (the first reduction
is obtained by a scaling symmetry and the second one is done using the standard symmetry)
is given in Section 5. Moreover, in this section we present a reduction process for general Kir-
illov Hamiltonian systems in the presence of a standard symmetry. In Sections 4 and 5, both
processes are illustratedwith the examplesmentioned above. The equivalence between the reduc-
tions in both directions is proved in Section 6. Finally, in Section 7 we study the reconstruction
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6 BRAVETTI et al.

process by focusing our attention on the case of symplectic Hamiltonian systems with scaling
symmetries.

2 CONTACT AND KIRILLOV HAMILTONIAN SYSTEMS

In this section, we recall some notions and properties of contact, Jacobi and Kirillov manifolds
(for more details see, for instance, Refs. 3, 29, 31–35, 42–44).
A contact 1-form on a (2𝑛 + 1)-dimensional manifold 𝐶 is a 1-form 𝜂 such that 𝜂 ∧ (𝑑𝜂)𝑛

defines a volume form on 𝐶. We remark that a manifold with a contact 1-form is orientable
and has a distinguished vector field  ∈ 𝔛(𝐶), the Reeb vector field, characterized by the
conditions

𝑖𝑑𝜂 = 0 and 𝑖𝜂 = 1.

The Reeb dynamics can be seen as the one induced by a Hamiltonian vector field on 𝐶. In
fact, if 𝐻 ∶ 𝐶 → ℝ is a smooth function on 𝐶, the Hamiltonian vector field 𝑋

𝜂
𝐻 ∈ 𝔛(𝐶) of 𝐻 is

characterized by these two conditions

𝑖𝑋𝜂
𝐻
𝑑𝜂 = 𝑑𝐻 −(𝐻)𝜂 and 𝜂(𝑋

𝜂
𝐻) = 𝐻. (1)

The Reeb vector field is just the Hamiltonian vector field for the constant function𝐻 = 1.
In the following example, we show a manifold endowed with a contact 1-form obtained by a

reduction process.

Example 1 (The spherical cotangent bundle of a Riemannian manifold). Let (𝑄, 𝑔) be an 𝑛-
dimensional Riemannian manifold and 0𝑄 the zero section of the cotangent bundle 𝜏∗𝑄 ∶ 𝑇∗𝑄 →
𝑄. On the open subset 𝑇∗𝑄 − 0𝑄 of 𝑇∗𝑄, we consider the action of the multiplicative group of the
positive real numbers ℝ+ given by

𝜙 ∶ ℝ+ × (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄), 𝜙(𝑠, 𝛼) = 𝑠𝛼, (2)

which defines a principal bundle 𝐩 ∶ (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄)∕ℝ
+. The canonical symplectic

structure 𝜔𝑄 on 𝑇∗𝑄 − 0𝑄 is homogeneous with respect to this action, that is,

𝜙∗
𝑠 (𝜔𝑄) = 𝑠𝜔𝑄, for all 𝑠 ∈ ℝ+, (3)

or equivalently,

Δ𝑄
𝜔𝑄 = 𝜔𝑄,

where Δ𝑄 is the infinitesimal generator of the action 𝜙, that is, Δ𝑄 is the Liouville vector field on
𝑇∗𝑄.
The quotient manifold (𝑇∗𝑄 − {0𝑄})∕ℝ

+ is diffeomorphic to the spherical cotangent bundle

𝕊(𝑇∗𝑄) = {𝛼 ∈ 𝑇∗𝑄∕‖𝛼‖ =
√
𝑔(𝛼, 𝛼) = 1},

where 𝑔 denotes here the corresponding metric on 𝑇∗𝑄.
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BRAVETTI et al. 7

In the particular case when 𝑄 is ℝ𝑛+1, with the flat Riemannian metric, we have that the
spherical cotangent bundle is

𝕊(𝑇∗ℝ𝑛+1) ≅ ℝ𝑛+1 × 𝑆𝑛 , (4)

with 𝑆𝑛 the 𝑛-sphere in ℝ𝑛+1.
If 𝜆𝑄 is the Liouville 1-form on 𝑇∗𝑄, that is,

𝜆𝑄(𝛼)(𝑣) = 𝛼(𝑇𝛼𝜏
∗
𝑄(𝑣)), for all 𝛼 ∈ 𝑇∗𝑄, 𝑣 ∈ 𝑇𝛼(𝑇

∗𝑄),

and 𝑖 ∶ 𝕊(𝑇∗𝑄) → 𝑇∗𝑄 is the inclusion map, then 𝜂𝑄 = −𝑖∗𝜆𝑄 is a contact 1-form on 𝕊(𝑇∗𝑄) (see,
for instance, Refs. 45–47).
We remark that the regular and singular Marsden–Weinstein reduction of the spherical cotan-

gent bundle have been discussed some years ago.48,49 In fact, this reduction process is a particular
case of the more general Marsden–Weinstein contact reduction which has been intensively
discussed by several authors.38,50–53

A contact 1-form is a particular case of a Jacobi structure.A Jacobimanifold𝑀 (35,44) is endowed
with a pair (Π, 𝐸) ∈ 2(𝑀) × 𝔛(𝑀), where Π is a 2-vector field and 𝐸 is a vector field on𝑀 such
that

[[Π,Π]] = 2𝐸 ∧ Π, [[𝐸,Π]] = 0,

[[⋅, ⋅]] being the Schouten–Nijenhuis bracket on𝑀. Associated with a Jacobi manifold (𝑀, (Π, 𝐸))
we have a Jacobi bracket, given by

{𝑓1, 𝑓2}𝑀 = Π(𝑑𝑓1, 𝑑𝑓2) + 𝑓1𝐸(𝑓2) − 𝑓2𝐸(𝑓1), for 𝑓1, 𝑓2 ∈ 𝐶∞(𝑀), (5)

which is a Lie bracket on the space of functions on𝑀 such that

{𝑓𝑓1, 𝑓2}𝑀 = 𝑓{𝑓1, 𝑓2}𝑀 + 𝑓1{𝑓, 𝑓2}𝑀 − 𝑓1𝑓{1, 𝑓2}𝑀

for 𝑓, 𝑓1, 𝑓2 ∈ 𝐶∞(𝑀). Reciprocally, a Jacobi bracket on the space of functions 𝐶∞(𝑀) defines a
Jacobi structure (Π, 𝐸) satisfying (5).
Note that we have a vector field 𝑋

{⋅,⋅}𝑀
𝑓2

on 𝑀, the Hamiltonian vector field associated with 𝑓2,
such that

{𝑓𝑓1, 𝑓2}𝑀 = 𝑓{𝑓1, 𝑓2}𝑀 + 𝑋
{⋅,⋅}𝑀
𝑓2

(𝑓)𝑓1. (6)

In terms of the Jacobi structure, this vector field is given by

𝑋
{⋅,⋅}𝑀
𝑓2

= Π(⋅, 𝑑𝑓2) − 𝑓2𝐸 . (7)

If 𝐸 = 0, we recover the notion of a Poisson bracket on the space of functions on𝑀 and (𝑀,Π)
is a Poisson manifold.
For a manifold 𝐶 with a contact 1-form 𝜂, the Jacobi structure is

Π𝜂(𝛼, 𝛽) = 𝑑𝜂(♭−1𝜂 (𝛼), ♭−1𝜂 (𝛽)), 𝐸𝜂 = −
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8 BRAVETTI et al.

for all 𝛼, 𝛽 ∈ Ω1(𝐶), where is the Reeb vector field associated with 𝜂 and ♭𝜂 ∶ 𝔛(𝐶) → Ω1(𝐶) is
the isomorphism of 𝐶∞(𝐶)-modules given by

♭𝜂(𝑋) = 𝑖𝑋𝑑𝜂 + ⟨𝜂, 𝑋⟩𝜂, with 𝑋 ∈ 𝔛(𝐶).

Moreover, theHamiltonian vector field defined in (1) is just the correspondingHamiltonian vector
field 𝑋{⋅,⋅}𝑀

𝑓
associated with the Jacobi structure (Π𝜂, 𝐸𝜂) (see Ref. 44).

Example 2 (continuingExample 1). In the case of the spherical cotangent bundle of a Riemannian
manifold (𝑄, 𝑔), we consider the differentiable function 𝜅𝑔 ∶ 𝑇∗𝑄 − 0𝑄 → ℝ defined by

𝜅𝑔(𝛼) =
1
2
‖𝛼‖2, for 𝛼 ∈ 𝑇∗𝑄.

If 𝑋𝜔𝑄
𝜅𝑔 ∈ 𝔛(𝑇∗𝑄 − 0𝑄) is the Hamiltonian vector field with respect to 𝜔𝑄 of the function 𝜅𝑔, that

is, the vector field characterized by

𝑖
𝑋
𝜔𝑄
𝜅𝑔
𝜔𝑄 = 𝑑𝜅𝑔,

then the Jacobi structure (Π𝜂𝑄 , 𝐸𝜂𝑄) on (𝕊(𝑇∗𝑄), 𝜂𝑄) is just the restriction to 𝕊(𝑇∗𝑄) of the Jacobi
structure (Π, 𝐸) on 𝑇∗𝑄 given by

Π = Π𝜔𝑄
− Δ𝑄 ∧ 𝑋

𝜔𝑄
𝜅𝑔 , 𝐸 = 𝑋

𝜔𝑄
𝜅𝑔 ,

where Π𝜔𝑄
is the Poisson structure induced by the symplectic structure 𝜔𝑄 on 𝑇∗𝑄.

On the other hand, contact 1-forms are also a particular kind of more general structures which
are not, in general, Jacobi structures.
A contact structure on a (2𝑛 + 1)-dimensional smooth manifold 𝐶 is a distribution  on 𝐶 of

codimension 1 which is maximally nonintegrable, that is, for all 𝑥 ∈ 𝐶, there is an open neighbor-
hood 𝑈 of 𝑥 such that the distribution  on 𝑈 is given by the annihilator < 𝜂𝑈 >𝑜 of the vector
subbundle of 𝑇∗𝐶 generated by a contact 1-form 𝜂𝑈 on 𝑈, that is,

𝑈 = ⟨𝜂𝑈⟩𝑜 = {𝑋 ∈ 𝑇𝑈∕𝜂𝑈(𝑋) = 0}.

In this case, the pair (𝐶,) is a contact manifold.
It is clear that if 𝐶 has a global contact 1-form, the pair (𝐶, =< 𝜂 >𝑜) defines a contact mani-

fold. But in general, a contact structure on 𝐶 may not be defined by a global contact 1-form on 𝐶
as the following example proves.

Example 3 (The projective cotangent bundle of a manifold). Let𝑄 be an 𝑛-dimensional manifold
and 0𝑄 the zero section of the cotangent bundle 𝜏∗𝑄 ∶ 𝑇∗𝑄 → 𝑄. On the open subset 𝑇∗𝑄 − 0𝑄 of
𝑇∗𝑄, we consider the action of the multiplicative group ℝ− {0} given by

𝜙 ∶ (ℝ − {0}) × (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄), 𝜙(𝑠, 𝛼) = 𝑠𝛼. (8)
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BRAVETTI et al. 9

Its infinitesimal generator Δ𝑄 is the Liouville vector field on 𝑇∗𝑄 − 0𝑄 and the reduced space
(𝑇∗𝑄 − 0𝑄)∕(ℝ − {0}) is just the projective cotangent bundle ℙ(𝑇∗𝑄) of 𝑄.

Remark 1. The notion of projective bundle ℙ(𝑉) may be defined for an arbitrary vector bundle
𝜏 ∶ 𝑉 → 𝑄 as the quotient bundle induced by the action on 𝑉 − 0𝑄

(ℝ − {0}) × (𝑉 − 0𝑄) → (𝑉 − 0𝑄), (𝑠, 𝑣) → 𝑠𝑣,

where 0𝑄 is the zero section of 𝜏 ∶ 𝑉 → 𝑄.
A particular case is when 𝑄 is a point and 𝑉 is the dual of a Lie algebra 𝔤. In this case, the base

space of the projective bundle 𝑝 ∶ 𝔤∗ − {0} → ℙ𝔤∗ is just the projective space ℙ𝔤∗.

If 𝜆𝑄 is the Liouville 1-form on 𝑇∗𝑄 and 𝐩 ∶ (𝑇∗𝑄 − 0𝑄) → ℙ(𝑇∗𝑄) is the quotient projection,
using (3), one can prove that the distribution of corank 1

̃ =
⟨
𝜆𝑄

⟩𝑜
is 𝐩-projectable. If denotes its projection, then (ℙ(𝑇∗𝑄),) is a contact manifold.
A simple example of this kind of contact manifolds is when 𝑄 is a Lie group 𝐺. In this case, the

cotangent bundle 𝑇∗𝐺 may be left trivialized to the trivial vector bundle 𝐺 × 𝔤∗ → 𝐺, where 𝔤 is
the Lie algebra of 𝐺. Under this identification, the action 𝜙 is just

𝜙 ∶ (ℝ − {0}) × (𝐺 × (𝔤∗ − {0})) → 𝐺 × (𝔤∗ − {0}), (𝑠, (𝑔, 𝜇)) → (𝑔, 𝑠𝜇).

Then, the quotient bundle is 𝐩 = 𝐼𝑑𝐺 × 𝑝 ∶ 𝐺 × (𝔤∗ − {0}) → 𝐺 × ℙ𝔤∗ and the contact structure
is the distribution on 𝐺 × ℙ𝔤∗ given by

(𝑔,𝑝(𝜇)) =
⟨
(𝑇𝑔𝐿𝑔−1)

∗(𝜇)
⟩𝑜

× 𝑇𝑝(𝜇)(ℙ𝔤
∗)

for all 𝑔 ∈ 𝐺 and 𝜇 ∈ 𝔤∗ − {0}. Here, 𝐿 ∶ 𝐺 × 𝐺 → 𝐺 denotes the left action of the Lie group 𝐺
on itself.
In the particular case when 𝐺 = ℝ𝑛+1, the projective cotangent bundle ℙ(𝑇∗ℝ𝑛+1) can be

identified with the Cartesian product ℝ𝑛+1 × ℙ𝑛(ℝ), where ℙ𝑛(ℝ) is the real projective space of
dimension 𝑛. This space is nonorientablewhen 𝑛 is even and therefore,ℙ(𝑇∗ℝ𝑛+1) does not admit
a global contact 1-form.

Contact and Jacobi structures are special examples of more general structures: Kirillov
structures (see, Ref. 35 and also Refs. 29, 30, 32).

Definition 1. AKirillov structure on amanifold𝐾 is a real line bundle 𝜋𝐿 ∶ 𝐿 → 𝐾 endowedwith
a Lie bracket [⋅, ⋅]𝐿∗ ∶ Γ(𝐿∗) × Γ(𝐿∗) → Γ(𝐿∗) on the space Γ(𝐿∗) of sections of the dual line bundle
𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 such that [⋅, ℎ2]𝐿∗ ∶ Γ(𝐿∗) → Γ(𝐿∗) is a derivation for all ℎ2 ∈ Γ(𝐿∗), that is,

[𝑓ℎ1, ℎ2]𝐿∗ = 𝑓[ℎ1, ℎ2]𝐿∗ + 𝑋
[⋅,⋅]𝐿∗
ℎ2

(𝑓)ℎ1, for all ℎ1 ∈ Γ(𝐿∗) and 𝑓 ∈ 𝐶∞(𝐾), (9)

with 𝑋
[⋅,⋅]𝐿∗
ℎ2

a vector field on 𝐾. The vector field 𝑋[⋅,⋅]𝐿∗
ℎ2

∈ 𝔛(𝐾) is called the symbol of [⋅, ℎ2]𝐿∗ .
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10 BRAVETTI et al.

The line bundle (𝐿∗, 𝜋𝐿∗ , 𝐾)with the bracket [⋅, ⋅]𝐿∗ on the space of sections of 𝜋𝐿∗ is, inMarle’s
terminology,31 a Jacobi bundle. This kind of structures are essentially equivalent to the conformal
Jacobi structures studied in Ref. 43.
When the line bundle 𝜋𝐿 ∶ 𝐿 → 𝐾 is trivial, that is, 𝐿 ≅ 𝐾 × ℝ, the sections of 𝜋𝐿∗ can be iden-

tified with smooth functions on 𝐾. Under this identification, the local Lie algebra [⋅, ⋅]𝐿∗ is a Lie
bracket

{⋅, ⋅}𝐾 ∶ 𝐶∞(𝐾) × 𝐶∞(𝐾) → 𝐶∞(𝐾)

satisfying that, for all 𝑓 ∈ 𝐶∞(𝐾),

{𝑓𝑓1, 𝑓2}𝐾 = 𝑓{𝑓1, 𝑓2}𝐾 + 𝑋
{⋅,⋅}𝐾
𝑓2

(𝑓)𝑓1

for all 𝑓1, 𝑓2 ∈ 𝐶∞(𝐾).
Note that if 𝑓1 = 1 then {𝑓, 𝑓2}𝐾 = 𝑓{1, 𝑓2}𝐾 + 𝑋

{⋅,⋅}𝐾
𝑓2

(𝑓), which implies

{𝑓𝑓1, 𝑓2}𝐾 = 𝑓{𝑓1, 𝑓2}𝐾 + 𝑓1{𝑓, 𝑓2}𝐾 − 𝑓𝑓1{1, 𝑓2}𝐾.

This means that {⋅, ⋅}𝐾 is a Jacobi bracket, whose associated Jacobi structure (Π, 𝐸) is given by

𝐸(𝑓1) = {1, 𝑓1}𝐾 and Π(𝑑𝑓1, 𝑑𝑓2) = {𝑓1, 𝑓2}𝐾 − 𝑓1{1, 𝑓2}𝐾 + 𝑓2{1, 𝑓1}𝐾,

with 𝑓1, 𝑓2 ∈ 𝐶∞(𝐾). Conversely, every Jacobi manifold (𝐾, {⋅, ⋅}𝐾) defines a Kirillov struc-
ture on the trivial line bundle 𝜋 ∶ 𝐾 × ℝ → 𝐾. Therefore, Jacobi structures are just trivial
Kirillov structures.
In the case of a contactmanifold (𝐶,), consider the line bundlewith total space the annihilator

bundle 𝑜 of , 𝜋𝑜 ∶ 𝑜 → 𝐶 of , which is, in general, not trivial. Using this line bundle and
the representation ℝ× × ℝ → ℝ of ℝ× (with ℝ× = ℝ+ or ℝ× = ℝ − {0}) over the vector space of
real numbers given by

(𝑠, 𝑡) →
𝑡
𝑠
,

we have a ℝ×-principal bundle 𝐩 ∶ 𝑆 ∶= (𝑜 − 0𝐶) → 𝐶 ≅ 𝑆∕ℝ× (see the Appendix). Here, 0𝐶 is
the zero section of 𝜋𝑜 ∶ 𝑜 → 𝐶. Moreover, we may consider the 1-form 𝜆𝑆 on 𝑆

𝜆𝑆(𝛼)(𝑣) =< 𝛼, 𝑇𝛼𝐩(𝑣) >, with 𝛼 ∈ (𝑜 − 0𝐶), 𝑣 ∈ 𝑇𝛼(𝑜 − 0𝐶),

which defines the symplectic structure 𝜔𝑆 = −𝑑𝜆𝑆 . This symplectic structure is homogeneous
with respect to the ℝ×-action 𝜙𝑆 ∶ ℝ× × 𝑆 → 𝑆 on 𝑆, that is,

(𝜙𝑆
𝑠 )

∗(𝜔𝑆) = 𝑠𝜔𝑆, for 𝑠 ∈ ℝ×.

Now, a Lie bracket [⋅, ⋅](𝑜)∗ on the space of sections Γ((𝑜)∗) of the line bundle (𝑜)∗ → 𝐶 can
be constructed as follows.

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12681 by U
niversidad D

e L
a L

aguna, W
iley O

nline L
ibrary on [11/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BRAVETTI et al. 11

There is a one-to-one correspondence between the sections of 𝜋(𝑜)∗ ∶ (𝑜)∗ → 𝐶 and the
homogeneous functions𝐻 ∶ 𝑆 → ℝ on 𝑆, that is, the functions satisfying

𝐻◦𝜙𝑆
𝑠 = 𝑠𝐻, for 𝑠 ∈ ℝ×

(see the Appendix). Using the homogeneous character of the symplectic structure 𝜔𝑆 , we deduce
that the Poisson bracket {𝐻1,𝐻2}𝑆 induced by 𝜔𝑆 of two homogeneous functions𝐻1,𝐻2 ∶ 𝑆 → ℝ
is again a homogeneous function. Taking into account this fact, we define the Kirillov bracket
[⋅, ⋅](𝑜)∗ ∶ Γ((𝑜)∗) × Γ((𝑜)∗) → Γ((𝑜)∗) by the relation

{𝐻1,𝐻2}𝑆 = −𝐻[ℎ𝐻1 ,ℎ𝐻2 ](𝑜)∗
, (10)

where ℎ𝐻𝑖
is the section of 𝜋(𝑜)∗ ∶ (𝑜)∗ → 𝐶 associated with the homogeneous function 𝐻𝑖 on

𝑆 and 𝐻[ℎ𝐻1 ,ℎ𝐻2 ](𝑜)∗
is the homogenous function associated with the section [ℎ𝐻1

, ℎ𝐻2
](𝑜)∗ . In

conclusion, every contact manifold (𝐶,) admits a Kirillov structure on the line bundle 𝜋𝑜 ∶
𝑜 → 𝐶.
The following diagram illustrates the relations among all the previous geometric structures.

