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A B S T R A C T

This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for
standard and augmented affine projection algorithms using a unified approach. This correlation stems from
the dependence between the filter tap estimates and the noise samples, and has a strong influence on the
mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute
the diagonal elements in closed form, showing that they are independent of the input process statistics. Also,
for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady
states, considering a possibly variable step-size. Our only assumption is that the filter order is large compared
to its projection order and that the input signal is stationary. Using these results, we perform a steady-state
analysis for small step size and provide a new simple closed-form expression for the mean-square error, which
has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally,
we also obtain expressions for the steady-state energy of the other components of the error vector.
1. Introduction and main contributions

Adaptive filters [1] have played a major role in many signal pro-
cessing applications over the last few decades. The normalized least
mean-squares (NLMS) algorithm is a widely used alternative, mainly
due to its good performance, ease of implementation and low compu-
tational cost. As a downside, its rate of convergence is sensibly reduced
when colored inputs are used [1]. In this context, the affine projection
algorithm (APA) [2,3], provides an increase in convergence speed with
a modest increase in computational complexity, while maintaining
a robust behavior. The APA class is conceived for real or circular
symmetric complex signals. However, in many applications, such as
stereophonic echo cancellation [4,5], wind prediction [6], communi-
cations [7] and power grid estimation [8], among others, the signals of
interest are complex and non-circular. This means that the standard
APA is suboptimal for these cases. In this context, a new class of
APAs called widely linear or augmented have been developed [9–12].
These algorithms are based on the widely linear model [13] and are
therefore suited for both circular and non-circular signals. Among the
class of widely linear algorithms the augmented APA (AAPA) [9] is one
of the most representative and early members, since its mathematical
structure and computational cost are similar to the standard APA. In
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addition, in recent years, new variants with a focus on robustness and
reduced computational complexity have also emerged [14–16].

The analysis of the convergence behavior of both APA and AAPA
is very involved due to the nonlinear dynamics of the update equa-
tions, which introduces a strong correlation between the magnitudes
involved. In particular, the filter tap estimates are correlated with
previous inputs and noise samples via the filter update equations. This
induces a statistical dependence between previous noise samples and
the error vector obtained from the reference signal and the estimates.
This correlation is key to analyzing the algorithms but, for tractability
reasons, some simplifying assumptions are usually invoked. In many
cases, these assumptions include simplifications on the input signal
model [17–19] or one or more independence assumptions [9,12,17,20–
23] between filter tap estimates, filter inputs, noise, or functions of
these magnitudes. For example, in [17], the authors perform a mean
square (MS) analysis of APA considering a simplified model for the
input process. In this model [24], the time-delayed input vector ob-
tained from a stationary stochastic process is replaced by a sequence of
independent random vectors which can take a finite number of orthog-
onal directions. In addition, they consider a strong hypothesis that past
noise samples and filter coefficients are independent. In [9,20], energy
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conservation arguments are used to study the MS behavior of both algo-
rithms. Although there is not a simplified model for the input process,
the independence between past noise samples and filter coefficients is
maintained and other independence hypotheses are added. Later works
extended [17,20] by attempting to consider the correlation between
the filter coefficients and past noises. For example, [18] extends the
analysis in [17] to consider the correlation between the noise and the
error vector, but uses the same simplified model of the input signal.

In [22] the authors extend [20] considering the dependence on
the noise and the filter tap estimates, but consider an independence
assumptions between the tap estimates and a matrix obtained from
input samples. In [23] the authors perform a MS deviation analysis for
real signals in a system identification setup where the system inputs are
white, keeping some independence assumptions from [20,22]. In [25]
the authors improve on the analysis in [23] for an identification setup
with white real input signals, by eliminating some of the independence
assumptions of the previous work. In [19], they perform a MS analysis
for real signals by developing recursive update equations for the corre-
lation matrix of the filter tap error vector, considering its correlation
with the noise. However, the analysis considers several simplifying
assumptions, for example, simplifications for the input signal which are
valid only asymptotically for white inputs. Finally, in [3] a MS analysis
is presented using stochastic matrix theory and the assumption that
certain data matrices have the so-called shuffling property.

In this paper, we provide further insight on the MS behavior of APA
and AAPA by analyzing the correlation matrix between the additive
noise vector 𝐯𝑖 = [𝑣𝑖,… , 𝑣𝑖−𝐾+1]𝑇 and the a priori error vector 𝐞𝑎,𝑖, which
s the error between the signal estimate of the algorithms and the refer-
nce signal without the noise [20] (𝐾 is the (A)APA projection order).
or APA we assume that the input signal is complex circular, while for
he AAPA we assume it is possibly non-circular. This correlation matrix
as a strong impact on the transient and steady state MS behavior
f the error vector. When the tap estimates are assumed independent
f the noise, this matrix is zero, which simplifies the analysis. In
rinciple, this matrix is very complex and depends on the input signal
tatistics. However, our analysis shows that it is possible to compute
ts diagonal in closed form both in the transient and steady state of the
lgorithm. Furthermore, we show that this correlation depends only on
he sequence of step-sizes and the noise variance, and is independent of
he input process. In addition, we show that for a white input process
he matrix is diagonal, and hence, we fully characterize it. For our
nalysis we consider the standard APA and AAPA with a variable step-
ize without regularization. In contrast to previous works, we do not
ake any assumptions on the input process (other than circularity for
PA) and our only assumption is that the filter length 𝑀 is large
ompared to the projection order 𝐾. Our simulations show that the
btained expressions are also valid in cases where this assumption does
ot hold. The previous works mentioned before have analyzed many
spects of the MS behavior (A)APA but have not analyzed the structure
f this matrix. A related preceding work is [21], in which the authors
ind the trace of the correlation matrix for the case of a white input
equence for the variably regularized and fixed step-size APA. Our work
s an extension because we consider any input process, we compute
he diagonal of the matrix instead of the trace and give information on
ff-diagonal elements, and we also consider the AAPA.

Using the analysis of the correlation, we perform a new MS steady-
tate analysis of the behavior of the error vector for a small step-size.
e provide a new simple closed-form expression for the steady-state
S error (MSE) of the algorithms which only depends on the noise vari-

nce, projection order and step-size. This formula is common to APA
with circular signals) and AAPA (with possibly non-circular signals);
t predicts the same asymptotic MSE performance for both algorithms
or a small asymptotic step-size, as observed in [9]. We show that,
lthough very simple, this expression captures the behavior of the MSE
ompared to the well-known MSE formulas with greater complexity
2

rom [9,12,18,20,22]. Finally, using the analysis of the correlation 𝑑
atrix we provide a characterization of the steady-state energy of the
ther components of the error vector which, we believe, has not been
one before.

The paper is organized as follows: in Section 2 we introduce the
odel and notation used. In Section 3 we present the analysis of the

orrelation between the noise and the a priori error vector and in
ection 4 we perform the steady state analysis. Finally, in Section 5 we
resent simulation results, and in Section 6 we present some closing
emarks. The proofs of the results are relegated to the Appendix to
mprove the flow of the manuscript.

.1. Notation

We use boldface symbols for vectors (lower case) and matrices
upper case). (⋅)𝑇 denotes transpose, (⋅)𝐻 conjugate and transpose and
⋅)∗ denotes conjugate. diag(⋅) is the diagonal of a matrix, E is the
xpectation. For a matrix 𝐑 we