3 SCALING SYMMETRIES AND SYMPLECTIC (POISSON)
HAMILTONIAN SYSTEMS

In the previous examples, the reduction processes are the fundamental tool to obtain contact
structures from symplectic structures. Now, we will show this process for a general symplectic
Hamiltonian system, which was discussed in Ref. 30, and then we will present some exam-
ples. We begin by recalling the notion of scaling symmetries26 for this kind of dynamical
systems.

Definition 2. Let (𝑆, 𝜔) be a symplectic manifold and𝐻 ∶ 𝑆 → ℝ a function on 𝑆. A scaling sym-
metry for the dynamical system (𝑆, 𝜔,𝐻) is a principal action𝜙 ∶ ℝ× × 𝑆 → 𝑆 of themultiplicative
group ℝ× (with ℝ× = ℝ+ or ℝ× = ℝ − {0}) on 𝑆 such that

𝜙∗
𝑠 𝜔 = 𝑠𝜔 and 𝜙∗

𝑠 𝐻 = 𝑠𝐻, for all 𝑠 ∈ ℝ×.
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12 BRAVETTI et al.

Note that if Δ ∈ 𝔛(𝑆) is the infinitesimal generator of the scaling symmetry, then

Δ𝜔 = 𝜔 and Δ𝐻 = 𝐻.

In fact, if ℝ× is connected (i.e., ℝ× = ℝ+), then the previous conditions are equivalent to the
fact that the principal action 𝜙 is a scaling symmetry.
An immediate consequence of the existence of a scaling symmetry is that the symplectic struc-

ture is exact, that is, 𝜔 = −𝑑𝜆 with 𝜆 = −𝑖Δ𝜔. Moreover, the 1-form 𝜆 is homogeneous, that is,
(𝜙𝑠)

∗𝜆 = 𝑠𝜆, and if Π𝜔 is the Poisson bivector induced by 𝜔, then Π𝜔 satisfies the following
relation:

∧2𝑇𝜙𝑠◦Π𝜔 = 𝑠Π𝜔◦𝜙𝑠, (11)

where ∧2𝑇𝜙𝑠 ∶ ∧2𝑇𝑆 → ∧2𝑇𝑆 is the vector bundle isomorphism induced by the diffeomorphism
𝜙𝑠 ∶ 𝑆 → 𝑆.
Now, we will develop the reduction process with the scaling symmetry 𝜙.
Denote by 𝐶 ∶= 𝑆∕ℝ× the corresponding quotient manifold and by 𝐩𝐒 ∶ 𝑆 → 𝐶 its quotient

projection. Then, we may consider the distribution

̃ = ⟨𝜆⟩𝑜,
which is 𝐩-projectable and the corresponding distribution on 𝐶, which is a contact structure.
Denote by [⋅, ⋅](𝑜)∗ the Kirillov bracket on the space of sections of the line bundle 𝜋(𝑜)∗ ∶

(𝑜)∗ → 𝐶 characterized by (10). On the other hand, from the homogeneity of 𝐻 ∶ 𝑆 → ℝ with
respect to the scaling symmetry, we have a section ℎ𝐻 ∶ 𝐶 → (𝑜)∗ of 𝜋(𝑜)∗ . The corresponding
symbol 𝑋[⋅,⋅](𝑜)∗

ℎ𝐻
of ℎ𝐻 given as in (9) is just the 𝐩-projection on 𝐶 of the Hamilton vector field

𝑋𝜔
𝐻 . The following diagram summarizes this reduction process (see Ref. 30 for more details on

this reduction process).

Now,wewill exhibit two examples of contact dynamical systems induced by a scaling reduction
process.

Example 4 (The 2D harmonic oscillator and the spherical cotangent bundle). Consider the
manifold 𝑄 = ℝ2 − {(0, 0)}, which is diffeomorphic to ℝ+ × 𝑆1 via the map

Ψ ∶ ℝ2 − {(0, 0)} → ℝ+ × 𝑆1, Ψ(𝑞) =

(‖𝑞‖, 𝑞‖𝑞‖
)
. (12)
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BRAVETTI et al. 13

Then, under this identification the space 𝑇∗𝑄 − 0𝑄 ≅ (ℝ2 − {(0, 0)}) × (ℝ2 − {(0, 0)}) is just (ℝ+ ×
𝑆1) × (ℝ+ × 𝑆1). Moreover, if (𝑟, 𝜃) (respectively, (𝑟, 𝜃, 𝑟′, 𝜃′)) are polar coordinates on 𝑄 ≅ ℝ+ ×
𝑆1 (respectively, on𝑇∗𝑄 − 0𝑄 ≅ ℝ+ × 𝑆1 × ℝ+ × 𝑆1), we have that the local expression of the stan-
dard symplectic form 𝜔𝑄 and the corresponding Poisson bivectorΠ𝜔𝑄

onℝ+ × 𝑆1 × ℝ+ × 𝑆1 are,
respectively,

𝜔𝑄 = 𝑐𝑜𝑠(𝜃 − 𝜃′)𝑑𝑟 ∧ 𝑑𝑟′ + 𝑟′ sin(𝜃 − 𝜃′)𝑑𝑟 ∧ 𝑑𝜃′ − 𝑟 sin(𝜃 − 𝜃′)𝑑𝜃∧𝑑𝑟′ + 𝑟𝑟′𝑐𝑜𝑠(𝜃 − 𝜃′)𝑑𝜃∧𝑑𝜃′

and

Π𝜔𝑄
= −cos(𝜃 − 𝜃′)𝜕𝑟 ∧ 𝜕𝑟′ −

sin(𝜃 − 𝜃′)
𝑟′

𝜕𝑟 ∧ 𝜕𝜃′ +
sin(𝜃 − 𝜃′)

𝑟
𝜕𝜃 ∧ 𝜕𝑟′ −

cos(𝜃 − 𝜃′)
𝑟𝑟′

𝜕𝜃 ∧ 𝜕𝜃′ .

(13)
Now, we consider the symplectic Hamiltonian system (𝑇∗𝑄, 𝜔𝑄,𝐻) of the harmonic oscillator

where, under the identification (12),𝐻 ∶ 𝑇∗𝑄 → ℝ is the Hamiltonian function given by

𝐻(𝑟, 𝜃, 𝑟′, 𝜃′) =
1
2

(
𝑟2 + (𝑟′)2

)
, (14)

with 𝑟, 𝑟′ ∈ ℝ+. In this case, the dynamics is given by the Hamiltonian vector field

𝑋
𝜔𝑄

𝐻 = 𝑟 cos(𝜃 − 𝜃′)𝜕𝑟′ + 𝑟
sin(𝜃 − 𝜃′)

𝑟′
𝜕𝜃′ − 𝑟′cos(𝜃 − 𝜃′)𝜕𝑟 + 𝑟′

sin(𝜃 − 𝜃′)
𝑟

𝜕𝜃.

We consider the action of ℝ+ on (ℝ+ × 𝑆1) × (ℝ+ × 𝑆1), whose infinitesimal generator is

Δ =
1
2
(𝑟𝜕𝑟 + 𝑟′𝜕𝑟′ ).

Note that it defines a scaling symmetry, since Δ𝜔𝑄 = 𝜔𝑄 and Δ𝐻 = 𝐻.
On the other hand, the diffeomorphism

ℝ+ × 𝑆1 × ℝ+ × 𝑆1 → ℝ+ × 𝑆1 × ℝ+ × 𝑆1

(𝑟, 𝜃, 𝑟′, 𝜃′) → (𝜌, 𝜃, 𝜌′, 𝜃′) =

(
𝑟, 𝜃,

𝑟′

𝑟
, 𝜃′

)
transforms the generatorΔ of theℝ+-action onℝ+ × 𝑆1 × ℝ+ × 𝑆1 into the vector field 1

2
𝜌𝜕𝜌. The

inverse of this map is (𝜌, 𝜃, 𝜌′, 𝜃′) → (𝜌, 𝜃, 𝜌𝜌′, 𝜃′). Then, we have that:

∙ The reduced space 𝕊(𝑇∗(ℝ+ × 𝑆1)) (see Example 1) is diffeomorphic to ℝ+ × 𝑆1 × 𝑆1. Under
this identification, the quotient map 𝐩 ∶ ℝ+ × 𝑆1 × ℝ+ × 𝑆1 → ℝ+ × 𝑆1 × 𝑆1 is just

𝐩(𝜌, 𝜃, 𝜌′, 𝜃′) = (𝜌′, 𝜃, 𝜃′)

∙ The contact 1-form under this identification is given by

𝜂 = 𝜄∗(𝑖Δ𝜔𝑄) =
1
2

(
𝜌′ sin(𝜃 − 𝜃′)(𝑑𝜃 + 𝑑𝜃′) + cos(𝜃 − 𝜃′)𝑑𝜌′

)
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14 BRAVETTI et al.

with (𝜌′, 𝜃, 𝜃′) ∈ ℝ+ × 𝑆1 × 𝑆1. Here 𝜄 ∶ ℝ+ × 𝑆1 × 𝑆1 → ℝ+ × 𝑆1 × ℝ+ × 𝑆1 is the inclusion
𝜄(𝜌′, 𝜃, 𝜃′) = (1, 𝜃, 𝜌′, 𝜃′).
The Reeb vector field associated with this contact 1-form is

 = 2 cos(𝜃 − 𝜃′)𝜕𝜌′ + 2
sin(𝜃 − 𝜃′)

𝜌′
𝜕𝜃′ .

From the homogeneity of the Poisson structure {⋅, ⋅}𝜔𝑄
with respect to the symplectic form

𝜔𝑄 we deduce that

{𝜌2ℎ, 𝜌2ℎ′}𝜔𝑄
=

1
2
𝜌𝜕𝜌{𝜌

2ℎ, 𝜌2ℎ′}𝜔𝑄
,

with ℎ, ℎ′ ∈ 𝐶∞(ℝ+ × 𝑆1 × 𝑆1). Therefore,

{𝜌2ℎ, 𝜌2ℎ′}𝜔𝑄
= 𝜌2{ℎ, ℎ′}𝐶,

where {⋅, ⋅}𝐶 is the Jacobi bracket on 𝐶 = ℝ+ × 𝑆1 × 𝑆1 and ℎ, ℎ′ ∈ 𝐶∞(𝐶).
From this fact and using the local expression of Π𝜔𝑄

with respect to the coordinates
(𝜌, 𝜃, 𝜌′, 𝜃′), we obtain the Jacobi bracket associated with the contact structure defined by 𝜂

{ℎ, ℎ′}𝐶 = −2 cos(𝜃 − 𝜃′)(ℎ𝜕𝜌′ℎ
′ − ℎ′𝜕𝜌′ℎ) − 2

sin(𝜃 − 𝜃′)
𝜌′

(ℎ𝜕𝜃′ℎ
′ − ℎ′𝜕𝜃′ℎ)

sin(𝜃 − 𝜃′)(𝜕𝜌′ℎ𝜕𝜃′ℎ
′ − 𝜕𝜌′ℎ

′𝜕𝜃′ℎ) + sin(𝜃 − 𝜃′)(𝜕𝜃ℎ𝜕𝜌′ℎ
′ − 𝜕𝜃ℎ

′𝜕𝜌′ℎ)

+
cos(𝜃 − 𝜃′)

𝜌′
(𝜕𝜃ℎ𝜕𝜃′ℎ

′ − 𝜕𝜃ℎ
′𝜕𝜃′ℎ).

(15)

Therefore, the Jacobi structure is given by

Π𝐶 = sin(𝜃 − 𝜃′)𝜕𝜌′ ∧ 𝜕𝜃′ − sin(𝜃 − 𝜃′)𝜕𝜌′ ∧ 𝜕𝜃 −
cos(𝜃 − 𝜃′)

𝜌′
𝜕𝜃 ∧ 𝜕𝜃′ ,

𝐸𝐶 = −2 cos(𝜃 − 𝜃′)𝜕𝜌′ − 2
sin(𝜃 − 𝜃′)

𝜌′
𝜕𝜃′ .

(16)

∙ The reduced Hamiltonian function𝐻 is the function𝐻|ℝ+×𝑆1×𝑆1(𝜌
′, 𝜃, 𝜃′) =

1

2
((𝜌′)2 + 1).

∙ The reduced vector field on ℝ+ × 𝑆1 × 𝑆1 is

𝑇𝐩(𝑋
𝜔𝑄

𝐻 ) = (1 + (𝜌′)2) cos(𝜃 − 𝜃′)𝜕𝜌′ + sin(𝜃 − 𝜃′)

(
1
𝜌′
𝜕𝜃′ + 𝜌′𝜕𝜃

)
, (17)

which is just the contact Hamiltonian vector field of the restriction 𝐻|ℝ+×𝑆1×𝑆1 with respect to
the contact 1-form 𝜂 or, equivalently, the Jacobi Hamiltonian vector field of 𝐻|ℝ+×𝑆1×𝑆1 with
respect to (Π𝐶, 𝐸𝐶).

In the previous example, the Hamiltonian function 𝐻 induces a function 𝐻|𝐶 on the reduced
space 𝐶. However, in general, we do not necessarily have a function on the reduced space, as the
following example proves.
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BRAVETTI et al. 15

Example 5. The projective cotangent Hamiltonian system deduced from a standard lin-
ear Hamiltonian system. Let 𝑌 ∈ 𝔛(𝑄) be a vector field on the manifold 𝑄 of dimension 𝑛. We
denote by 𝑌𝓁 ∶ 𝑇∗𝑄 → ℝ the fiberwise-linear function induced by 𝑌, that is,

𝑌𝓁(𝛼) =< 𝛼,𝑌(𝜏∗𝑄(𝛼)) >, ∀𝛼 ∈ 𝑇∗𝑄, (18)

with 𝜏∗𝑄 ∶ 𝑇∗𝑄 → 𝑄 the canonical projection. If (𝑞𝑖, 𝑝𝑖) are local coordinates of𝑇∗𝑄 − 0𝑄, the local
expression of 𝑌𝓁 is

𝑌𝓁(𝑞, 𝑝) = 𝑌𝑖(𝑞)𝑝𝑖,

where 𝑌(𝑞) = 𝑌𝑖(𝑞)𝜕𝑞𝑖 . We remark that the linearity of 𝑌𝓁 implies its homogeneity, that is,

𝑌𝓁(𝑠𝛼) = 𝑠𝑌𝓁(𝛼), for all 𝑠 ∈ ℝ − {0} and 𝛼 ∈ 𝑇∗𝑄,

with respect to the action given in (8).
The local expression of the Hamiltonian vector field 𝑋

𝜔𝑄

𝑌𝓁 ∈ 𝔛(𝑇∗𝑄) with respect to the
canonical symplectic structure 𝜔𝑄 on 𝑇∗𝑄 is

𝑋
𝜔𝑄

𝑌𝓁 = 𝑌𝑘𝜕𝑞𝑘 − 𝑝𝑗𝜕𝑞𝑘𝑌
𝑗𝜕𝑝𝑘 .

Moreover, if {⋅, ⋅}𝜔𝑄
is the Poisson bracket induced by 𝜔𝑄, then

{𝑌𝓁, 𝑍𝓁}𝜔𝑄
= −[𝑌, 𝑍]𝓁

for all 𝑌, 𝑍 ∈ 𝔛(𝑄).
Let 𝑈𝑖0 be the open subset of 𝑇

∗𝑄 − 0𝑄 given by

𝑈𝑖0 = {(𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛) ∈ 𝑇∗𝑄 − 0𝑄∕𝑝𝑖0 ≠ 0}.

Then, if 𝐻 is the restriction of 𝑌𝓁 to 𝑇∗𝑄 − 0𝑄, after the reduction process of the symplectic
Hamiltonian system (𝑇∗𝑄 − 0𝑄, 𝜔𝑄,𝐻) by the scaling symmetry, we have that:

∙ The corresponding reduced space is the projective cotangent bundle 𝐩 ∶ 𝑇∗𝑄 − 0𝑄 → ℙ(𝑇∗𝑄)
induced by the action (8). If we denote by 𝑝 = (𝑝1, … , 𝑝𝑖0−1, 𝑝𝑖0+1, … , 𝑝𝑛) the standard
coordinates on 𝐩(𝑈𝑖0) ⊆ ℙ(𝑇∗𝑄), then the local expression of the projection 𝐩 on 𝑈𝑖0 is

𝐩(𝑞1, … 𝑞𝑛, 𝑝1, …𝑝𝑛) =

(
𝑞1, … 𝑞𝑛,

𝑝1

𝑝𝑖0

, … ,
𝑝𝑖0−1

𝑝𝑖0

,
𝑝𝑖0+1

𝑝𝑖0

, … ,
𝑝𝑛

𝑝𝑖0

)
= (𝑞, 𝑝).

∙ The contact distribution on 𝐩(𝑈𝑖0) is just

((𝑞,𝑝))|𝐩(𝑈𝑖0 )
= 𝑇(𝑞,𝑝)𝐩(< 𝑝𝑖𝑑𝑞

𝑖 >𝑜) = 𝑇(𝑞,𝑝)𝐩 < 𝑋1, … , 𝑋𝑖0−1, 𝑋𝑖0+1, … , 𝑋𝑛, 𝜕𝑝1 , … , 𝜕𝑝𝑛 >

= < 𝑋1,… , 𝑋𝑖0−1, 𝑋𝑖0+1, … , 𝑋𝑛, 𝜕𝑝1 , … , 𝜕𝑝𝑖0−1 , 𝜕𝑝𝑖0+1 , … , 𝜕𝑝𝑛 >
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16 BRAVETTI et al.

with𝑋𝑖 = 𝑝𝑖𝜕𝑞𝑖0 − 𝑝𝑖0𝜕𝑞𝑖 ,𝑋𝑖 = 𝑝𝑖𝜕𝑞𝑖0 − 𝑝𝑖0𝜕𝑞𝑖 . Moreover, the local expression of the line bundle
𝜋𝑜 ∶ 𝑜 → ℙ(𝑇∗𝑄) on 𝐩(𝑈𝑖0) is

𝜋𝑜 (𝑞, 𝑝, 𝑡) = (𝑞, 𝑝).

∙ The section ℎ𝑌𝓁 ∶ ℙ(𝑇∗𝑄) → (𝑜)∗ of 𝜋(𝑜)∗ ∶ (𝑜)∗ → ℙ(𝑇∗𝑄) associated with 𝑌𝓁 is defined
locally by

ℎ𝑌𝓁(𝑞, 𝑝)(𝑞, 𝑝, 𝑡) = 𝑌𝓁(𝑞, 𝑝1, … , 𝑝𝑖0−1, 𝑡, 𝑝𝑖0+1 ⋯ , 𝑝𝑛) = 𝑌𝑖(𝑞)𝑝𝑖 + 𝑌𝑖0(𝑞)𝑡. (19)

∙ The Kirillov bracket [⋅, ⋅](𝑜)∗ on the sections of the dual of the line bundle 𝜋𝑜 satisfies the
condition

[ℎ𝑋𝓁, ℎ𝑌𝓁](𝑜)∗ = −ℎ{𝑋𝓁,𝑌𝓁}𝜔𝑄
= ℎ[𝑋,𝑌]𝓁 .

∙ The Hamiltonian vector field𝑋𝜔𝑄

𝑌𝓁 ∈ 𝔛(𝑇∗𝑄) is 𝐩-projectable to a vector field onℙ(𝑇∗𝑄)whose
local expression is

𝑌𝑖𝜕𝑞𝑖 +
(
𝑝𝑗(𝑝𝑖𝜕𝑞𝑖0 𝑌

𝑗 − 𝜕𝑞𝑖𝑌
𝑗) + 𝑝𝑖𝜕𝑞𝑖0 𝑌

𝑖0 − 𝜕𝑞𝑖𝑌
𝑖0
)
𝜕𝑝𝑖 .

The particular case of a Lie group. When 𝑄 is a Lie group 𝐺 and the vector field 𝑌 on 𝐺 is
left-invariant, we have (see Example 3):

∙ The vector field 𝑌 is given by 𝑌(𝑔) = 𝑇𝑒𝐿𝑔(𝜉), with 𝜉 an element of the Lie algebra 𝔤 of 𝐺.
∙ The linear function 𝑌𝓁 ∶ 𝐺 × 𝔤∗ → ℝ is just 𝑌𝓁(𝑔, 𝛼) = 𝛼(𝜉).
∙ The reduced space is 𝐺 × ℙ𝔤∗.
∙ The contact structure is the distribution on 𝐺 × ℙ𝔤∗ given by

(𝑔,𝑝(𝜇)) =
⟨
(𝑇𝑔𝐿𝑔−1)

∗(𝜇)
⟩𝑜

× 𝑇𝑝(𝜇)(ℙ𝔤
∗) for all 𝑔 ∈ 𝐺 and 𝜇 ∈ 𝔤∗ − {0}.

Here, 𝑝 ∶ 𝔤∗ − {0} → ℙ𝔤∗ is the corresponding quotient map determined by the scaling
symmetry on 𝔤∗ − {0}.

∙ The fiber of the line bundle 𝜋𝑜 ∶ 𝑜 → 𝐺 × ℙ𝔤∗ at (𝑔, 𝜇) ∈ 𝐺 × ℙ𝔤∗ is just

𝑜
(𝑔,𝑝(𝜇)) =

⟨
(𝑇𝑔𝐿𝑔−1)

∗(𝜇)
⟩
.

∙ The reduced Hamiltonian section of 𝜋(𝑜)∗ ∶ (𝑜)∗ → 𝐺 × ℙ𝔤∗ induced by 𝑌𝓁 is

ℎ𝜉(𝑔, 𝑝(𝜇))(𝑡(𝑇𝑔𝐿𝑔−1)
∗(𝜇)) = 𝑡𝜇(𝜉)

with 𝑔 ∈ 𝐺, 𝜇 ∈ 𝔤∗ − {0} and 𝜉 = 𝑌(𝑒).
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BRAVETTI et al. 17

∙ Under the identification 𝑇∗𝐺 − 0𝐺 ≅ 𝐺 × (𝔤∗ − {0}), the symplectic structure 𝜔𝐺 is given by

𝜔𝐺(𝑔, 𝜇)((𝑣1, 𝜇1), (𝑣2, 𝜇2)) = −𝜇1(𝑇𝑔𝐿𝑔−1(𝑣2)) + 𝜇2(𝑇𝑔𝐿𝑔−1(𝑣1)) + 𝜇[𝑇𝑔𝐿𝑔−1(𝑣1), 𝑇𝑔𝐿𝑔−1(𝑣2)]𝔤

for all 𝑔 ∈ 𝐺, 𝜇, 𝜇1, 𝜇2 ∈ 𝔤∗ and 𝑣1, 𝑣2 ∈ 𝑇𝑔𝐺 (see Ref. 1). Here, [⋅, ⋅]𝔤 is the Lie algebra structure
on 𝔤. Then, the Hamiltonian vector field 𝑋𝜔𝐺

𝑌𝓁 ∈ 𝔛(𝑇∗𝐺 − 0𝐺) can be identified with the pair

(𝑌, {⋅, 𝜉𝓁}𝔤∗−{0}) ∈ 𝔛(𝐺) × 𝔛(𝔤∗ − {0}),

where 𝜉𝓁 is the restriction to 𝔤∗ − {0} of the linear function 𝜉𝓁 ∶ 𝔤∗ → ℝ induced by 𝜉 and
{⋅, ⋅}𝔤∗−{0} is the restriction to functions on 𝔤∗ − {0} of the Lie–Poisson bracket on 𝔤∗. We recall
that this bracket is characterized by

{𝜉𝓁1 , 𝜉
𝓁
2 }𝔤∗(𝛼) = −𝛼([𝜉1, 𝜉2]𝔤), (20)

with 𝛼 ∈ 𝔤∗ and 𝜉𝑖 ∈ 𝔤 (for more details, see Ref. 1).
The reduced vector field after this reduction is just (𝑌, 𝑋ℎ𝜉 ) ∈ 𝔛(𝐺) × 𝔛(ℙ𝔤∗), such that

𝑋ℎ𝜉 (𝑓)◦𝑝 = {𝑓◦𝑝, 𝜉𝓁}𝔤∗−{0}, ∀𝑓 ∈ 𝐶∞(ℙ𝔤∗), (21)

which is the symbol of the derivation [⋅, ℎ𝜉](𝑜)∗ .
A more explicit (local) expression of the vector field 𝑋ℎ𝜉 ∈ 𝔛(ℙ𝔤∗) may be obtained as fol-

lows. For each 𝜈 ∈ 𝔤 − {0}, one can consider the coordinate open neighborhood 𝑝(𝑈) of ℙ𝔤∗
with 𝑈 = {𝛼 ∈ 𝔤∗∕𝜈𝓁(𝛼) = 𝛼(𝜈) ≠ 0}. On 𝑝(𝑈), the typical local coordinates in ℙ𝔤∗ have the
form r(𝜁, 𝜈) characterized by

r(𝜁, 𝜈)◦𝑝 =
𝜁𝓁

𝜈𝓁

with 𝜁 ∈ 𝔤 − {0}. Moreover, using (20) and (21), we deduce that

𝑋ℎ𝜉 (𝑟(𝜁, 𝜈))◦𝑝 =
𝜁𝓁([𝜈, 𝜉]𝔤)

𝓁 − 𝜈𝓁([𝜁, 𝜉]𝔤)
𝓁

(𝜈𝓁)2
. (22)

Given the above facts, it is natural to ask if it is possible to extend the previous reduction to a
PoissonHamiltonian system, not necessarily symplectic. The following result gives an affirmative
answer to this question. Before that, we introduce the notion of scaling symmetry for this kind of
systems.

Definition 3. If (𝑃,Π,𝐻) is a Poisson Hamiltonian system on the Poisson manifold (𝑃,Π), a
scaling symmetry for (𝑃,Π,𝐻) is a principal action 𝜙𝑃 ∶ ℝ× × 𝑃 → 𝑃 of the multiplicative group
ℝ× (with ℝ× = ℝ+ or ℝ× = ℝ − {0}) on 𝑃 such that the Poisson structure Π and the function 𝐻
are homogeneous with respect to the action 𝜙𝑃, that is,

∧2𝑇𝜙𝑃
𝑠 ◦Π = 𝑠Π◦𝜙𝑃

𝑠 and 𝐻◦𝜙𝑃
𝑠 = 𝑠𝐻 for 𝑠 ∈ ℝ×, (23)

where ∧2𝑇𝜙𝑃
𝑠 ∶ ∧2𝑇𝑃 → ∧2𝑇𝑃 is the vector bundle isomorphism induced by 𝜙𝑃

𝑠 ∶ 𝑃 → 𝑃.
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18 BRAVETTI et al.

The conditions in (23) are equivalent to the following ones:

{𝐹◦𝜙𝑃
𝑠 , 𝐺◦𝜙

𝑃
𝑠 }𝑃 = 𝑠({𝐹, 𝐺}𝑃◦𝜙

𝑃
𝑠 ) and 𝐻◦𝜙𝑃

𝑠 = 𝑠𝐻 , for 𝐹,𝐺 ∈ 𝐶∞(𝑃) and 𝑠 ∈ ℝ×, (24)

where {⋅, ⋅}𝑃 is the Poisson bracket of functions on 𝑃.
We remark that (23) implies that the Poisson structure Π and the Hamiltonian function 𝐻

satisfy (see Refs. 31, 43)
Δ𝑃

Π = −Π and Δ𝑃
𝐻 = 𝐻,

where Δ𝑃 is the infinitesimal generator of 𝜙𝑆 . Moreover, if ℝ× is connected (i.e., ℝ× = ℝ+) the
previous conditions are equivalent to (23). In addition, in the case of a symplectic manifold (𝑆, 𝜔),
the condition

∧2𝑇𝜙𝑃
𝑠 ◦Π𝜔 = 𝑠Π𝜔◦𝜙

𝑃
𝑠 ,

with Π𝜔 the Poisson structure induced by 𝜔, is equivalent to (𝜙𝑃
𝑠 )

∗𝜔 = 𝑠𝜔.
Now, we have the following result whose proof is similar to the proof in the symplectic case

given in Ref. 30.

Theorem 1. Let 𝐩𝐏 ∶ 𝑃 → 𝐾 = 𝑃∕ℝ× be a principal ℝ×-bundle with total space a homogeneous
Poisson manifold (𝑃,Π). If 𝜋𝐿 ∶ 𝐿 → 𝐾 is the line bundle associated with the principal bundle 𝐩𝐏
(see the Appendix), then:

(a) There is a one-to-one correspondence between homogeneous functions 𝐻 ∶ 𝑃 → ℝ and sec-
tions ℎ𝐻 ∶ 𝐿∗ → 𝐾 of the dual line bundle 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 of 𝜋𝐿.

(b) On the space Γ(𝐿∗) of the sections of the line bundle 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾, we have a Kirillov bracket

[⋅, ⋅]𝐿∗ ∶ Γ(𝐿∗) × Γ(𝐿∗) → Γ(𝐿∗)

such that the Poisson bracket {𝐻1,𝐻2}𝑃 of two homogeneous functions𝐻1,𝐻2 ∶ 𝑃 → ℝ is just

{𝐻1,𝐻2}𝑃 = −𝐻[ℎ𝐻1 ,ℎ𝐻2 ]𝐿∗
,

where𝐻[ℎ𝐻1 ,ℎ𝐻2 ]𝐿∗
is the homogeneous function on 𝑃 associated with [ℎ𝐻1

, ℎ𝐻2
]𝐿∗ .

(c) The Hamiltonian vector field 𝑋
{⋅,⋅}𝑃
𝐻 = −𝑖(𝑑𝐻)Π ∈ 𝔛(𝑃) of a homogeneous function 𝐻 with

respect to the Poisson bracket {⋅, ⋅}𝑃 is 𝐩𝐏-projectable and its projection is the symbol 𝑋
[⋅,⋅]𝐿∗
ℎ𝐻

∈

𝔛(𝐾) of the derivation [⋅, ℎ𝐻]𝐿∗ , that is, the following diagram is commutative.

(d) We have that [
𝑋
[⋅,⋅]𝐿∗
ℎ1

, 𝑋
[⋅,⋅]𝐿∗
ℎ2

]
= −𝑋

[⋅,⋅]𝐿∗
[ℎ1,ℎ2]𝐿∗

for all ℎ1, ℎ2 ∈ Γ(𝐿∗).
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BRAVETTI et al. 19

Proof. For a proof of (a) see the Appendix.
If𝐻1,𝐻2 are two homogeneous functions then,

𝐻1◦𝜙
𝑃
𝑠 = 𝑠𝐻1 and𝐻2◦𝜙

𝑃
𝑠 = 𝑠𝐻2 ,

and, using (24), we deduce that

{𝐻1◦𝜙
𝑃
𝑠 , 𝐻2◦𝜙

𝑃
𝑠 }𝑃 = 𝑠({𝐻1,𝐻2}𝑃◦𝜙

𝑃
𝑠 ),

which implies that

𝑠{𝐻1,𝐻2}𝑃 = {𝐻1,𝐻2}𝑃◦𝜙
𝑃
𝑠 ,

that is, the function {𝐻1,𝐻2}𝑃 is homogeneous. Thus, the Poisson bracket {⋅, ⋅}𝑃 is closed for
homogeneous functions with respect to Δ𝑃.
Using this fact andPropositionA.1 (see theAppendix),wemaydefine a bracket [⋅, ⋅]𝐿∗ ∶ Γ(𝐿∗) ×

Γ(𝐿∗) → Γ(𝐿∗) on the space Γ(𝐿∗) of the sections of 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 which is characterized by

𝐻[ℎ1,ℎ2]𝐿∗ = −{𝐻ℎ1 ,𝐻ℎ2}𝑃, with ℎ1, ℎ2 ∈ Γ(𝐿∗). (25)

This bracket was described (up to the sign) in Ref. 29 (Theorem 3.2). Using the fact that the
Poisson bracket {⋅, ⋅}𝑃 defines a Lie algebra on the space of functions on 𝑃 and (25), we deduce
that [⋅, ⋅]𝐿∗ is a Lie bracket. Moreover, for a 𝐶∞ function 𝑓 ∶ 𝐾 → ℝ, from the properties of the
Poisson bracket {⋅, ⋅}𝑃, we have that

𝐻[𝑓ℎ1,ℎ2]𝐿∗ = −{𝐻𝑓ℎ1 , 𝐻ℎ2}𝑃 = −{(𝑓◦𝐩𝐏)𝐻ℎ1 ,𝐻ℎ2}𝑃

= −(𝑓◦𝐩𝐏){𝐻ℎ1 ,𝐻ℎ2}𝑃 − {(𝑓◦𝐩𝐏),𝐻ℎ2}𝑃𝐻ℎ1

= (𝑓◦𝐩𝐏)𝐻[ℎ1,ℎ2]𝐿∗ + 𝑋
{⋅,⋅}𝑃
𝐻ℎ2

(𝑓◦𝐩𝐏)𝐻ℎ1 .

(26)

On the other hand, using the homogeneity of Π and𝐻ℎ2 , we deduce that

Δ𝑃
𝑋
{⋅,⋅}𝑃
𝐻ℎ2

= −Δ𝑃
𝑖𝑑𝐻ℎ2

Π = −𝑖𝑑𝐻ℎ2
Δ𝑃

Π − 𝑖(𝑑(Δ𝑃(𝐻ℎ2)))Π = 0,

or, equivalently, 𝑋{⋅,⋅}𝑃
𝐻ℎ2

is 𝐩𝐏-projectable. Then, there is a vector field 𝑋
[⋅,⋅]𝐿∗
ℎ2

on 𝐾 such that

𝑋
[⋅,⋅]𝐿∗
ℎ2

◦𝐩𝐏 = 𝑇𝐩𝐏◦𝑋
{⋅,⋅}𝑃
𝐻ℎ2

. (27)

From (26) and (27), we have that

𝐻[𝑓ℎ1,ℎ2]𝐿∗ = (𝑓◦𝐩𝐏)𝐻[ℎ1,ℎ2]𝐿∗ + (𝑋
[⋅,⋅]𝐿∗
ℎ2

(𝑓)◦𝐩𝐏)𝐻ℎ1 ,

and consequently (see (9)) we have a Kirillov structure on the space of sections of 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾

and the symbol of [⋅, ℎ]𝐿∗ is just the 𝐩𝐏-projection on𝐾 of the Hamiltonian vector field𝑋{⋅,⋅}𝑃
𝐻ℎ

. This
proves (b) and (c).
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20 BRAVETTI et al.

Finally, from (27) and using that
[
𝑋
{⋅,⋅}𝑃
𝐻ℎ1

, 𝑋
{⋅,⋅}𝑃
𝐻ℎ2

]
= −𝑋

{⋅,⋅}𝑃
{𝐻ℎ1 ,𝐻ℎ2 }𝑃

, we have that

[
𝑋
[⋅,⋅]𝐿∗
ℎ1

, 𝑋
[⋅,⋅]𝐿∗
ℎ2

]
= −𝑋

[⋅,⋅]𝐿∗
[ℎ1,ℎ2]𝐿∗

.

Therefore, we deduce (d). □

Remark 2. In Ref. 31, Marle proves that if 𝜋𝐿 ∶ 𝐿 → 𝐾 is a line bundle endowed with a Kirillov
structure – (𝐿∗, 𝜋𝐿∗ , 𝐾) is a Jacobi bundle in his terminology—and ℎ ∶ 𝐾 → 𝐿∗ is a section of
𝜋𝐿∗ , then one can induce a Poisson structureΠ on 𝐿∗ (which is homogeneous with respect to the
negative of the Euler vector fieldΔ on 𝐿∗), a differentiable function𝐻 ∶ 𝑃 ∶= (𝐿∗ − 0𝐿∗) → ℝ and
a vector field 𝑋 on 𝐿∗ such that:

∙ The restriction of 𝑋 to 𝑃 is just the Hamiltonian vector field induced by Π and𝐻.
∙ The vector field 𝑋 projects on a vector field 𝑋ℎ on 𝐾

(see Theorem 4.3 and Proposition 4.7 in Ref. 31). Therefore, if the flow of Δ induces a principal
action on𝑃, thenwehave a PoissonHamiltonian system (𝑃,Π,𝐻)with a scaling symmetry in such
a way that the corresponding reduced Kirillov Hamiltonian system is just the original system. So,
Marle’s result may be considered as a converse of Theorem 1.

Remark 3. In Ref. 54 (see Theorem 2.2.6 of Ref. 54), the authors obtain a one-to-one correspon-
dence between Atiyah (𝑙,𝑚)-tensors on a line bundle and homogeneous (𝑙,𝑚)-tensors on its slit
dual bundle (the dual bundle with the zero section removed). Using this general result, one could
prove that there exists a one-to-one correspondence between Kirillov structures on the line bun-
dle and homogeneous Poisson structures on its slit dual bundle (see Example 2.4.2 in Ref. 54).
Anyway, in order to have our paper more self-contained, we have included a direct and simple
proof of the items (a), (b), (c), and (d) of Theorem 1.

The following diagram summarizes Theorem 1.

4 REDUCTION OF SYMPLECTIC HAMILTONIAN SYSTEMS USING
FIRST STANDARD SYMMETRIES AND THEN SCALING SYMMETRIES

In this section, we will discuss the reduction of symplectic Hamiltonian systems which are invari-
ant under the action of a symmetry Lie group and, in addition, admit a scaling symmetry. The
standard and the scaling symmetries will be compatible in the following sense.
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BRAVETTI et al. 21

Definition 4. Let (𝑆, 𝜔,𝐻) be a symplecticHamiltonian system. Suppose that𝜙𝑆 ∶ ℝ× × 𝑆 → 𝑆 is
a scaling symmetry on (𝑆, 𝜔,𝐻). In addition, suppose that we have a Lie group𝐺 and a𝐺-principal
bundle ℘𝑆 ∶ 𝑆 → 𝑆∕𝐺 such that the corresponding action Φ𝑆 ∶ 𝐺 × 𝑆 → 𝑆 on the symplectic
manifold 𝑆 satisfies:

(i) (Φ𝑆
𝑔)

∗(𝜔) = 𝜔, for 𝑔 ∈ 𝐺, that is, the action Φ𝑆 is symplectic.
(ii) 𝐻 ∶ 𝑆 → ℝ is 𝐺-invariant, that is, 𝐻(Φ𝑆(𝑔, 𝑥)) = 𝐻(𝑥), for all 𝑥 ∈ 𝑆 and 𝑔 ∈ 𝐺.
(iii) The symplectic and the scaling actions commute, that is,Φ𝑆

𝑔◦𝜙
𝑆
𝑠 = 𝜙𝑆

𝑠 ◦Φ
𝑆
𝑔 , for all 𝑠 ∈ ℝ× and

𝑔 ∈ 𝐺.
(iv) ℝ×𝑥 ∩ 𝐺𝑥 = {𝑥}, for all 𝑥 ∈ 𝑆, where ℝ×𝑥 is the ℝ×-orbit at 𝑥 and 𝐺𝑥 is the 𝐺-orbit at 𝑥.
(v) The quotient space (𝑆∕ℝ×)∕𝐺 induced by the action Φ𝑆∕ℝ×

∶ 𝐺 × 𝑆∕ℝ× → 𝑆∕ℝ×

Φ
𝑆∕ℝ×

𝑔 [𝑥] = [Φ𝑆
𝑔(𝑥)]

is Hausdorff.

In this case, we say that the dynamical system (𝑆, 𝜔,𝐻) admits a scaling symmetry 𝜙𝑆 ∶ ℝ× ×
𝑆 → 𝑆 and a symplectic 𝐺-symmetry Φ𝑆 ∶ 𝐺 × 𝑆 → 𝑆 which are compatible.

Remark 4.

(i) Note that the previous conditions (i) and (ii) imply that

𝜉𝑆Π𝜔 = 0 and 𝜉𝑆𝐻 = 0, (28)

where 𝜉𝑆 is the infinitesimal generator of the action Φ𝑆 associated with an element 𝜉 of the
Lie algebra 𝔤 of 𝐺 and Π𝜔 is the Poisson bivector on 𝑆 induced by the symplectic structure
𝜔. If 𝐺 is connected, then the conditions (i) and (ii) are equivalent to (28).

(ii) We remark that, from (iii) in Definition 4, the𝐺-actionΦ𝑆∕ℝ× on the quotientmanifold 𝑆∕ℝ×

is well-defined. Moreover, using (iv), we have that this action is free and, thus,

𝐺𝑟𝑎𝑝ℎ(Φ𝑆∕ℝ×
) = {([𝑥], [Φ𝑆

𝑔(𝑥)]) ∈ 𝑆∕ℝ× × 𝑆∕ℝ×∕𝑥 ∈ 𝑆, 𝑔 ∈ 𝐺}

is a submanifold of 𝑆∕ℝ× × 𝑆∕ℝ×. In addition, condition (v) is equivalent to the fact that
𝐺𝑟𝑎𝑝ℎ(Φ𝑆∕ℝ×

) is a closed submanifold of 𝑆∕ℝ× × 𝑆∕ℝ× and, therefore, (𝑆∕ℝ×)∕𝐺 is a quo-
tient manifold (see Theorem 4.1.20 in Ref. 1). On the other hand, if 𝐩𝐒 ∶ 𝑆 → 𝑆∕ℝ× is the
canonical projection then, using (𝑖𝑖𝑖) in Definition 4, we have that

(𝐩𝑆 × 𝐩𝑆)
−1(𝐺𝑟𝑎𝑝ℎ(Φ𝑆∕ℝ×

)) = {(𝑥, Φ𝑆
𝑔(𝜙

𝑆
𝑠 (𝑥))) ∈ 𝑆 × 𝑆∕𝑥 ∈ 𝑆, 𝑠 ∈ ℝ× and 𝑔 ∈ 𝐺}.

So, condition (v) is equivalent to

𝐺𝑟𝑎𝑝ℎ(Φ𝑆, 𝜙𝑆) ∶= {(𝑥, Φ𝑆
𝑔(𝜙

𝑆
𝑠 (𝑥))) ∈ 𝑆 × 𝑆∕𝑥 ∈ 𝑆, 𝑠 ∈ ℝ× and 𝑔 ∈ 𝐺}

is a closed subset of 𝑆 × 𝑆.
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22 BRAVETTI et al.

(iii) Using again (iii), we can induce an ℝ×-action Φ𝑆∕𝐺 on the quotient manifold 𝑆∕𝐺 and, as
in the previous case, the quotient space (𝑆∕𝐺)∕ℝ× is Hausdorff if and only if 𝐺𝑟𝑎𝑝ℎ(Φ𝑆, 𝜙𝑆)
is a closed submanifold of 𝑆 × 𝑆. So, the spaces (𝑆∕ℝ×)∕𝐺 and (𝑆∕𝐺)∕ℝ× are smooth mani-
folds and the canonical projections 𝑆∕𝐺 → (𝑆∕𝐺)∕ℝ× and 𝑆∕ℝ× → (𝑆∕ℝ×)∕𝐺 are surjective
submersions.

(iv) Using that the scaling action and the𝐺-action commute, it is easy to prove that the condition
(iv) in Definition 4 is equivalent to the fact that the actions Φ𝑆∕ℝ× and 𝜙𝑆∕𝐺 are free. Thus,
the conditions in Definition 4 imply that these actions are principal.

(v) From the previous comments, it follows that we have two chains of principal bundles

𝑆 ⟶ 𝑆∕ℝ× ⟶ (𝑆∕ℝ×)∕𝐺 and 𝑆 ⟶ 𝑆∕𝐺 ⟶ (𝑆∕𝐺)∕ℝ×

(this will be the situation in our examples). So, one could consider a more general point of
view using double principal bundles (see Ref. 55).

4.1 The first step: Reduction by standard symmetries

It is well-known (see Ref. 36) that the symplectic structure on 𝑆 induces a Poisson bracket {⋅, ⋅}𝑃
on the quotient manifold 𝑃 ∶= 𝑆∕𝐺 characterized by

{𝑓1◦℘𝑆, 𝑓2◦℘𝑆}𝑆 = {𝑓1, 𝑓2}𝑃◦℘𝑆 (29)

with 𝑓𝑖 ∈ 𝐶∞(𝑃), where {⋅, ⋅}𝑆 is the Poisson bracket induced by the symplectic structure 𝜔 on
𝑆. Consequently, the Poisson structure Π𝑃 on 𝑃 and the Poisson structure Π𝜔 induced by the
symplectic structure 𝜔 are related as follows:

∧2𝑇℘𝑆◦Π𝜔 = Π𝑃◦℘𝑆. (30)

In addition, from the 𝐺-invariance of𝐻, there is a reduced Hamiltonian function𝐻𝐺 ∶ 𝑃 → ℝ
such that

𝐻𝐺◦℘𝑆 = 𝐻. (31)

Moreover, the Hamiltonian vector field 𝑋𝜔
𝐻 ∈ 𝔛(𝑆) is ℘𝑆-projectable and its projection is just

the Hamiltonian vector field 𝑋{⋅,⋅}𝑃
𝐻𝐺 = {⋅, 𝐻𝐺}𝑃 ∈ 𝔛(𝑃) associated with the Poisson structure Π𝑃.

The following diagram summarizes this first reduction process.
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BRAVETTI et al. 23

On the other hand, using that Φ𝑆
𝑔◦𝜙

𝑆
𝑠 = 𝜙𝑆

𝑠 ◦Φ
𝑆
𝑔 , for all 𝑠 ∈ ℝ× and 𝑔 ∈ 𝐺, the ℝ×-action 𝜙𝑆

induces an action 𝜙𝑃 ∶ ℝ× × 𝑃 → 𝑃 characterized by

𝜙𝑃
𝑠 (℘𝑆(𝑥)) = ℘𝑆(𝜙

𝑆
𝑠 (𝑥)), for all 𝑥 ∈ 𝑆 and 𝑠 ∈ ℝ×. (32)

As we know, 𝜙𝑃 is a principal action (see Remark 4). In fact, we have

Proposition 1. 𝜙𝑃 is a scaling symmetry for the Poisson Hamiltonian system (𝑃,Π𝑃,𝐻
𝐺).

Proof. Given 𝑠 ∈ ℝ×, using (30) and (32), it follows that

∧2𝑇𝜙𝑃
𝑠 ◦Π𝑃◦℘𝑆 = ∧2𝑇𝜙𝑃

𝑠 ◦ ∧2 𝑇℘𝑆◦Π𝜔 = ∧2𝑇℘𝑆◦ ∧2 𝑇𝜙𝑆
𝑠 ◦Π𝜔.

Now, since 𝜙𝑆 is a scaling symmetry for the symplectic manifold (𝑆, 𝜔), we deduce that

∧2𝑇𝜙𝑃
𝑠 ◦Π𝑃◦℘𝑆 = 𝑠 ∧2 𝑇℘𝑆◦Π𝜔◦𝜙

𝑆
𝑠

and, using again (30), we obtain that

∧2𝑇𝜙𝑃
𝑠 ◦Π𝑃◦℘𝑆 = 𝑠Π𝑃◦𝜙

𝑃
𝑠 ◦℘𝑆.

This implies that

∧2𝑇𝜙𝑃
𝑠 ◦Π𝑃 = 𝑠Π𝑃◦𝜙

𝑃
𝑠 .

On the other hand, from (31) and (32), it follows that

𝐻𝐺◦𝜙𝑃
𝑠 ◦℘𝑆 = 𝐻𝐺◦℘𝑆◦𝜙

𝑆
𝑠 = 𝐻◦𝜙𝑆

𝑠

and, since𝐻 is a homogeneous function for the action 𝜙𝑆 , we deduce that

𝐻𝐺◦𝜙𝑃
𝑠 ◦℘𝑆 = 𝑠𝐻 = 𝑠𝐻𝐺◦℘𝑆,

where for the last equality we use again (31). This implies that

𝐻𝐺◦𝜙𝑃
𝑠 = 𝑠𝐻 = 𝑠𝐻𝐺,

which ends the proof of the result. □

Now, we may apply the scaling reduction process.

4.2 The second step: Reduction by scaling symmetry

Consider the Poisson Hamiltonian system (𝑃,Π𝑃, 𝐻𝐺) obtained in the previous subsection by
reduction from the symplectic Hamiltonian system (𝑆, 𝜔,𝐻). In the second step of the reduction
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24 BRAVETTI et al.

process, we will apply Theorem 1 to the Poisson Hamiltonian system (𝑃,Π𝑃,𝐻
𝐺) and the scaling

symmetry 𝜙𝑃 ∶ ℝ× × 𝑃 → 𝑃.
The complete reduction process is described in the following theorem.

Theorem 2. Let (𝑆, 𝜔,𝐻) be a symplectic Hamiltonian system with compatible scaling symmetry
𝜙𝑆 ∶ ℝ× × 𝑆 → 𝑆 and symplectic 𝐺-symmetry Φ𝑆 ∶ 𝐺 × 𝑆 → 𝑆, 𝐺 being a Lie group. Then:

(1) The multiplicative groupℝ× acts on the Poisson manifold 𝑃 = 𝑆∕𝐺 such that the corresponding
quotientmap 𝐩𝐏 ∶ 𝑃 → 𝑃∕ℝ× is aℝ×-principal bundle.Moreover, if𝜋𝐿 ∶ 𝐿 → 𝐾 = 𝑃∕ℝ× is the
line bundle associated with 𝐩𝐏 ∶ 𝑃 → 𝐾 = 𝑃∕ℝ×, then the homogeneous function𝐻𝐺 ∶ 𝑃 → ℝ
induces a section ℎ𝐻𝐺 ∶ 𝐾 → 𝐿∗ of the dual line bundle 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 of 𝜋𝐿.

(2) On the space of sections Γ(𝐿∗) of 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾, we have a Kirillov bracket

[⋅, ⋅]𝐿∗ ∶ Γ(𝐿∗) × Γ(𝐿∗) → Γ(𝐿∗)

such that, if {⋅, ⋅}𝑃 is the Poisson bracket on 𝑃,

[ℎ𝐻𝐺
1
, ℎ𝐻𝐺

2
]𝐿∗ = −ℎ{𝐻𝐺

1 ,𝐻
𝐺
2 }𝑃

for𝐻𝐺
1 ,𝐻

𝐺
2 ∈ 𝐶∞(𝑃) homogeneous functions on 𝑃.

(3) The Hamiltonian vector field 𝑋𝜔
𝐻 is (𝐩𝐏◦℘𝑆)-projectable on 𝐾 and its projection is the symbol

𝑋
[⋅,⋅]𝐿∗
ℎ𝐻𝐺

∈ 𝔛(𝐾) of [⋅, ℎ𝐻𝐺 ]𝐿∗ .

The following diagram illustrates both reduction processes together.

4.3 Examples

In this subsection, we will apply the previous reduction processes to Examples 4 and 5.

Example 6. Continuing Example 4: The 2D harmonic oscillator reduced first by a
standard and then by a scaling symmetry. In this case, we have:
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BRAVETTI et al. 25

(1) A standard rotational 𝑆1-symmetry, with infinitesimal generator 𝜉𝑆 = 𝑥𝜕𝑦 − 𝑦𝜕𝑥 + 𝑝𝑥𝜕𝑝𝑦 −

𝑝𝑦𝜕𝑝𝑥 , where (𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦) are coordinates on 𝑆 = 𝑇∗(ℝ2 − {(0, 0)}). Using the identification
ℝ+ × 𝑆1 × ℝ+ × 𝑆1 ≅ 𝑇∗(ℝ2 − {(0, 0)}) − 0ℝ2−{(0,0)}, the local expression of 𝜉𝑆 is

𝜉𝑆 = 𝜕𝜃 + 𝜕𝜃′ ,

where (𝑟, 𝜃, 𝑟′, 𝜃′) are polar coordinates on ℝ+ × 𝑆1 × ℝ+ × 𝑆1.
(2) A scaling ℝ+-symmetry, with generator

Δ𝑆 =
1
2
(𝑟𝜕𝑟 + 𝑟′𝜕𝑟′ ).

One can also easily check that [𝜉𝑆, Δ𝑆] = 0 and thus, since the multiplicative groupℝ+ and 𝑆1
are connected, the two symmetries commute. Therefore, the corresponding actions satisfy (i), (ii),
and (iii) of Definition 4. We shall see below that they also satisfy (iv) and (v), so we can apply The-
orem 2. In order to highlight all the mechanisms involved, we will proceed by steps and indicate
the main derivations.
In the first step, with the 𝑆1-symmetry, the reduced objects are:

∙ The reduced space: We perform the reduction by the standard symmetry, obtaining the
Poisson system (𝑃,Π𝑃,𝐻

𝐺). First, we have that the symplectomorphism

ℝ+ × 𝑆1 × ℝ+ × 𝑆1 → 𝑆1 × (ℝ+ × ℝ+ × 𝑆1)

((𝑟, 𝜃), (𝑟′, 𝜃′)) → (𝜃, (𝑟, 𝑟′, 𝛼)) = (𝜃, (𝑟, 𝑟′, 𝜃 − 𝜃′))

transforms 𝜉𝑆 into 𝜕𝜃. Using this identification, the quotient manifold (ℝ+ × 𝑆1 × ℝ+ × 𝑆1)∕𝑆1

is just

𝑃 = ℝ+ × ℝ+ × 𝑆1

and the reduced Poisson structure on 𝑃 is given by (see (13))

Π𝑃(𝑟, 𝑟
′, 𝛼) = − cos 𝛼 𝜕𝑟 ∧ 𝜕𝑟′ +

sin 𝛼
𝑟′

𝜕𝑟 ∧ 𝜕𝛼 −
sin 𝛼
𝑟

𝜕𝑟′ ∧ 𝜕𝛼, (33)

where (𝑟, 𝑟′, 𝛼) are local coordinates on ℝ+ × ℝ+ × 𝑆1.
∙ The reduced Hamiltonian function: The reduced Hamiltonian function is

𝐻𝑆1(𝑟, 𝑟′, 𝛼) =
1
2
(𝑟2 + (𝑟′)2). (34)

∙ The reduced dynamics: The corresponding Hamiltonian vector field on 𝑃 is just

𝑋
{⋅,⋅}𝑃
𝐻𝑆1

= 𝑟 cos 𝛼 𝜕𝑟′ − 𝑟′ cos 𝛼 𝜕𝑟 − sin 𝛼

(
𝑟
𝑟′

−
𝑟′

𝑟

)
𝜕𝛼.
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26 BRAVETTI et al.

∙ The scaling symmetry on the reduced space: The projection on 𝑃 of the scaling symmetry
Δ𝑆 is

Δ𝑃 =
1
2
(𝑟𝜕𝑟 + 𝑟′𝜕𝑟′ ),

which generates the scaling action 𝜙𝑃 ∶ ℝ+ × (ℝ+ × ℝ+ × 𝑆1) → (ℝ+ × ℝ+ × 𝑆1) given by

𝜙𝑃(𝑠, (𝑟, 𝑟′, 𝜃)) = (
√
𝑠𝑟,

√
𝑠𝑟′, 𝜃).

Note that this action is free.

Now, using Theorem 1, we can further reduce again the system (second step) with this last
scaling symmetry. We obtain:

∙ The reduced space: Consider the diffeomorphim

ℝ+ × ℝ+ × 𝑆1 → ℝ+ × (ℝ+ × 𝑆1)

(𝑟, 𝑟′, 𝛼) → (𝜌, 𝜌′, 𝜎) =

(
𝑟,
𝑟′

𝑟
, 𝛼

)
,

which transforms the generator Δ𝑃 of the ℝ+-action on ℝ+ × ℝ+ × 𝑆1 into the vector field

1
2
𝜌𝜕𝜌

with (𝜌, 𝜌′, 𝜎) local coordinates on ℝ+ × (ℝ+ × 𝑆1).
Thus, the space of orbits of the reduced ℝ+-action may be identified with

𝐾 = ℝ+ × 𝑆1

and, under this identification, the canonical projection is

𝐩𝐏 ∶ 𝑃 = ℝ+ × ℝ+ × 𝑆1 → 𝐾 = ℝ+ × 𝑆1, 𝐩𝐏(𝑟, 𝑟
′, 𝛼) =

(
𝑟′

𝑟
, 𝛼

)
.

In particular, the action 𝜙𝑃 of ℝ× on 𝑃 is a principal one and the standard 𝑆1-symmetry and
the scaling ℝ+-symmetry are compatible.
The associated line bundle is trivial

𝜋𝐿 ∶ 𝐿 ∶= ℝ × ℝ+ × 𝑆1 → ℝ+ × 𝑆1, 𝜋𝐿(𝑡, 𝜌
′, 𝜎) = (𝜌′, 𝜎),

and therefore, we have a Jacobi bracket on the space of functions on 𝐾. In the sequel, we will
describe this structure.
The expression of the reduced Poisson structure on 𝑃 in terms of the new local coordinates

(𝜌, 𝜌′, 𝜎) is (see (33))

Π𝑃 = −
cos 𝜎
𝜌

𝜕𝜌 ∧ 𝜕𝜌′ +
sin 𝜎
𝜌𝜌′

𝜕𝜌 ∧ 𝜕𝜎 − 2
sin 𝜎

𝜌2
𝜕𝜌′ ∧ 𝜕𝜎. (35)
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BRAVETTI et al. 27

Note that

 1

2
𝜌𝜕𝜌

Π𝑃 = −Π𝑃.

Since the homogenous functions with respect to the vector field 1

2
𝜌𝜕𝜌 are of the form 𝜌2 ℎ,

with ℎ ∈ 𝐶∞(ℝ+ × 𝑆1), then we have that

{𝜌2ℎ, 𝜌2ℎ′}𝑃 =
1
2
𝜌𝜕𝜌{𝜌

2ℎ, 𝜌2ℎ′}𝑃

for all ℎ, ℎ′ ∈ 𝐶∞(ℝ+ × 𝑆1). This implies that the Jacobi bracket {⋅, ⋅}𝐾 on the space of functions
on 𝐾 satisfies

{𝜌2ℎ, 𝜌2ℎ′}𝑃 = 𝜌2{ℎ, ℎ′}𝐾, ℎ, ℎ′ ∈ 𝐶∞(ℝ+ × 𝑆1).

As a consequence (see (35)),

{ℎ, ℎ′}𝐾 = −2 cos 𝜎(ℎ𝜕𝜌′ℎ
′ − ℎ′𝜕𝜌′ℎ) + 2

sin 𝜎
𝜌′

(ℎ𝜕𝜎ℎ
′ − ℎ′𝜕𝜎ℎ) − 2 sin 𝜎(𝜕𝜌′ℎ𝜕𝜎ℎ

′ − 𝜕𝜎ℎ𝜕𝜌′ℎ
′).

Therefore, the corresponding Jacobi structure (Π𝐾, 𝐸𝐾) is

Π𝐾 = −2 sin 𝜎𝜕𝜌′ ∧ 𝜕𝜎, 𝐸𝐾 = −2 cos 𝜎𝜕𝜌′ + 2
sin 𝜎
𝜌′

𝜕𝜎. (36)

∙ The reduced Hamiltonian function: The Hamiltonian function 𝐻𝑆1 (see (34)), in terms of
the local coordinates (𝜌, 𝜌′, 𝜎), is

𝐻𝑆1(𝜌, 𝜌′, 𝜎) =
𝜌2

2
(1 + (𝜌′)2).

Since
1
2
𝜌𝜕𝜌𝐻

𝑆1 = 𝐻𝑆1,

we deduce that𝐻𝑆1(𝜌2, 𝜌′, 𝜎) = 𝜌2ℎ𝐻𝑆1 (𝜌′, 𝜎) and therefore

ℎ𝐻𝑆1 (𝜌′, 𝜎) =
1
2
(1 + (𝜌′)2).

∙ The reduced dynamics: The Hamiltonian vector field induced by the previous Jacobi
structure and the function ℎ𝐻𝑆1 is

𝑋
{⋅,⋅}𝐾
ℎ
𝐻𝑆1

= −𝑖(𝑑ℎ𝐻𝑆1 )Π𝐾 − ℎ𝐻𝑆1 𝐸𝐾 = (1 + (𝜌′)2) cos 𝜎 𝜕𝜌′ +
(𝜌′)2 − 1

𝜌′
sin 𝜎 𝜕𝜎, (37)

which is the 𝐩𝐏-projection of 𝑋
{⋅,⋅}𝑃
𝐻𝑆1

.
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28 BRAVETTI et al.

Example 7 (Continuing Example 5: The linear Hamiltonian system reduced first by a standard
and then by a scaling symmetry). Let Φ ∶ 𝐺 × 𝑄 → 𝑄 be a free and proper action of a Lie group
𝐺 on a manifold 𝑄. Denote by 0𝑄 the zero section of the cotangent bundle 𝜏∗𝑄 ∶ 𝑇∗𝑄 → 𝑄 and by
𝑇∗Φ ∶ 𝐺 × (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄) the restriction to 𝑇∗𝑄 − 0𝑄 of the cotangent lift action, that
is, the free and proper action given by

(𝑇∗Φ)𝑔(𝛼𝑞) = (𝑇Φ𝑔(𝑞)Φ𝑔−1)
∗(𝛼𝑞), ∀𝑔 ∈ 𝐺 and ∀𝛼𝑞 ∈ 𝑇∗

𝑞𝑄 − 0𝑞. (38)

It is well-known that (𝑇∗Φ)𝑔 is a symplectomorphim with respect to the standard symplectic
structure 𝜔𝑄 on 𝑇∗𝑄 − 0𝑄.
Suppose that 𝑌 ∈ 𝔛(𝑄) is a 𝐺-invariant vector field on 𝑄, that is,

𝑇𝑞Φ𝑔(𝑌(𝑞)) = 𝑌(Φ𝑔(𝑞)), 𝑔 ∈ 𝐺 and 𝑞 ∈ 𝑄. (39)

Moreover, let 𝜙 ∶ ℝ − {0} × (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄) be the action given by (8).
A direct computation, using (38) and (39), shows that the fiberwise-linear function𝑌𝓁 ∶ 𝑇∗𝑄 →

ℝ induced by 𝑌 is 𝐺-invariant, that is,

𝑌𝓁◦(𝑇∗Φ)𝑔 = 𝑌𝓁.

The symplectic action 𝑇∗Φ is fiberwise linear. So,

(𝑇∗Φ)𝑔◦𝜙𝑠 = 𝜙𝑠◦(𝑇
∗Φ)𝑔, for 𝑔 ∈ 𝐺 and 𝑠 ∈ ℝ − {0}.

On the other hand, we have that 𝐺𝛼𝑥 ∩ (ℝ − {0})𝛼𝑥 = {𝛼𝑥}. In fact, if (𝑇∗Φ)𝑔(𝛼𝑥) = 𝑠𝛼𝑥, for
𝑔 ∈ 𝐺 and 𝑠 ∈ ℝ, then Φ𝑔(𝑥) = 𝑥. Therefore, since Φ is free, 𝑔 = 𝑒 and 𝑠 = 1.
Moreover, the quotient space ((𝑇∗𝑄 − 0𝑄)∕𝐺)∕ℝ

× can be identified with the projective bundle
ℙ(𝑇∗𝑄∕𝐺) of the vector bundle (𝜏∗𝑄)

𝐺 ∶ (𝑇∗𝑄 − 0𝐺)∕𝐺 → 𝑄∕𝐺 (see Remark 1).
Thus, the previous comments imply that the actions 𝑇∗Φ and 𝜙 are compatible and the con-

ditions of Theorem 2 hold. Now, we will reduce the Hamiltonian symplectic system (𝑇∗𝑄 −
0𝑄, 𝜔𝑄, 𝑌

𝓁), first by 𝑇∗Φ and then by the scaling symmetry 𝜙. The objets obtained after the
𝐺-reduction are:

∙ The reduced space: The restriction of the canonical projection 𝜏∗𝑄 ∶ 𝑇∗𝑄 → 𝑄 to 𝑇∗𝑄 − 0𝑄 is
𝐺-equivariant and therefore it induces a fibration

𝜏𝐺𝑄 ∶ 𝑃 ∶= (𝑇∗𝑄 − 0𝑄)∕𝐺 → 𝑄∕𝐺,

which is just the restriction of the Atiyah bundle 𝜏𝐺𝑄 ∶ 𝑇∗𝑄∕𝐺 → 𝑄∕𝐺 to 𝑇∗𝑄∕𝐺 − 𝑂, with
𝑂 the zero section of this vector bundle. The Poisson bracket {⋅, ⋅}𝑃 on the space of functions
𝐶∞((𝑇∗𝑄 − 0𝑄)∕𝐺) is characterized by {𝑓◦℘, 𝑔◦℘}𝜔𝑄

= {𝑓, 𝑔}𝑃◦℘ with

℘ ∶ (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄)∕𝐺

the quotient map.
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BRAVETTI et al. 29

∙ The reduced Hamiltonian function: The 𝐺-invariant function 𝑌𝓁 induces a function
(𝑌𝓁)𝐺 ∶ (𝑇∗𝑄 − 0𝑄)∕𝐺 → ℝ such that

(𝑌𝓁)𝐺(℘(𝛼)) = 𝑌𝓁(𝛼).

∙ The reduced dynamics: The Hamiltonian vector field𝑋𝜔𝑄

𝑌𝓁
is℘-projectable and its projection

is just

𝑋
{⋅,⋅}𝑃
(𝑌𝓁)𝐺

= {⋅, (𝑌𝓁)𝐺}𝑃.

∙ The scaling symmetry on the reduced space: The scaling symmetry 𝜙 ∶ (ℝ − {0}) × (𝑇∗𝑄 −
0𝑄) → (𝑇∗𝑄 − 0𝑄) induces a scaling symmetry 𝜙𝐺 ∶ (ℝ − {0}) × 𝑃 → 𝑃 for the reduced Poisson
Hamiltonian system (𝑃, {⋅, ⋅}𝑃, (𝑌

𝓁)𝐺) which is given by

𝜙𝐺(𝑠,℘(𝛼)) = ℘(𝑠𝛼), for 𝑠 ∈ ℝ − {0} and 𝛼 ∈ 𝑇∗𝑄 − 0𝑄.

Now, we will apply the second reduction step to the Poisson Hamiltonian system (𝑃 = (𝑇∗𝑄 −
0𝑄)∕𝐺,Π𝑃, (𝑌

𝓁)𝐺) with respect to the scaling symmetry 𝜙𝐺 ∶ (ℝ − {0}) × 𝑃 → 𝑃. The reduced
objects in this second reduction are:

∙ The reduced space: In this case, the reduced space is the projective bundle ℙ(𝑇∗𝑄∕𝐺) =
((𝑇∗𝑄 − 0𝑄)∕𝐺)∕(ℝ − {0}) of the vector bundle (𝜏∗𝑄)

𝐺 ∶ (𝑇∗𝑄 − 0𝐺)∕𝐺 → 𝑄∕𝐺 (see Remark 1).
∙ The reduced Hamiltonian section: Denote by 𝜋𝐿 ∶ 𝐿 → ℙ(𝑇∗𝑄∕𝐺) the line bundle asso-
ciated with 𝐩𝐏 ∶ (𝑇∗𝑄 − 0𝑄)∕𝐺 → ℙ(𝑇∗𝑄∕𝐺). The section of the dual bundle 𝜋𝐿∗ ∶ 𝐿∗ →
ℙ(𝑇∗𝑄∕𝐺) induced by the homogeneous function (𝑌𝓁)𝐺 ∈ 𝐶∞((𝑇∗𝑄 − 0𝑄)∕𝐺) is the reduced
Hamiltonian section.

∙ The reduced dynamics: The Hamiltonian vector field 𝑋
{⋅,⋅}𝑃
(𝑌𝓁)𝐺

is 𝐩𝐏-projectable and it
determines the final reduced dynamics.

The particular case of a Lie group. In what follows, we will show the previous reduction
process in the particular case when the initial manifold 𝑄 is a Lie group 𝐺. In such a case, one
may use the left trivialization of the cotangent bundle 𝑇∗𝐺 in order to identify 𝑇∗𝐺 with the prod-
uct manifold 𝐺 × 𝔤∗, where (𝔤, [⋅, ⋅]𝔤) is the Lie algebra of 𝐺, in such a way that the canonical
projection 𝜏∗𝐺 ∶ 𝑇∗𝐺 → 𝐺 is just the first projection 𝑝1 ∶ 𝐺 × 𝔤∗ → 𝐺.
The left action Φ ∶ 𝐺 × 𝐺 → 𝐺 on 𝐺 is the one defined by the group operation of 𝐺. We take

the left invariant vector field 𝑌 = �⃖� on 𝐺 induced by an element 𝜉 of 𝔤. In the first reduction with
the cotangent lift of Φ, the reduced space is (𝑇∗𝐺 − 0𝐺)∕𝐺 ≅ 𝔤∗ − {0} and the reduced function
induced by 𝑌 is the restriction to 𝔤∗ − {0} of the linear map 𝜉𝓁 associated with 𝜉 ∈ 𝔤, that is,

𝜉𝓁 ∶ 𝔤∗ − {0} → ℝ, 𝜉𝓁(𝛼) = 𝛼(𝜉).

On the other hand, the Lie–Poisson bracket {⋅, ⋅}𝔤∗ on (𝑇∗𝐺 − 0𝐺)∕𝐺 ≅ 𝔤∗ − {0} is characterized
by

{𝜉1
𝓁
, 𝜉2

𝓁
}𝔤∗ = −[𝜉1, 𝜉2]

𝓁
𝔤 , for all 𝜉1, 𝜉2 ∈ 𝔤.
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30 BRAVETTI et al.

The scaling symmetry on 𝔤∗ − {0} is just

𝜙𝐺 ∶ (ℝ − {0}) × (𝔤∗ − {0}) → (𝔤∗ − {0}), (𝑠, 𝛼) → 𝑠𝛼. (40)

Now, we apply the second reduction step to the (Lie)–Poisson Hamiltonian system (𝔤∗ −
{0}, {⋅, ⋅}𝔤∗ , 𝜉

𝓁), with respect to the scaling symmetry 𝜙𝐺 . In this case, the reduced space is the
projective space ℙ𝔤∗. The corresponding line bundle 𝜋𝐿 ∶ 𝐿 ∶= (𝔤∗ − {0} × ℝ)∕(ℝ − {0}) → ℙ𝔤∗

is defined by the action

𝜙𝐺 ∶ (ℝ − {0}) × ((𝔤∗ − {0}) × ℝ) → (𝔤∗ − {0}) × ℝ, 𝜙𝐺
𝑠 (𝛼, 𝑡) =

(
𝑠𝛼,

𝑡
𝑠

)
.

The section of the dual line bundle 𝜋𝐿∗ ∶ 𝐿∗ → ℙ𝔤∗ associated with the linear map 𝜉𝓁 ∶ 𝔤∗ −
{0} → ℝ is

ℎ𝜉(𝑝(𝛼))([(𝛼, 𝑡)]) = 𝑡𝛼(𝜉),

with [(𝛼, 𝑡)] ∈ 𝐿, where 𝑝 ∶ (𝔤∗ − 0) → ℙ𝔤∗ is the quotient projection.
The Kirillov bracket on the projective space ℙ𝔤∗ is characterized by

[ℎ𝜉1 , ℎ𝜉2]ℙ𝔤∗(𝑝(𝛼))([(𝛼, 𝑡)]) = −ℎ{𝜉𝓁1 ,𝜉
𝓁
2 }𝔤∗

(𝑝(𝛼))([(𝛼, 𝑡)]) = −𝑡{𝜉𝓁1 , 𝜉
𝓁
2 }𝔤∗(𝛼)

= 𝑡𝛼([𝜉1, 𝜉2]𝔤) = ℎ[𝜉1,𝜉2]𝔤 (𝑝(𝛼))([(𝛼, 𝑡)]).

This structure on the line bundle 𝐿 → ℙ𝔤∗may be considered as the Kirillov version of the Lie–
Poisson structure on 𝔤∗ and for this reason we will use the terminology the Lie–Kirillov structure
on ℙ𝔤∗.
The reduced dynamics is determined by the𝑝-projection of the Lie–PoissonHamiltonian vector

field associated with the linear function 𝜉𝓁 ∈ 𝐶∞(𝔤∗ − {0}), that is,

𝑋
{⋅,⋅}𝔤∗

𝜉𝓁
= {⋅, 𝜉𝓁}𝔤∗ .

Note however, that this 𝑝-projection of 𝑋{⋅,⋅}𝔤∗

𝜉𝓁
is just the vector field 𝑋ℎ𝜉 ∈ 𝔛(ℙ𝔤∗), which is

locally characterized by (22).

5 REDUCTION OF SYMPLECTIC HAMILTONIAN SYSTEMS USING
FIRST THE SCALING SYMMETRY AND THEN THE STANDARD
SYMMETRIES

As in the previous section, we have a symplectic Hamiltonian system (𝑆, 𝜔,𝐻) with a scaling
symmetry 𝜙𝑆 ∶ ℝ× × 𝑆 → 𝑆 and a symplectic𝐺-symmetryΦ𝑆 ∶ 𝐺 × 𝑆 → 𝑆which are compatible.
In what follows we describe the reduction process of the system (𝑆, 𝜔,𝐻) in two steps, but in the
following order: the first reduction is obtained by the scaling symmetry and the second step is
done using the standard symmetry.
First of all, we will show a reduction process for Kirillov structures in the presence of a

standard symmetry.
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BRAVETTI et al. 31

5.1 Reduction of Kirillov structures by standard symmetries

Let 𝜋𝐿 ∶ 𝐿 → 𝐾 be a real line vector bundle with a Kirillov bracket

[⋅, ⋅]𝐿∗ ∶ Γ(𝐿∗) × Γ(𝐿∗) → Γ(𝐿∗)

on the space of the sections Γ(𝐿∗) of the dual vector bundle 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 of 𝜋𝐿. Denote by 0𝐿
the zero section of 𝜋𝐿 and by 𝜙𝐿−0𝐿 ∶ ℝ× × (𝐿 − 0𝐿) → (𝐿 − 0𝐿) theℝ×-action associated with the
principal bundle 𝑝𝐿−0𝐿 ∶ (𝐿 − 0𝐿) → 𝐾 whose line bundle is 𝜋𝐿 (see the Appendix).
We suppose that (Φ𝐿 ∶ 𝐺 × 𝐿 → 𝐿,Φ𝐾 ∶ 𝐺 × 𝐾 → 𝐾) is a representation of a Lie group𝐺 on the

vector bundle𝜋𝐿 ∶ 𝐿 → 𝐾. Thismeans that (Φ𝐿
𝑔 , Φ

𝐾
𝑔 ) is a vector bundle isomorphism for every 𝑔 ∈

𝐺. So, we have a dual representation (Φ𝐿∗ ∶ 𝐺 × 𝐿∗ → 𝐿∗, Φ𝐾 ∶ 𝐺 × 𝐾 → 𝐾) on the dual vector
bundle 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾. Here, Φ𝐿∗ ∶ 𝐺 × 𝐿∗ → 𝐿∗ is the representation of 𝐺 on 𝐿∗ induced by Φ𝐿,
given by

⟨Φ𝐿∗
𝑔 (𝛼), 𝑥⟩ = ⟨𝛼,Φ𝐿

𝑔−1
(𝑥)⟩, for all 𝛼 ∈ 𝐿∗ and 𝑥 ∈ 𝐿.

Note that 𝜋𝐿◦Φ
𝐿
𝑔 = Φ𝐾

𝑔 ◦𝜋𝐿, which implies that 𝜋𝐿∗◦Φ
𝐿∗
𝑔 = Φ𝐾

𝑔 ◦𝜋𝐿∗ , for all 𝑔 ∈ 𝐺.

Definition 5. If the local Lie algebra structure [⋅, ⋅]𝐿∗ is closed for𝐺-equivariant sections of Γ(𝐿∗),
we say that the representation (Φ𝐿 ∶ 𝐺 × 𝐿 → 𝐿,Φ𝐾 ∶ 𝐺 × 𝐾 → 𝐾) is compatible with the Kirillov
structure.

We recall that a section ℎ ∶ 𝐾 → 𝐿∗ is 𝐺-equivariant if

Φ𝐿∗
𝑔 ◦ℎ = ℎ◦Φ𝐾

𝑔 , for all 𝑔 ∈ 𝐺.

On the other hand, since the principal bundle associated with 𝜋𝐿 is the restriction 𝑝𝐿−0𝐿 ∶
𝐿 − 0𝐿 → 𝐾 of 𝜋𝐿 to 𝐿 − 0𝐿 (see the Appendix), we deduce that

Φ𝐾
𝑔 ◦𝑝𝐿−0𝐿 = 𝑝𝐿−0𝐿◦Φ

𝐿
𝑔 . (41)

In what follows, we suppose that the orbit space 𝐾∕𝐺 of the action Φ𝐾 of 𝐺 on 𝐾 is a smooth
quotient manifold. As a consequence, the orbit space 𝐿∕𝐺 is a real line bundle over 𝐾∕𝐺 whose
fibers are isomorphic to the fibers of 𝜋𝐿 ∶ 𝐿 → 𝐾.
Denote by 0𝐿∕𝐺 the zero section of the line bundle 𝜋𝐿∕𝐺 ∶ 𝐿∕𝐺 → 𝐾∕𝐺. The ℝ×-principal

bundle
𝑝𝐿∕𝐺−0𝐿∕𝐺 ∶ (𝐿∕𝐺 − 0𝐿∕𝐺) ≅ (𝐿 − 0𝐿)∕𝐺 → 𝐾∕𝐺

associated with 𝜋𝐿∕𝐺 is deduced from the 𝐺-equivariant principal bundle 𝑝𝐿−0𝐿 ∶ (𝐿 − 0𝐿) → 𝐾.
Moreover, the principal actions 𝜙𝐿−0𝐿 and 𝜙(𝐿−0𝐿)∕𝐺 of ℝ× on 𝐿 − 0𝐿 and (𝐿 − 0𝐿)∕𝐺,

respectively, are related by

℘𝐿−0𝐿◦𝜙
𝐿−0𝐿
𝑠 = 𝜙

(𝐿−0𝐿)∕𝐺
𝑠 ◦℘𝐿−0𝐿 , for 𝑠 ∈ ℝ×, (42)

where℘𝐿−0𝐿 ∶ 𝐿 − 0𝐿 → (𝐿 − 0𝐿)∕𝐺 is the quotient map.

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12681 by U
niversidad D

e L
a L

aguna, W
iley O

nline L
ibrary on [11/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



32 BRAVETTI et al.

On the other hand, the dual vector bundle𝜋∗
𝐿∕𝐺

∶ (𝐿∕𝐺)∗ → 𝐾∕𝐺 is isomorphic to the line bun-
dle𝜋𝐿∗∕𝐺 ∶ 𝐿∗∕𝐺 → 𝐾∕𝐺 deduced from the𝐺-equivariant dual vector bundle𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 of𝜋𝐿

for the pair of actions (Φ𝐿∗ , Φ𝐾). The following diagram summarizes the previous comments.

Now we can prove the following general result that will be used in the following.

Theorem 3. Let [⋅, ⋅]𝐿∗ ∶ Γ(𝐿∗) × Γ(𝐿∗) → Γ(𝐿∗) be a Kirillov structure on the real line bundle 𝜋𝐿 ∶
𝐿 → 𝐾. Suppose that (Φ𝐿, Φ𝐾) is a compatible representation of 𝐺 on 𝐿. Then:

(1) There is a one-to-one correspondence between𝐺-equivariant sections ℎ ∶ 𝐾 → 𝐿∗ of𝜋𝐿∗ ∶ 𝐿∗ →
𝐾 with respect to (Φ𝐿∗ , Φ𝐾) and sections ℎ𝐺 ∶ 𝐾∕𝐺 → 𝐿∗∕𝐺 of the line bundle 𝜋𝐿∗∕𝐺 ∶ 𝐿∗∕𝐺 →
𝐾∕𝐺.

(2) On the space of sections of 𝜋𝐿∗∕𝐺 ∶ 𝐿∗∕𝐺 → 𝐾∕𝐺 there is a Kirillov structure [⋅, ⋅]𝐿∗∕𝐺 ,
characterized by

[ℎ𝐺1 , ℎ
𝐺
2 ]𝐿∗∕𝐺 = ([ℎ1, ℎ2]𝐿∗)

𝐺

for all 𝐺-equivariant sections ℎ1, ℎ2 of 𝜋𝐿∗ .
(3) If ℎ ∶ 𝐾 → 𝐿∗ is a 𝐺-equivariant section of 𝜋𝐿∗ , then the symbol 𝑋[⋅,⋅]𝐿∗

ℎ
∈ 𝔛(𝐾) associated

with the derivation [⋅, ℎ]𝐿∗ is 𝐺-invariant with respect to Φ𝐾 . Moreover, if ℘𝐾 ∶ 𝐾 → 𝐾∕𝐺 is
the quotient map, the℘𝐾-projection of 𝑋

[⋅,⋅]𝐿∗
ℎ

∈ 𝔛(𝐾) is the symbol 𝑋
[⋅,⋅]𝐿∗∕𝐺
ℎ𝐺

∈ 𝔛(𝐾∕𝐺) of the
derivation [⋅, ℎ𝐺]𝐿∗∕𝐺 .

Proof. From the general theory of representations of Lie groups, we have that there is a one-to-
one correspondence between 𝐺-equivariant sections ℎ ∶ 𝐾 → 𝐿∗ of 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 with respect to
(Φ𝐿∗ , Φ𝐾) and sections ℎ𝐺 ∶ 𝐾∕𝐺 → 𝐿∗∕𝐺 of the line bundle 𝜋𝐿∗∕𝐺 ∶ 𝐿∗∕𝐺 → 𝐾∕𝐺 such that

ℎ𝐺(℘𝐾(𝑥)) = ℘𝐿∗(ℎ(𝑥)), for all 𝑥 ∈ 𝐾,

where℘𝐿∗ ∶ 𝐿∗ → 𝐿∗∕𝐺 is the quotientmap. Thus, we can induce a bracket [⋅, ⋅]𝐿∗∕𝐺 ∶ Γ(𝐿∗∕𝐺) ×
Γ(𝐿∗∕𝐺) → Γ(𝐿∗∕𝐺) characterized by

[ℎ𝐺1 , ℎ
𝐺
2 ]𝐿∗∕𝐺 = ([ℎ1, ℎ2]𝐿∗)

𝐺, (43)

where ℎ1, ℎ2 ∶ 𝐿∗ → 𝐾 are 𝐺-equivariant sections of 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾.
It is clear that [⋅, ⋅]𝐿∗∕𝐺 is a Lie algebra structure. On the other hand, if 𝑓 ∈ 𝐶∞(𝐾∕𝐺), then

[(𝑓◦℘𝐾)ℎ1, ℎ2]𝐿∗ = (𝑓◦℘𝐾)[ℎ1, ℎ2]𝐿∗ + 𝑋
[⋅,⋅]𝐿∗
ℎ2

(𝑓◦℘𝐾)ℎ1

for all ℎ1, ℎ2 ∈ Γ(𝐿∗).
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BRAVETTI et al. 33

Now, by hypothesis, the sections [(𝑓◦℘𝐾)ℎ1, ℎ2]𝐿∗ and (𝑓◦℘𝐾)[ℎ1, ℎ2]𝐿∗ are 𝐺-equivariant.
Thus,

𝑋
[⋅,⋅]𝐿∗
ℎ2

(𝑓◦℘𝐾)ℎ1

is 𝐺-equivariant too, which implies that the function 𝑋
[⋅,⋅]𝐿∗
ℎ2

(𝑓◦℘𝐾) is℘𝐾-basic.

So, we have proved that the vector field 𝑋[⋅,⋅]𝐿∗
ℎ2

is℘𝐾-projectable over a vector field 𝑋
[⋅,⋅]𝐿∗∕𝐺

ℎ𝐺2
on

𝐾∕𝐺 and, in addition,

[𝑓ℎ𝐺1 , ℎ
𝐺
2 ]𝐿∗∕𝐺 = 𝑓[ℎ𝐺1 , ℎ

𝐺
2 ]𝐿∗∕𝐺 + 𝑋

[⋅,⋅]𝐿∗∕𝐺

ℎ𝐺2
(𝑓)ℎ𝐺1 .

Therefore, [⋅, ℎ𝐺2 ]𝐿∗∕𝐺 is a derivation and its symbol is just the ℘𝐾-projection of the symbol of
[⋅, ℎ2]𝐿∗ . This finishes the proof of the theorem. □

The following diagram summarizes this reduction process.

Remark 5. When the real line bundle 𝜋𝐿 ∶ 𝐿 → 𝐾 is trivial, the previous theorem is just the
reduction process of Jacobi manifolds given in Ref. 37.

5.2 The first step: Reduction by a scaling symmetry

Now, we start with the scaling reduction process of the symplectic Hamiltonian system (𝑆, 𝜔,𝐻).
In this case, we have (see Section 3):

∙ The reduced space 𝐶 = 𝑆∕ℝ× admits a contact distribution.
∙ The principal bundle𝐩𝐒 ∶ 𝑆 → 𝐶 is isomorphic to the restriction of𝜋𝑜 ∶ 𝑜 → 𝐶 to (𝑜 − 0𝐶),
where 𝑜 is the annihilator of  and 0𝐶 is its zero section. Therefore, the associated real
line bundle, under this isomorphism, is 𝜋𝑜 ∶ 𝑜 → 𝐶. Moreover, there is a one-to-one cor-
respondence between the sections ℎ ∶ 𝐶 → (𝑜)∗ of the dual vector bundle of 𝜋𝑜 and the
homogeneous functions𝐻ℎ ∶ 𝑆 → ℝ on the symplectic manifold 𝑆.

∙ On the spaceΓ((𝑜)∗) of the sections of the dual vector bundle of𝜋𝑜 , we have aKirillov bracket

[⋅, ⋅](𝑜)∗ ∶ Γ((𝑜)∗) × Γ((𝑜)∗) → Γ((𝑜)∗)

such that

𝐻[ℎ1,ℎ2](𝑜)∗
= −{𝐻ℎ1 ,𝐻ℎ2}𝑆
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34 BRAVETTI et al.

for all ℎ1, ℎ2 ∈ Γ((𝑜)∗), where {⋅, ⋅}𝑆 is the Poisson bracket associated with the symplectic
structure on 𝑆.

∙ The Hamiltonian vector field 𝑋𝜔
𝐻 ∈ 𝔛(𝑆) of 𝐻 with respect to the symplectic structure 𝜔 is 𝐩𝐒-

projectable on 𝐶 and its projection is the symbol 𝑋[⋅,⋅](𝑜)∗

ℎ𝐻
∈ 𝔛(𝐶) of the derivation [⋅, ℎ𝐻](𝑜)∗ .

∙ A 𝐺-action on 𝐶. In fact, the compatibility condition between the actions implies that Φ𝑆
𝑔 ∶

𝑆 → 𝑆 is ℝ×-equivariant, for every 𝑔 ∈ 𝐺, and it induces a principal action Φ𝐶 ∶ 𝐺 × 𝐶 → 𝐶
such that

Φ𝐶
𝑔 ◦𝐩𝐒 = 𝐩𝐒◦Φ

𝑆
𝑔. (44)

Moreover,
𝑇Φ𝑆

𝑔◦Δ = Δ◦Φ𝑆
𝑔 (45)

with Δ the infinitesimal generator of the scaling symmetry 𝜙𝑆 . Using this relation and that
(Φ𝑆

𝑔)
∗𝜔 = 𝜔, we conclude the 𝐺-invariance of the 1-form 𝜆 = −𝑖Δ𝜔, that is,

(Φ𝑆
𝑔)

∗(𝜆) = −(Φ𝑆
𝑔)

∗(𝑖Δ𝜔) = −𝑖Δ𝜔 = 𝜆. (46)

Therefore,
𝑇Φ𝑆

𝑔(⟨𝜆⟩𝑜) = ⟨
𝜆◦Φ𝑆

𝑔

⟩𝑜
, for all 𝑔 ∈ 𝐺, (47)

where 𝑇Φ𝑆 ∶ 𝐺 × 𝑇𝑆 → 𝑇𝑆 is the tangent lift of the action of Φ𝑆 . In other words, ̃ = ⟨𝜆⟩𝑜 is
a 𝐺-invariant distribution. So, since Φ𝑆

𝑔◦𝜙
𝑆
𝑠 = 𝜙𝑆

𝑠 ◦Φ
𝑆
𝑔 , we deduce that the contact distribution = 𝑇𝐩𝐒(̃) is 𝐺-invariant, that is,

𝑇Φ𝐶
𝑔 () = .

This implies that the cotangent lift 𝑇∗Φ𝐶 of the action Φ𝐶 preserves the annihilator 𝑜 of the
contact distribution. Therefore, we have a representation (Φ𝑜

∶= (𝑇∗Φ𝐶)|𝑜 , Φ𝐶) of 𝐺 on the
real line bundle 𝜋𝑜 ∶ 𝑜 → 𝐶.

5.3 The second step: Reduction by standard symmetries

Now, we apply the second reduction process with the representation (Φ𝑜
∶= (𝑇∗Φ𝐶)|𝑜 , Φ𝐶). To

do so, we will use Theorem 3 on the reduction of Kirillov structures.

Theorem 4. Let (𝑆, 𝜔,𝐻) be a symplectic Hamiltonian system with a scaling symmetry 𝜙𝑆 ∶ ℝ× ×
𝑆 → 𝑆, 𝐺 a Lie group and Φ𝑆 ∶ 𝐺 × 𝑆 → 𝑆 a symplectic 𝐺-symmetry which is compatible with 𝜙𝑆 .
Then:

(1) If (𝐶 = 𝑆∕ℝ×,) is the contact manifold induced by the scaling symmetry 𝜙𝑆 , then we have
a representation (Φ𝑜

∶ 𝐺 ×𝑜 → 𝑜, Φ𝐶 ∶ 𝐺 × 𝐶 → 𝐶) on the line bundle 𝜋𝑜 ∶ 𝑜 → 𝐶
such that the corresponding quotient vector bundle 𝜋𝑜∕𝐺 ∶ 𝑜∕𝐺 → 𝐶∕𝐺 is a real line bundle.
Moreover, there is a one-to-one correspondence between the 𝐺-equivariant sections ℎ ∶ 𝐶 →
(𝑜)∗ of the dual vector bundle of𝜋𝑜 ∶ 𝑜 → 𝐶 and sectionsℎ𝐺 ∶ 𝐶∕𝐺 → (𝑜)∗∕𝐺 of the dual
vector bundle of 𝜋𝑜∕𝐺 .
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BRAVETTI et al. 35

(2) There is a Kirillov bracket [⋅, ⋅](𝑜)∗∕𝐺 ∶ Γ((𝑜)∗∕𝐺) × Γ((𝑜)∗∕𝐺) → Γ((𝑜)∗∕𝐺) on the space
Γ((𝑜)∗∕𝐺) of the sections of the dual vector bundle 𝜋(𝑜)∗∕𝐺 ∶ (𝑜)∗∕𝐺 → 𝐶∕𝐺, such that

([ℎ1, ℎ2](𝑜)∗ )
𝐺 = [ℎ𝐺1 , ℎ

𝐺
2 ](𝑜)∗∕𝐺

for ℎ1, ℎ2 ∈ Γ((𝑜)∗) 𝐺-invariant sections.
(3) If ℎ𝐻 ∶ 𝐶 → (𝑜)∗ is the section of 𝜋(𝑜)∗ ∶ (𝑜)∗ → 𝐶 induced from𝐻, the symbol𝑋[⋅,⋅](𝑜)∗

ℎ𝐻
∈

𝔛(𝐶) of the derivation [⋅, ℎ𝐻](𝑜)∗ is 𝐺-invariant and the corresponding vector field on 𝐶∕𝐺 is

just the symbol 𝑋
[⋅,⋅](𝑜)∗∕𝐺

ℎ𝐺𝐻
∈ 𝔛(𝐶∕𝐺) of the derivation [⋅, ℎ𝐺𝐻](𝑜)∗∕𝐺 . Thus, if ℘𝐶 ∶ 𝐶 → 𝐶∕𝐺

is the quotient map, the Hamiltonian vector field 𝑋𝜔
𝐻 ∈ 𝔛(𝑆) of𝐻 with respect to the symplectic

structure 𝜔 is (℘𝐶◦𝐩𝐒)-projectable on 𝐶∕𝐺 and its projection is 𝑋
[⋅,⋅](𝑜)∗∕𝐺

ℎ𝐺𝐻
∈ 𝔛(𝐶∕𝐺).

Proof. We have the representation (Φ𝑜
, Φ𝐶) of 𝐺 on the real line bundle 𝜋𝑜 ∶ 𝑜 → 𝐶

defined previously.
Now, we will prove that if ℎ1, ℎ2 ∶ 𝐶 → (𝑜)∗ are 𝐺-equivariant sections of 𝜋(𝑜)∗ , then the

bracket [ℎ1, ℎ2](𝑜)∗ is also 𝐺-equivariant. From (A.2), (A.3) (see the Appendix), and the com-
mutation of the actions Φ𝑆 and 𝜙𝑆 , we deduce that ℎ ∶ 𝐶 → (𝑜)∗ is a 𝐺-equivariant section if
and only if the corresponding homogeneous function𝐻ℎ ∶ 𝑆 → ℝ is invariant with respect to the
action Φ𝑆 .
So, if ℎ1, ℎ2 ∶ 𝐶 → (𝑜)∗ are 𝐺-equivariant, then 𝐻ℎ1 and 𝐻ℎ2 are 𝐺-invariant with respect to

Φ𝑆 and, since the action Φ𝑆 is symplectic, we have that the function {𝐻ℎ1 , 𝐻ℎ2}𝑆 is 𝐺-invariant.
Therefore,

𝐻[ℎ1,ℎ2](𝑜)∗
(Φ𝑆

𝑔(𝑥)) = −{𝐻ℎ1,𝐻ℎ2}𝑆(Φ
𝑆
𝑔(𝑥)) = −{𝐻ℎ1 ,𝐻ℎ2}𝑆(𝑥) = 𝐻[ℎ1,ℎ2](𝑜)∗

(𝑥)

for all 𝑥 ∈ 𝑆. In conclusion, [ℎ1, ℎ2](𝑜)∗ is 𝐺-equivariant.
Now, applying Theorem 3, we deduce the result. □

The following diagram shows both reduction processes together.
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36 BRAVETTI et al.

Now we illustrate the reduction processes using the two examples considered above.

Example 8 (ContinuingExample 6: The 2Dharmonic oscillator reduced first by a scaling and then
by a standard symmetry). We consider again the example of a two-dimensional harmonic oscilla-
tor (see Examples 4 and 6). In Example 6, we have shown how to apply the reduction process by
first using the standard symmetry and then the scaling symmetry. Now, we take the reverse order.
We recall that in this example we have:

(1) A standard rotational 𝑆1-symmetry, with infinitesimal generator 𝜉𝑆 = 𝑥𝜕𝑦 − 𝑦𝜕𝑥 + 𝑝𝑥𝜕𝑝𝑦 −

𝑝𝑦𝜕𝑝𝑥 where (𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦) are coordinates on 𝑆 = 𝑇∗(ℝ2 − {(0, 0)}). Using the identification
ℝ+ × 𝑆1 × ℝ+ × 𝑆1 ≅ 𝑇∗(ℝ2 − {(0, 0)}) − 0ℝ2−{(0,0)} the local expression of 𝜉𝑆 is

𝜉𝑆 = 𝜕𝜃 + 𝜕𝜃′ ,

where (𝑟, 𝜃, 𝑟′, 𝜃′) are polar coordinates on ℝ+ × 𝑆1 × ℝ+ × 𝑆1.
(2) A scaling ℝ+-symmetry, with generator

Δ =
1
2
(𝑟𝜕𝑟 + 𝑟′𝜕𝑟′ ).

As seen in Example 4, by applying first the scaling ℝ+-symmetry, we obtain:

∙ The reduced space: It is ℝ+ × 𝑆1 × 𝑆1, with the quotient map

𝐩 ∶ ℝ+ × 𝑆1 × ℝ+ × 𝑆1 → ℝ+ × 𝑆1 × 𝑆1, 𝐩(𝜌, 𝜃, 𝜌′, 𝜃′) = (𝜌′, 𝜃, 𝜃′).

The Jacobi structure on 𝐶 = ℝ+ × 𝑆1 × 𝑆1 is given by (16).
∙ The reduced Hamiltonian function: The reduced Hamiltonian function is given by

𝐻|ℝ+×𝑆1×𝑆1(𝜌
′, 𝜃, 𝜃′) =

1
2
((𝜌′)2 + 1).

∙ The reduced dynamics: It is given by the vector field on ℝ+ × 𝑆1 × 𝑆1 obtained by the 𝐩-
projection

𝐩∗(𝑋
𝜔𝑄

𝐻 ) = (1 + (𝜌′)2) cos(𝜃 − 𝜃′)𝜕𝜌′ + sin(𝜃 − 𝜃′)

(
1
𝜌′
𝜕𝜃′ + 𝜌′𝜕𝜃

)
,

which is just the contact Hamiltonian vector field 𝑋
{⋅,⋅}𝐶
𝐻|ℝ+×𝑆1×𝑆1

of the function 𝐻|ℝ+×𝑆1×𝑆1 with

respect to the Jacobi structure on 𝐶 = ℝ+ × 𝑆1 × 𝑆1 described in (16).
∙ The standard symmetry on the reduced space: Wemay induce an 𝑆1-action on the reduced
space ℝ+ × 𝑆1 × 𝑆1 whose infinitesimal generator is

𝜉ℝ+×𝑆1×𝑆1 = 𝜕𝜃 + 𝜕𝜃′ .

Now, we apply the second step of the reduction process using this last symmetry, obtaining the
reduction of the Kirillov structure by this standard symmetry. More precisely, the reduction of the
Jacobi structure, because in this case the Kirillov line bundle is trivial.
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BRAVETTI et al. 37

∙ The reduced space: We consider the diffeomorphism

ℝ+ × 𝑆1 × 𝑆1 → ℝ+ × 𝑆1 × 𝑆1

(𝜌′, 𝜃, 𝜃′) → (𝜌′, 𝜃, 𝜃 − 𝜃′),

which transforms 𝜉ℝ+×𝑆1×𝑆1 = 𝜕𝜃 + 𝜕𝜃′ into 𝜕𝜃. Therefore, the quotient space (ℝ+ × 𝑆1 ×
𝑆1)∕𝑆1 may be identified with

𝐾 = ℝ+ × 𝑆1 ,

so that℘𝐾 ∶ ℝ+ × 𝑆1 × 𝑆1 → ℝ+ × 𝑆1 is the map℘𝐾(𝜌
′, 𝜃, 𝜃′) = (𝜌′, 𝜃 − 𝜃′).

In this case, the line bundle associated with℘𝐾 is trivial and we obtained a Jacobi structure.
From (16), we deduce that the Jacobi structure on 𝐾 = ℝ+ × 𝑆1 is

Π𝐾 = −2 sin 𝜎𝜕𝜌′ ∧ 𝜕𝜎, 𝐸𝐾 = −2 cos 𝜎𝜕𝜌′ + 2
sin 𝜎
𝜌′

𝜕𝜎, (48)

with (𝜌′, 𝜎) polar coordinates on ℝ+ × 𝑆1. Note that this Jacobi structure is just the one given
in (36).

∙ The reduced Hamiltonian function: In this case, the reduced Hamiltonian is

𝐻|ℝ+×𝑆1(𝜌
′, 𝜎) =

1
2
((𝜌′)2 + 1),

with (𝜌′, 𝜎) polar coordinates of ℝ+ × 𝑆1.
∙ The reduced dynamics: The reduced vector field is the℘𝐾-projection

(℘𝐾)∗𝑋
{⋅,⋅}𝐶
𝐻|ℝ+×𝑆1

= (1 + (𝜌′)2) cos 𝜎 𝜕𝜌′ −
1 − (𝜌′)2

𝜌′
sin 𝜎 𝜕𝜎 ,

which coincides precisely with the results obtained in Example 6, using the reverse reduction
process (see (37)).

Example 9. Continuing Example 7: The linear Hamiltonian system reduced first by a
scaling and then by a standard symmetry. We consider again the example of a free and proper
actionΦ ∶ 𝐺 × 𝑄 → 𝑄 of a Lie group𝐺 on amanifold𝑄with a𝐺-invariant vector field𝑌 ∈ 𝔛(𝑄).
Then, we have two symmetries on 𝑇∗𝑄 − 0𝑄:

∙ The restriction 𝑇∗Φ ∶ 𝐺 × (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄) to 𝑇∗𝑄 − 0𝑄 of the cotangent lift of the
action on 𝑄.

∙ The scaling action 𝜙 ∶ ℝ − {0} × (𝑇∗𝑄 − 0𝑄) → (𝑇∗𝑄 − 0𝑄) given by (8).

In Example 7, we have shown how to apply the reduction process by first using the standard
symmetry and then the scaling symmetry. Now, we take the reverse order.
As seen in Example 5, by using first the scaling symmetry, we obtain the following reduced

objects:
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38 BRAVETTI et al.

∙ The reduced space: It is the projective cotangent bundle ℙ(𝑇∗𝑄). Let be the contact distri-
bution on ℙ(𝑇∗𝑄) such that 𝐩 ∶ 𝑜 − 0𝑄 → ℙ(𝑇∗𝑄) is a principal bundle with real line bundle
𝜋𝑜 ∶ 𝑜 → ℙ(𝑇∗𝑄). The Kirillov bracket on the sections of 𝜋(𝑜)∗ ∶ (𝑜)∗ → ℙ(𝑇∗𝑄) satisfies

[ℎ𝑋𝓁, ℎ𝑍𝓁](𝑜)∗ = −ℎ[𝑋,𝑍]𝓁

for all 𝑋, 𝑍 ∈ 𝔛(𝑄).
∙ The reduced Hamiltonian section: It is defined locally by (19).
∙ The reduced dynamics: The Hamiltonian vector field 𝑋

𝜔𝑄

𝑌𝓁 ∈ 𝔛(𝑇∗𝑄 − 0𝑄) is 𝐩-projectable
and its projection is the symbol of the derivation [⋅, ℎ𝑌𝓁](𝑜)∗ .

∙ The standard symmetry on the reduced space: The action is defined by

𝐺 × ℙ(𝑇∗𝑄) → ℙ(𝑇∗𝑄), (𝑔, 𝐩(𝛼)) → 𝐩((𝑇∗Φ)𝑔(𝛼)).

Now, we can consider the second step of the reduction process. The standard symmetry on the
reduced space satisfies the conditions of Theorem 3, and therefore, we have

∙ The reduced space: In this case, the reduced space is the quotient space ℙ(𝑇∗𝑄)∕𝐺. More-
over, the projection 𝐩 ∶𝑜 − 0 → ℙ(𝑇∗𝑄) is 𝐺-invariant and it induces a reduced projection
𝐩𝐆 ∶(𝑜 − 0)∕𝐺 → ℙ(𝑇∗𝑄)∕𝐺. The real line bundle 𝛑𝐨∕𝐆 ∶𝐿 ∶= 𝑜∕𝐺 → 𝐾 ∶= ℙ(𝑇∗𝑄)∕𝐺 is
deduced from the 𝐺-equivariant line bundle 𝜋𝑜 . On the space of sections of the dual of this
real bundle, we have a Kirillov structure [⋅, ⋅]𝐿∗ characterized by

[ℎ𝐺
𝑋𝓁, ℎ

𝐺
𝑍𝓁]𝐿∗ = −ℎ𝐺

[𝑋,𝑍]𝓁

for 𝑋, 𝑍 ∈ 𝔛(𝑄) 𝐺-invariant vector fields on 𝑄.
∙ The reduced Hamiltonian section: The section ℎ𝑌𝓁 of 𝜋(𝑜)∗ ∶ (𝑜)∗ → ℙ(𝑇∗𝑄) is 𝐺-
invariant and therefore it induces a section

ℎ𝐺
𝑌𝓁 ∶ ℙ(𝑇∗𝑄)∕𝐺 → (𝑜)∗∕𝐺.

∙ The reduced dynamics: The vector field 𝐩∗(𝑋
𝜔𝑄

𝑌𝓁 ) is𝐺-invariant. Thus, it induces a vector field
on ℙ(𝑇∗𝑄)∕𝐺, which is just the symbol of [⋅, ℎ𝐺

𝑌𝓁]𝐿∗ .

The particular case of a Lie group. When 𝑄 = 𝐺 is a Lie group, for the first reduction step
with the scaling symmetry, we have (see Example 5):

∙ The reduced space is 𝐺 × ℙ𝔤∗.
∙ The contact structure is the distribution on 𝐺 × ℙ𝔤∗ given by

(𝑔,𝑝(𝜇)) =
⟨
(𝑇𝑔𝐿𝑔−1)

∗(𝜇)
⟩𝑜

× 𝑇𝑝(𝜇)(ℙ𝔤
∗)

for all 𝑔 ∈ 𝐺 and 𝜇 ∈ 𝔤∗ − {0}.
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BRAVETTI et al. 39

∙ The fiber of the real line bundle 𝜋𝑜 ∶ 𝑜 → 𝐺 × ℙ𝔤∗ at (𝑔, 𝑝(𝜇)) ∈ 𝐺 × ℙ𝔤∗ is just

𝑜
(𝑔,𝑝(𝜇)) =

⟨
(𝑇𝑔𝐿𝑔−1)

∗(𝜇)
⟩
.

∙ The reduced Hamiltonian section of 𝜋(𝑜)∗ ∶ (𝑜)∗ → 𝐺 × ℙ𝔤∗ induced by the function 𝑌𝓁 is
characterized by

ℎ𝜉(𝑔, 𝑝(𝜇))((𝑇𝑔𝐿𝑔−1)
∗(𝜇)) = 𝜇(𝜉),

with 𝑔 ∈ 𝐺, 𝜇 ∈ 𝔤∗ − {0}, 𝜉 = 𝑌(𝑒) and 𝑝 ∶ 𝔤∗ − {0} → ℙ𝔤∗ the corresponding quotient map
determined by the scaling symmetry on 𝔤∗ − {0}.

∙ The reduced vector field after this reduction is (𝑌, 𝑋ℎ𝜉 ) ∈ 𝔛(𝐺) × 𝔛(ℙ𝔤∗), such that

𝑋ℎ𝜉 (𝑓)◦𝑝 = {𝑓◦𝑝, 𝜉𝓁}𝔤∗−{0}, (49)

which is the symbol of the derivation [⋅, ℎ𝜉](𝑜)∗ .

Now, if we perform the second reduction step associated with the induced 𝐺-action

𝐺 × (𝐺 × ℙ𝔤∗) → 𝐺 × ℙ𝔤∗, (𝑔′, (𝑔, 𝑝(𝜇))) → (𝑔𝑔′, 𝑝(𝜇)),

the corresponding reduced elements are:

∙ The reduced space is the projective space ℙ𝔤∗.
∙ The line vector bundle 𝜋𝐿 ∶ 𝐿 → ℙ𝔤∗ is given by

𝐿𝑝(𝜇) = ⟨𝜇⟩, 𝜇 ∈ 𝔤∗.

∙ The reduced section of 𝜋𝐿∗ ∶ 𝐿∗ → ℙ𝔤∗ is just

ℎ𝐺
𝜉
(𝑝(𝜇))(𝑡𝜇) = 𝑡𝜇(𝜉).

∙ The final reduced dynamics is the vector field𝑋ℎ𝜉 onℙ𝔤
∗ described in (49), which is the symbol

of [⋅, ℎ𝐺
𝜉
]𝐿∗ and whose local expression is (22).

So, also in this case, similarly to the two previous examples (see Examples 6, 7, 8, and 9), both
reduction processes give rise to the same reduced dynamics. This fact motivates further analysis
on the equivalence of the two reduction processes, which will be addressed in full generality in
the following section.

6 THE EQUIVALENCE OF THE TWO REDUCTION PROCESSES

Finally, we will prove that both processes considered in Sections 4 and 5 are equivalent. Let
(𝑆, 𝜔,𝐻) be a symplectic Hamiltonian system with a scaling symmetry 𝜙𝑆 ∶ ℝ× × 𝑆 → 𝑆 and a
symplectic 𝐺-symmetry Φ𝑆 ∶ 𝐺 × 𝑆 → 𝑆 which are compatible, 𝐺 being a Lie group.
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40 BRAVETTI et al.

Theorem 5. Under the previous conditions we have that:

(1) There exists a real line bundle isomorphism (Ψ, 𝜓) between the line bundles𝜋𝐿 ∶ 𝐿 → (𝑆∕𝐺)∕ℝ×

and 𝜋(𝑜)∕𝐺 ∶ (𝑜)∕𝐺 → (𝑆∕ℝ×)∕𝐺

(2) The sectionsℎ𝐺𝐻 ∈ Γ((𝑜)∗∕𝐺) andℎ𝐻𝐺 ∈ Γ(𝐿∗) induced by theHamiltonian function𝐻 ∶ 𝑆 →
ℝ and obtained in Theorems 4 and 2, respectively, are related as follows:

ℎ𝐻𝐺 = Ψ∗◦ℎ𝐺𝐻◦𝜓, (50)

where Ψ∗ is the dual isomorphism, between the line bundles 𝜋(𝑜)∗∕𝐺 and 𝜋𝐿∗ , deduced from Ψ.
(3) The Kirillov structures [⋅, ⋅]𝐿∗ and [⋅, ⋅](𝑜)∗∕𝐺 obtained in Theorems 2 and 4, respectively, are

isomorphic. In fact, we have that

[Ψ∗◦ℎ𝐺1 ◦𝜓,Ψ
∗◦ℎ𝐺2 ◦𝜓]𝐿∗ = Ψ∗◦[ℎ𝐺1 , ℎ

𝐺
2 ](𝑜)∗∕𝐺◦𝜓 (51)

for all ℎ1, ℎ2 𝐺-invariant sections of the line bundle 𝜋 ∶ 𝑜 → 𝑆∕ℝ×.
(4) The vector fields 𝑋[⋅,⋅]𝐿∗

ℎ𝐻𝐺
and 𝑋

[⋅,⋅](𝑜)∗∕𝐺

ℎ𝐺𝐻
given in Theorems 2 and 4, respectively, are 𝜓-related,

that is, the following diagram is commutative.

Proof.

(1) The diffeomorphism 𝜓 is just

𝜓 ∶ (𝑆∕𝐺)∕ℝ× → (𝑆∕ℝ×)∕𝐺, 𝜓(𝐩𝐏(℘𝑆(𝑥))) = ℘𝐶(𝐩𝑆(𝑥)), for all 𝑥 ∈ 𝑆, (52)

that is,
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BRAVETTI et al. 41

We remark that thismap is a diffeomorphism from the equalityΦ𝑆
𝑔◦𝜙

𝑆
𝑠 = 𝜙𝑆

𝑠 ◦Φ
𝑆
𝑔 .Moreover,

the diffeomorphism Ψ is characterized in this diagram

(53)

Here, 𝐩𝐏×ℝ is the quotient map deduced from the action

ℝ× × (𝑃 × ℝ) → (𝑃 × ℝ), (𝑠, (℘𝑆(𝑥), 𝑡)) →
(
℘𝑆(𝑠𝑥),

𝑡
𝑠

)
,

and 𝐩𝐒×ℝ the quotient map deduced from the action

ℝ× × (𝑆 × ℝ) → (𝑆 × ℝ), (𝑠, (𝑥, 𝑡)) →
(
𝑠𝑥,

𝑡
𝑠

)
.

(2) From (A.3) in the Appendix, we have

ℎ𝐻𝐺 (𝐩𝐏(℘𝑆(𝑥)))(𝐩𝐏×ℝ(℘𝑆(𝑥), 𝑡)) = 𝑡𝐻𝐺(℘𝑆(𝑥)) = 𝑡𝐻(𝑥)

for 𝑥 ∈ 𝑆 and 𝑡 ∈ ℝ.
On the other hand, using (52), the diagram (53) and again (A.3) in the Appendix, we

obtain

(Ψ∗◦ℎ𝐺𝐻◦𝜓)(𝐩𝐏(℘𝑆(𝑥)))(𝐩𝐏×ℝ(℘𝑆(𝑥), 𝑡)) = ℎ𝐻(𝐩𝐒(𝑥))(𝐩𝐒×ℝ(𝑥, 𝑡)) = 𝑡𝐻(𝑥).

(3) If ℎ1, ℎ2 are 𝐺-invariant sections of the line bundle 𝜋(𝑜)∗ ∶ (𝑜)∗ → 𝐶 = 𝑆∕ℝ+, then from
(2) in Theorem 4 and (50), we deduce

𝐻Ψ∗◦[ℎ𝐺1 ,ℎ
𝐺
2 ](𝑜)∗∕𝐺◦𝜓

◦℘𝑆 = 𝐻Ψ∗◦[ℎ1,ℎ2]
𝐺
(𝑜)∗

◦𝜓◦℘𝑆 = 𝐻𝐺
[ℎ1,ℎ2](𝑜)∗

◦℘𝑆

= 𝐻[ℎ1,ℎ2](𝑜)∗
= −{𝐻ℎ1 ,𝐻ℎ2}𝑆.

On the other hand, using (b) in Theorem 1, (29) and (50), we have

𝐻[Ψ∗◦ℎ𝐺1 ◦𝜓,Ψ
∗◦ℎ𝐺2 ◦𝜓]𝐿∗

◦℘𝑆 = −{𝐻Ψ∗◦ℎ𝐺1 ◦𝜓
,𝐻Ψ∗◦ℎ𝐺2 ◦𝜓

}𝑃◦℘𝑆

= −{𝐻Ψ∗◦ℎ𝐺1 ◦𝜓
◦℘𝑆,𝐻Ψ∗◦ℎ𝐺2 ◦𝜓

◦℘𝑆}𝑆

= −{𝐻𝐺
ℎ1
◦℘𝑆,𝐻

𝐺
ℎ2
◦℘𝑆}𝑆 = −{𝐻ℎ1 ,𝐻ℎ2}𝑆.

Therefore, we have (51).
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42 BRAVETTI et al.

(4) We consider the section Ψ∗◦ℎ𝐺◦𝜓 ∈ Γ(𝐿∗), with ℎ a 𝐺-invariant section on 𝜋(𝑜)∗ and 𝑓 ∈
𝐶∞((𝑆∕ℝ×)∕𝐺). From the properties of the Kirillov structure [⋅, ⋅]𝐿∗ , we have that

[(𝑓◦𝜓)(Ψ∗◦ℎ𝐺◦𝜓), ℎ𝐻𝐺 ]𝐿∗ = (𝑓◦𝜓)[Ψ∗◦ℎ𝐺◦𝜓, ℎ𝐻𝐺 ]𝐿∗ + 𝑋
[⋅,⋅]𝐿∗
ℎ𝐻𝐺

(𝑓◦𝜓)(Ψ∗◦ℎ𝐺◦𝜓).

On the other hand, using (50) and (51), we obtain

[(𝑓◦𝜓)(Ψ∗◦ℎ𝐺◦𝜓), ℎ𝐻𝐺 ]𝐿∗ = [Ψ∗◦(𝑓ℎ𝐺)◦𝜓,Ψ∗◦ℎ𝐺𝐻◦𝜓]𝐿∗ = Ψ∗◦[𝑓ℎ𝐺, ℎ𝐺𝐻](𝑜)
∗
∕𝐺◦𝜓,

(𝑓◦𝜓)[Ψ∗◦ℎ𝐺◦𝜓, ℎ𝐻𝐺 ]𝐿∗ = Ψ∗◦(𝑓[ℎ𝐺, ℎ𝐺𝐻](𝑜)
∗
∕𝐺)◦𝜓.

Replacing these relations in (6), we have that

Ψ∗◦[𝑓ℎ𝐺, ℎ𝐺𝐻](𝑜)
∗
∕𝐺◦𝜓 = Ψ∗◦(𝑓[ℎ𝐺, ℎ𝐺𝐻](𝑜)

∗
∕𝐺)◦𝜓 + 𝑋

[⋅,⋅]𝐿∗
ℎ𝐻𝐺

(𝑓◦𝜓)(Ψ∗◦ℎ𝐺◦𝜓). (54)

However, we know that

[𝑓ℎ𝐺, ℎ𝐺𝐻](𝑜)
∗
∕𝐺 = 𝑓[ℎ𝐺, ℎ𝐺𝐻](𝑜)∗∕𝐺 + 𝑋

[⋅,⋅](𝑜)∗∕𝐺

ℎ𝐺𝐻
(𝑓)ℎ𝐺. (55)

Comparing (54) and (55), we conclude (4).

□

Both reduction processes and the corresponding equivalence between them are summarized in
the following diagram.

7 RECONSTRUCTION PROCESS FOR SCALING SYMMETRIES

In this section, we will study the inverse process of reduction: the reconstruction process. First, we
shall introduce the general involved ideas, for arbitrary dynamical systems and Lie groups, and
thenwe shall concentrate on the case of symplecticHamiltonian systemswith scaling symmetries.
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BRAVETTI et al. 43

7.1 The general context

Let𝑀 be a manifold, 𝑋 ∈ 𝔛 (𝑀) a vector field on𝑀 and 𝐺 a Lie group acting on𝑀 by an action
𝜙𝑀 ∶ 𝐺 ×𝑀 → 𝑀 such that 𝑋 is 𝐺-invariant. Assume that 𝜙𝑀 defines a principal fiber bundle
𝑝𝑀 ∶ 𝑀 → 𝑀∕𝐺. In such a case, the 𝐺-invariance of 𝑋 ensures that there exists a vector field
𝑋𝐺 ∈ 𝔛 (𝑀∕𝐺) such that 𝑋𝐺◦𝑝𝑀 = 𝑇𝑝𝑀◦𝑋. The question is: how can we get the integral curves
of 𝑋 from those of 𝑋𝐺? To do that, we can proceed as follows. If we want the integral curve Γ ∶
(−𝜖, 𝜖) → 𝑀 of 𝑋 such that Γ (0) = 𝑥0, then:

(1) consider the integral curve 𝛾 ∶ (−𝜖, 𝜖) → 𝑀∕𝐺 of 𝑋𝐺 such that 𝛾 (0) = 𝑝𝑀 (𝑥0);
(2) fix a principal connection𝐴 ∶ 𝑇𝑀 → 𝔤 for 𝑝𝑀 (where 𝔤 is the Lie algebra of𝐺) and fix a curve

𝜑 ∶ (−𝜖, 𝜖) → 𝑀 such that 𝜑 (0) = 𝑥0,

𝐴
(
𝜑′(𝑡)

)
= 0 and 𝑝𝑀(𝜑(𝑡)) = 𝛾(𝑡) (56)

(in other words, 𝑡 → 𝜑(𝑡) is the horizontal lift of the curve 𝛾 by the principal connection 𝐴);
(3) and find the curve 𝑔 ∶ (−𝜖, 𝜖) → 𝐺 such that

𝑔′(𝑡) = 𝑇𝑒𝐿𝑔(𝑡)[𝐴(𝑋(𝜑(𝑡)))], 𝑔(0) = 𝑒. (57)

From now on, we shall take 𝜖 small enough in order to fulfill above conditions. Then, proceeding
as in Ref. 1 (see pp. 304–305), one may prove that

Γ(𝑡) = 𝜙𝑀(𝑔(𝑡), 𝜑(𝑡))

is the curve we are looking for. The above three-step procedure is usually known as reconstruction.
The steps 2 and 3 are known as the reconstruction problem (see, e.g., Ref. 2).
Clearly, such a procedure can be used for the standard as well as for the scaling symmetries. In

the following, we shall focus on the latter, since the reconstruction process for scaling symmetries,
as far as the authors know, has not been studied in the literature so far.

7.2 Application to scaling symmetries and symplectic Hamiltonian
systems

Now, as in Section 3, let us suppose that we have a scaling symmetry 𝜙 ∶ ℝ× × 𝑆 → 𝑆 on a
symplectic Hamiltonian system (𝑆, 𝜔,𝐻), with infinitesimal generator Δ. Then, assuming that
𝐩𝐒 ∶ 𝑆 → 𝐶 = 𝑆∕ℝ× is a principal bundle (see the first part of Section 3),

∙ we have a contact distribution  on 𝐶 and a related real line bundle 𝜋𝑜 ∶ 𝑜 → 𝐶 with a
Kirillov structure [⋅, ⋅](𝑜)∗ , and

∙ we can ensure that the Hamiltonian vector field 𝑋𝜔
𝐻 ∈ 𝔛(𝑆) of 𝐻 projects onto the symbol

𝑋
[⋅,⋅](𝑜)∗

ℎ𝐻
∈ 𝔛(𝐶) of the derivation [⋅, ℎ𝐻](𝑜)∗ .

Recall that ℎ𝐻 ∶ 𝐶 → (𝑜)∗ denotes the section of Γ((𝑜)∗) related to the homogeneous func-
tion 𝐻. So, we are in the situation of the previous subsection, with 𝑀 = 𝑆, 𝑋 = 𝑋𝜔

𝐻 , 𝐺 = ℝ×,
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44 BRAVETTI et al.

𝔤 = ℝ and 𝑋𝐺 = 𝑋
[⋅,⋅](𝑜)∗

ℎ𝐻
. We shall apply the reconstruction procedure described above in this

particular context.

7.2.1 Existence of a flat connection

There is a case in which solving the reconstruction problem is especially simple (as we will show
later). This case is when there is a nonvanishing homogeneous function 𝐹 ∶ 𝑆 → ℝ×. This kind
of functions are called scaling functions.26
In such a case, the map

(𝐹, 𝐩𝐒) ∶ 𝑆 → ℝ× × 𝐶

is a diffeomorphism and defines a trivialization for 𝐩𝐒. Its inverse is given by

(𝐹, 𝐩𝐒)
−1

∶ (𝑠, 𝐩𝐒(𝑥)) ∈ ℝ× × 𝐶 → 𝜙

(
𝑠

𝐹(𝑥)
, 𝑥

)
∈ 𝑆

for all 𝑠 ∈ ℝ× and 𝑥 ∈ 𝑆, and we have a global section 𝜎 ∶ 𝐶 → 𝑆 of 𝐩𝐒 which takes the values

𝜎(𝑦) = (𝐹, 𝐩𝐒)
−1
(1, 𝑦), ∀𝑦 ∈ 𝐶. (58)

Conversely, if 𝐩𝐒 ∶ 𝑆 → 𝐶 is trivial, that is, 𝑆 ≅ ℝ× × 𝐶 and 𝐩𝐒 is the second projection, then the
function 𝐹 ∶ 𝑆 ≅ ℝ× × 𝐶 → ℝ given by 𝐹(𝑠, 𝑥) = 𝑠 is a nonvanishing homogenous function, that
is, a scaling function.
Therefore, the existence of a scaling function 𝐹 on 𝑆 is equivalent with the trivialization of the

principal bundle 𝐩𝐒 ∶ 𝑆 → 𝐶. This fact guarantees the local existence of this kind of functions 𝐹
(see Ref. 26).
Moreover, if Δ is the infinitesimal generator of 𝜙, since

𝑑𝐹(𝑥)(Δ(𝑥)) = 𝐹(𝑥) ≠ 0, ∀𝑥 ∈ 𝑆,

then we have that

𝑇𝑆 = ⟨Δ⟩⊕ ⟨𝑑𝐹⟩𝑜.
So, the map 𝐴 ∶ 𝑇𝑆 → ℝ, characterized by

𝐴(Δ(𝑥)) = Δ(𝐹)(𝑥), ∀𝑥 ∈ 𝑆, (59)

and

ker𝐴 = ⟨𝑑𝐹⟩𝑜 (60)

is a principal flat connection for 𝐩𝐒 (because ker𝐴 is integrable).
On the other hand, the 1-form 𝜂 ∶= 𝜎∗(𝜆) is a global generator of 𝑜 with 𝜆 = −𝑖Δ𝜔, which

makes 𝜋𝑜 trivial. In fact, using (58), we have that 𝜎◦𝐩𝐒 = 𝜙 1

𝐹

. Therefore,

(𝐩𝐒)
∗
𝜂 =

(
𝜙 1

𝐹

)∗

𝜆 =

(
𝜙◦

(
1
𝐹
, 𝐼𝑑

))∗

𝜆.
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BRAVETTI et al. 45

Since 𝜆 = −𝑖Δ𝜔, then 𝑇∗
𝑠 𝜙𝑥(𝜆(𝜙(𝑥, 𝑠)) = 0, for all (𝑠, 𝑥) ∈ ℝ× × 𝑆. Thus, from the homogeneity

of 𝜆, we have that

((𝐩𝐒)
∗
𝜂)(𝑥) =

(
1
𝐹
, 𝐼𝑑

)∗
(
0,

(
𝜙 1

𝐹(𝑥)

)∗

(𝜆(𝑥)

)
=

1

𝐹(𝑥)
𝜆(𝑥).

In conclusion, we deduce that

(𝐩𝐒)
∗
𝜂 =

1
𝐹
𝜆. (61)

This implies that = ⟨𝜂⟩𝑜, and 𝜂 is a contact 1-form on 𝐶.
The one-to-one correspondence between homogeneous functions 𝐻 ∶ 𝑆 → ℝ on 𝑆 and

functions ℎ𝐻 ∶ 𝐶 → ℝ on 𝐶 (sections of the trivial line bundle 𝜋(𝑜)∗) is defined by the relation

ℎ𝐻◦𝐩𝐒 =
1
𝐹
𝐻.

Note that the function on 𝐶 associated with 𝐹 is just the constant function 1.
The Jacobi bracket of two functions ℎ1, ℎ2 on 𝐶 defined by the contact 1-form 𝜂 is given by

{ℎ1, ℎ2}𝐶◦𝐩𝐒 = −
1
𝐹
{𝐹(ℎ1◦𝐩𝐒), 𝐹(ℎ2◦𝐩𝐒)}𝑆. (62)

The relation between theHamiltonian vector field𝑋𝜔
𝐻 of𝐻 with respect𝜔 and theHamiltonian

vector field 𝑋𝜂
ℎ𝐻

of ℎ𝐻 with respect to the contact structure 𝜂 is

𝑇𝐩𝐒◦𝑋
𝜔
𝐻 = 𝑋

𝜂
ℎ𝐻

◦𝐩𝐒.

Remark 6. Since above equation is actually true for any homogeneous function 𝐻, for 𝐻 = 𝐹 we
have that

𝑇𝐩𝐒◦𝑋
𝜔
𝐹 = 𝑋

𝜂
1◦𝐩𝐒 = ◦𝐩𝐒, (63)

where is the Reeb vector field of 𝜂.

Below, we shall use all these facts to address the reconstruction problem for the system (𝑆, 𝜔,𝐻)
and the action 𝜙.

7.2.2 Solving the reconstruction problem

Suppose thatwewant to find the integral curve Γ ∶ (−𝜖, 𝜖) → 𝑆 of𝑋𝜔
𝐻 such that Γ (0) = 𝑥0. Follow-

ing the step 1 of the reconstruction procedure, let us fix the integral curve 𝛾 ∶ (−𝜖, 𝜖) → 𝐶 = 𝑆∕ℝ×

of 𝑋𝜂
ℎ𝐻

such that 𝛾 (0) = 𝐩𝐒 (𝑥0). Now, we need to find the curves 𝜑 (𝑡) and 𝑔 (𝑡) of steps 2 and 3.
Consider the flat connection 𝐴 given by (59) and (60). Define

𝜑(𝑡) ∶= (𝐹, 𝐩𝐒)
−1
(𝑠0, 𝛾(𝑡)), ∀𝑡 ∈ (−𝜖, 𝜖),
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46 BRAVETTI et al.

with 𝑠0 = 𝐹 (𝑥0). Then, 𝐩𝐒 (𝜑 (𝑡)) = 𝛾 (𝑡) and 𝐹 (𝜑 (𝑡)) = 𝑠0. In particular, 𝜑 (𝑡) belongs to a level
set of 𝐹 (of value 𝑠0 ∈ ℝ×), and consequently its tangent vector belongs to ⟨𝑑𝐹⟩𝑜 = ker𝐴, that is,

𝐴
(
𝜑′(𝑡)

)
= 0 ∀𝑡 ∈ (−𝜖, 𝜖).

Then, the two parts of (56) are satisfied. Furthermore, since 𝛾 (0) = 𝐩𝐒 (𝑥0),

𝜑(0) = (𝐹, 𝐩𝐒)
−1
(𝑠0, 𝛾(0)) = (𝐹, 𝐩𝐒)

−1
(𝐹(𝑥0), 𝐩𝐒(𝑥0)) = 𝑥0.

Thus, the step 2 is complete.
In order to find the curve 𝑔 (𝑡), let us calculate 𝐴

(
𝑋𝜔
𝐻 (𝜑 (𝑡))

)
. Using the decomposition 𝑇𝑆 =⟨Δ⟩⊕ ⟨𝑑𝐹⟩𝑜, we have that

𝑋𝜔
𝐻 = 𝑓 Δ + 𝑍,

with 𝑓 ∈ 𝐶∞(𝑆) and 𝑍 a vector field on 𝑆 such that 𝑍(𝐹) = 0. It follows that

{𝐹,𝐻}𝑆 = 𝑋𝜔
𝐻(𝐹) = 𝑓 Δ(𝐹) = 𝑓 𝐹,

and consequently

𝑓 =
{𝐹,𝐻}𝑆

𝐹
.

Then,

𝐴◦𝑋𝜔
𝐻 = 𝑓 Δ =

{𝐹,𝐻}𝑆
𝐹

Δ.

Writing 𝑔 (𝑡) = exp (𝛼 (𝑡)), Equation (57) translates to

𝛼′(𝑡) =
{𝐻, 𝐹}𝑆(𝜑(𝑡))

𝑠0
, 𝛼(0) = 0,

which has the solution

𝛼(𝑡) =
1
𝑠0 ∫

𝑡

0
{𝐻, 𝐹}𝑆(𝜑(𝑠)) 𝑑𝑠.

Summing up, the trajectory which we are looking for is

Γ(𝑡) = 𝜙𝑆

(
exp

(
1
𝑠0 ∫

𝑡

0
{𝐻, 𝐹}𝑆(𝜑(𝑠)) 𝑑𝑠

)
, 𝜑(𝑡)

)
, with 𝜑(𝑡) = (𝐹, 𝐩𝐒)

−1
(𝑠0, 𝛾(𝑡)). (64)

Remark 7. If 𝐻 itself is a scaling function (i.e., 𝐻 (𝑥) ≠ 0 for all 𝑥), then we can take 𝐹 = 𝐻. In
such a case, {𝐻, 𝐹}𝑆 = 0 and consequently

Γ(𝑡) = 𝜑(𝑡) = (𝐻, 𝐩𝐒)
−1
(𝑠0, 𝛾(𝑡)), (65)

where 𝑠0 = 𝐻 (𝑥0).
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BRAVETTI et al. 47

Now, we shall construct an alternative expression of Γ (𝑡), which involves the Reeb vector field
 of (𝐶, 𝜂). Using (63) and acting with the first and last members on the differential of the contact
Hamiltonian function ℎ𝐻 (related to𝐻), it easily follows that

{𝐻, 𝐹}𝑆 = −𝐹 ((ℎ𝐻)◦𝐩𝐒).

Then,

1
𝑠0 ∫

𝑡

0
{𝐻, 𝐹}𝑆(𝜑(𝑠)) 𝑑𝑠 = −∫

𝑡

0
(ℎ𝐻)(𝛾(𝑠)) 𝑑𝑠,

and applying (𝐹, 𝐩𝐒) on (64) we have that

(𝐹, 𝐩𝐒)(Γ(𝑡)) =

(
𝑠0 exp

(
−∫

𝑡

0
(ℎ𝐻)(𝛾(𝑠)) 𝑑𝑠

)
, 𝛾(𝑡)

)
. (66)

Thus, we have found, up to quadratures, the trajectories Γ (𝑡) of 𝑋𝜔
𝐻 from the trajectories 𝛾 (𝑡) of

𝑋
𝜂
ℎ𝐻
.

Remark 8. According to the local existence of scaling functions, if there is not a (global) scaling
function for 𝜙𝑆 , then we can proceed as above around every point 𝑥 ∈ 𝑆, just replacing 𝑆 by an
appropriate coordinate neighborhood𝑈 of 𝑥0. In particular, we can obtain the result of Remark 7
along the open submanifold of 𝑆 where𝐻 ≠ 0.

To end this section, suppose that, instead of a symplecticHamiltonian system,wehave a Poisson
Hamiltonian system (𝑃,Π,𝐻) with scaling symmetry for 𝜙𝑃 ∶ ℝ× × 𝑃 → 𝑃 such that 𝐩𝐏 ∶ 𝑃 →
𝐾 = 𝑃∕ℝ× is a principal bundle. Assume that 𝐹 ∶ 𝑃 → ℝ× is a scaling function for 𝜙𝑃. Then, as
we saw above, the related line bundle 𝜋𝐿 ∶ 𝐿 → 𝐾 is trivial (via a global section as that given by
(58)), so the sections of 𝜋𝐿∗ can be identified with the functions ℎ ∶ 𝐾 → ℝ, which in turn are in
bijection with the homogeneous functions𝐻 ∶ 𝑃 → ℝ through the equation ℎ𝐻◦𝐩𝐏 =

1

𝐹
𝐻. Also,

the related Kirillov bracket [⋅, ⋅]𝐿∗ can be identified with the Jacobi bracket {⋅, ⋅}𝐾 given by{
ℎ𝐻1

, ℎ𝐻2

}
𝐾
◦𝐩𝐏 = −

1
𝐹
{𝐻1,𝐻2}𝑃.

Moreover, following the same calculations made along this section for the symplectic case,
given 𝑥0 ∈ 𝑃, we can construct the trajectory Γ (𝑡) of 𝑋{⋅,⋅}𝑃

𝐻 such that Γ (0) = 𝑥0, in terms of the
trajectory 𝛾 (𝑡) of 𝑋[⋅,⋅]𝐿∗

ℎ𝐻
such that 𝛾 (0) = 𝐩𝐏 (𝑥0), through the equation

(𝐹, 𝐩𝐏)(Γ(𝑡)) =

(
𝑠0 exp

(
−∫

𝑡

0
𝐸(ℎ𝐻)(𝛾(𝑠)) 𝑑𝑠

)
, 𝛾(𝑡)

)
,

with 𝑠0 = 𝐹 (𝑥0) and 𝐸 ∈ 𝔛 (𝐾) such that 𝐸 (𝑓) = {1, 𝑓}𝐾 .

Example 10. The 2D harmonic oscillator. If we consider the local coordinates (𝜌, 𝜃, 𝜌′, 𝜃′)
defined at the end of Example 4 on ℝ+ × 𝑆1 × ℝ+ × 𝑆1 ≅ 𝑇∗(ℝ2 − {(0, 0)}) − 0ℝ2−{(0,0)}, then we
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48 BRAVETTI et al.

have that the local expression of the Hamiltonian function is just

𝐻(𝜌, 𝜃, 𝜌′, 𝜃′) =
1
2
𝜌2(1 + (𝜌′)2),

which is a scaling function.
Moreover, the reduced space is ℝ+ × 𝑆1 × 𝑆1 and the principal bundle 𝐩 ∶ ℝ+ × 𝑆1 × ℝ+ ×

𝑆1 → ℝ+ × 𝑆1 × 𝑆1 is given by 𝐩(𝜌, 𝜃, 𝜌′, 𝜃′) = (𝜌′, 𝜃, 𝜃′). Now, we will describe the integral curve
Γ ∶ (−𝜖, 𝜖) → ℝ+ × 𝑆1 × ℝ+ × 𝑆1 of 𝑋𝜔

𝐻 with Γ(0) = (𝜌0, 𝜃0, 𝜌
′
0, 𝜃

′
0). Note that the inverse of the

diffeomophism

(𝐻, 𝐩) ∶ ℝ+ × 𝑆1 × ℝ+ × 𝑆1 → ℝ+ × ℝ+ × 𝑆1 × 𝑆1, (𝐻, 𝐩)(𝜌, 𝜃, 𝜌′, 𝜃′) =

(
1
2
𝜌2(1 + (𝜌′)2

)
, 𝜌′, 𝜃, 𝜃′)

is

(𝐻, 𝐩)−1 ∶ ℝ+ × ℝ+ × 𝑆1 × 𝑆1 → ℝ+ × 𝑆1 × ℝ+ × 𝑆1, (𝐻, 𝐩)−1(𝜌, 𝜌′, 𝜃, 𝜃′) =

(√
2𝜌

1 + (𝜌′)2
, 𝜃, 𝜌′, 𝜃′

)
.

Therefore, the integral curve of 𝑋𝜔
𝐻 such that Γ(0) = (𝜌0, 𝜃0, 𝜌

′
0, 𝜃

′
0) is (see (65))

Γ(𝑡) = (𝐻, 𝐩)
−1
(
1
2
𝜌20(1 + (𝜌′0)

2), 𝛾(𝑡)

)
=
⎛⎜⎜⎝𝜌0

√
(1 + (𝜌′0)

2)

(1 + 𝜌′(𝑡)2)
, 𝛾(𝑡)

⎞⎟⎟⎠,
where 𝛾(𝑡) = (𝜃(𝑡), 𝜌′(𝑡), 𝜃′(𝑡)) is the integral curve of the contact Hamiltonian vector field

𝑋
𝜂
ℎ𝐻

= (1 + (𝜌′)2) cos(𝜃 − 𝜃′)𝜕𝜌′ + sin(𝜃 − 𝜃′)

(
1
𝜌′
𝜕𝜃′ + 𝜌′𝜕𝜃

)
(see (17)).

Example 11. The projective cotangentHamiltonian systemdeduced from a standard lin-
ear Hamiltonian system. We consider Example 5 with 𝑌 ∈ 𝔛(𝑄) a vector field on the manifold
𝑄 of dimension 𝑛. Let 𝑈𝑖0 be the open subset of 𝑇

∗𝑄 − 0𝑄 given by

𝑈𝑖0 = {(𝑞1, … 𝑞𝑛, 𝑝1, …𝑝𝑛) ∈ 𝑇∗𝑄 − 0𝑄∕𝑝𝑖0 ≠ 0},

with (𝑞𝑖, 𝑝𝑖) local coordinates on 𝑇∗𝑄. The local expressions of the linear function 𝑌𝓁 and of the
corresponding Hamiltonian vector field 𝑋𝜔𝑄

𝑌𝓁 are

𝑌𝓁(𝑞, 𝑝) = 𝑌𝑖(𝑞)𝑝𝑖 and 𝑋
𝜔𝑄

𝑌𝓁 = 𝑌𝑘𝜕𝑞𝑘 − 𝑝𝑗𝜕𝑞𝑘𝑌
𝑗𝜕𝑝𝑘 ,

with 𝑌(𝑞) = 𝑌𝑖(𝑞)𝜕𝑞𝑖 .
Note that 𝑌𝓁 is a scaling function if and only if 𝑌 is a vector field without zeros. In any case, we

have a scaling function on 𝑈𝑖0 given by

𝐹 ∶ 𝑈𝑖0 → ℝ, 𝐹(𝑞𝑖, 𝑝𝑖) = 𝑝𝑖0 .

After the reduction process of the Hamiltonian symplectic system (𝑇∗𝑄 − 0𝑄, 𝜔𝑄,𝐻) by the
scaling symmetry (8), we have that the local expressions of the reduced elements are:
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BRAVETTI et al. 49

∙ The local expression of the projective bundle 𝐩 ∶ 𝑇∗𝑄 − 0𝑄 → ℙ(𝑇∗𝑄) on 𝑈𝑖0 ∶

𝐩(𝑞1, … 𝑞𝑛, 𝑝1, …𝑝𝑛) =

(
𝑞1, … 𝑞𝑛,

𝑝1

𝑝𝑖0

, … ,
𝑝𝑖0−1

𝑝𝑖0

,
𝑝𝑖0+1

𝑝𝑖0

, … ,
𝑝𝑛

𝑝𝑖0

)
.

∙ The contact distribution on 𝑈𝑖0 ∶

((𝑞,𝑝))|𝐩(𝑈𝑖0 )
= 𝑇(𝑞,𝑝)𝐩(< 𝑝𝑖𝑑𝑞

𝑖 >𝑜) = 𝑇(𝑞,𝑝)𝐩 < 𝑋1, … , 𝑋𝑖0−1, 𝑋𝑖0+1, … , 𝑋𝑛, 𝜕𝑝1 , … , 𝜕𝑝𝑛 >

= < 𝑋1,… , 𝑋𝑖0−1, 𝑋𝑖0+1, … , 𝑋𝑛, 𝜕𝑝1 , … , 𝜕𝑝𝑖0−1 , 𝜕𝑝𝑖0+1 , … , 𝜕𝑝𝑛 >,

with 𝑋𝑖 = 𝑝𝑖𝜕𝑞𝑖0 − 𝑝𝑖0𝜕𝑞𝑖 , 𝑋𝑖 = 𝑝𝑖𝜕𝑞𝑖0 − 𝑝𝑖0𝜕𝑞𝑖 and (𝑞, 𝑝) = (𝑞, 𝑝1, …𝑝𝑖0−1, 𝑝𝑖0+1, … , 𝑝𝑛) local
coordinates on ℙ(𝑇∗𝑄).
The local expression of the line bundle 𝜋𝑜 ∶ 𝑜 → ℙ(𝑇∗𝑄) on 𝑈𝑖0 is

𝜋𝑜 (𝑞, 𝑝𝑖, 𝑡) = (𝑞, 𝑝𝑖).

∙ The section ℎ𝑌𝓁 ∶ ℙ(𝑇∗𝑄) → (𝑜)∗ of 𝜋(𝑜)∗ ∶ (𝑜)∗ → ℙ(𝑇∗𝑄) associated with 𝑌𝓁 ∶

ℎ𝑌𝓁(𝑞, 𝑝)(𝑞, 𝑝, 𝑡) = 𝑌𝓁(𝑞, 𝑝1, … , 𝑝𝑖0−1, 𝑡, 𝑝𝑖0+1, … , 𝑝𝑛) = 𝑌𝑖(𝑞)𝑝𝑖 + 𝑌𝑖0(𝑞)𝑡. (67)

∙ The 𝐩-projection of the Hamiltonian vector field 𝑋𝜔𝑄

𝑌𝓁 ∈ 𝔛(𝑇∗𝑄 − 0𝑄) to ℙ(𝑇∗𝑄) ∶

𝑌𝑖𝜕𝑞𝑖 +
(
𝑝𝑗(𝑝𝑖𝜕𝑞𝑖0 𝑌

𝑗 − 𝜕𝑞𝑖𝑌
𝑗) + 𝑝𝑖𝜕𝑞𝑖0 𝑌

𝑖0 − 𝜕𝑞𝑖𝑌
𝑖0
)
𝜕𝑝𝑖 . (68)

∙ The trivialization (𝐹, 𝐩) ∶ 𝑇∗𝑄 − 0𝑄 → ℝ× × ℙ(𝑇∗𝑄) ∶

(𝐹, 𝐩)
(
𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛

)
=

(
𝑝𝑖0 ,

(
𝑞1, … , 𝑞𝑛,

𝑝1

𝑝𝑖0

, … ,
𝑝𝑖0−1

𝑝𝑖0

,
𝑝𝑖0+1

𝑝𝑖0

, … ,
𝑝𝑛

𝑝𝑖0

))
and its inverse map

(𝐹, 𝐩)−1(𝑠, (𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑖0−1, 𝑝𝑖0+1, … , 𝑝𝑛)) = (𝑞1, … , 𝑞𝑛, 𝑠𝑝1, … , 𝑠𝑝𝑖0−1, 𝑠, 𝑠𝑝𝑖0+1, … , 𝑠𝑝𝑛).

The integral curveΓ ∶ (−𝜖, 𝜖) → 𝑇∗𝑄 − 0𝑄 of theHamiltonian vector field𝑋
𝜔𝑄

𝑌𝓁 such thatΓ(0) =
(𝑞𝑖0, 𝑝

0
𝑖 ) is (see (64))

Γ(𝑡) = (𝑞𝑖(𝑡), exp

(
1

𝑝0
𝑖0
∫

𝑡

0

(𝑝𝑗𝜕𝑞𝑖0 𝑌
𝑗(𝑞(𝑠))𝑑𝑠)

)
(𝑝0

𝑖0
𝑝1(𝑡), … , 𝑝0

𝑖0
𝑝𝑖0−1(𝑡), 𝑝

0
𝑖0
, 𝑝0

𝑖0
𝑝𝑖0+1(𝑡), … , 𝑝0

𝑖0
𝑝𝑛(𝑡)),

where 𝛾(𝑡) = (𝑞𝑖(𝑡), 𝑝1(𝑡), … , 𝑝𝑖0−1(𝑡), 𝑝𝑖0+1(𝑡), … , 𝑝𝑛(𝑡)) is an integral curve of the vector field
given in (68) such that

𝛾(0) =

(
𝑞𝑖0,

𝑝0
1

𝑝0
𝑖0

, … ,
𝑝0
𝑖0

𝑝0
𝑖0

,
𝑝0
𝑖0+1

𝑝0
𝑖0

, … ,
𝑝0
𝑛

𝑝0
𝑖0

)
.
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APPENDIX: LINE BUNDLES AND ℝ×-PRINCIPAL BUNDLES
Let 𝑝𝑀 ∶ 𝑀 → 𝐾 be the principal bundle associated with an action 𝜙𝑀 ∶ ℝ× ×𝑀 → 𝑀 of the
multiplicative group ℝ× (with ℝ× = ℝ − {0} or ℝ× = ℝ+) on the manifold 𝑀. Consider the
representation ℝ× × ℝ → ℝ of ℝ× over the vector space of real numbers given by

(𝑠, 𝑡) →
𝑡
𝑠
.

Let �̃�𝑀 ∶ ℝ× × (𝑀 × ℝ) → (𝑀 × ℝ) be the action of ℝ× on the cartesian product𝑀 ×ℝ given
by

�̃�𝑀(𝑠, (𝑥, 𝑡)) =
(
𝜙𝑀(𝑠, 𝑥),

𝑡
𝑠

)
with (𝑠, (𝑥, 𝑡)) ∈ ℝ× × (𝑀 × ℝ). (A.1)

Then, the first projection𝑝1 ∶ 𝑀 × ℝ → 𝑀 is an equivariantmapwith respect to the actions �̃�𝑀

and 𝜙𝑀 and the map 𝜋𝐿 ∶ 𝐿 ∶= (𝑀 × ℝ)∕ℝ× → 𝐾 = 𝑀∕ℝ× between the corresponding quotient
spaces is a vector bundle with fiber ℝ. It is the line bundle associated with 𝑝𝑀 ∶ 𝑀 → 𝐾 and the
representation (A.1).
If 0𝐿 is the zero section of the vector bundle 𝜋𝐿 ∶ 𝐿 → 𝐾 and 𝜋 ∶ 𝑀 × ℝ → 𝐿 = (𝑀 × ℝ)∕ℝ× is

the quotient map, one can identify𝑀 with 𝐿 − 0𝐿, via the isomorphism of principal bundles

𝑀 → (𝐿 − 0𝐿), 𝑥 ∈ 𝑀 → 𝜋(𝑥, 1) ∈ 𝐿 − 0𝐿.

Conversely, if 𝜋𝐿 ∶ 𝐿 → 𝐾 is a line bundle (vector bundle with fiber ℝ) and 0𝐿 is the zero sec-
tion of 𝜋𝐿, then 𝑝𝑀 ∶ 𝑀 ∶= (𝐿 − 0𝐿) → 𝐾 is a ℝ×-principal bundle. The action associated with
this principal bundle is given by

𝜙𝑀 ∶ ℝ× × (𝐿 − 0𝐿) → (𝐿 − 0𝐿), 𝜙𝑀(𝑠, 𝑥) = 𝑠𝑥

for 𝑥 ∈ 𝐿 − 0𝐿, and the line bundle associated with this principal bundle is isomorphic to 𝜋𝐿. In
fact, the ℝ×-invariant map

(𝐿 − 0𝐿) × ℝ → 𝐿, (𝑥, 𝑡) → 𝑡𝑥, with (𝑥, 𝑡) ∈ (𝐿 − 0𝐿) × ℝ

induces an isomorphism between the line bundles ((𝐿 − 0𝐿) × ℝ)∕ℝ× and 𝐿.

Proposition A.1. Let 𝑝𝑀 ∶ 𝑀 → 𝐾 be a ℝ×-principal bundle and 𝜋𝐿 ∶ 𝐿 → 𝐾 its associated line
bundle. Then, there is a one-to-one correspondence between the sections ℎ ∶ 𝐾 → 𝐿∗ on the dual
vector bundle of 𝜋𝐿 ∶ 𝐿 → 𝐾 and the homogeneous functions on𝑀, that is, functions 𝐻 ∶ 𝑀 → ℝ
satisfying the condition

𝐻(𝜙𝑀(𝑠, 𝑥)) = 𝑠𝐻(𝑥), for all 𝑠 ∈ ℝ×, 𝑥 ∈ 𝑃,

where 𝜙𝑀 ∶ ℝ× ×𝑀 → 𝑀 is the corresponding principal action.
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Proof. Indeed, if ℎ ∶ 𝐾 → 𝐿∗ is a section of 𝜋𝐿∗ ∶ 𝐿∗ → 𝐾 and 𝜋 ∶ 𝑀 × ℝ → 𝐿 = (𝑀 × ℝ)∕ℝ× is
the canonical projection, one can define the function

𝐻ℎ ∶ 𝑀 → ℝ, 𝐻ℎ(𝑥) = ℎ(𝑝𝑀(𝑥))(𝜋(𝑥, 1)), for all 𝑥 ∈ 𝑀, (A.2)

which satisfies that

𝐻ℎ(𝜙
𝑀(𝑠, 𝑥)) = ℎ(𝑝𝑀(𝑥))(𝜋(𝜙𝑀(𝑠, 𝑥), 1)) = ℎ(𝑝𝑀(𝑥))(𝜋(𝑥, 𝑠)) = ℎ(𝑝𝑀(𝑥))(𝑠𝜋(𝑥, 1)) = 𝑠𝐻ℎ(𝑥)

for (𝑠, 𝑥) ∈ ℝ× ×𝑀. Therefore,𝐻ℎ is homogenous with respect to 𝜙𝑀 .
Conversely, if 𝐻 ∶ 𝑀 → ℝ is a homogenous function for the action 𝜙𝑀 , then we have a

section ℎ𝐻 ∶ 𝐾 → 𝐿∗ of 𝜋𝐿∗ given by

ℎ𝐻(𝑝𝑀(𝑥))(𝜋(𝑥, 𝑡)) = 𝑡𝐻(𝑥) for all 𝑥 ∈ 𝑀 and 𝑡 ∈ ℝ, (A.3)

which is well-defined by the homogeneity of𝐻. □
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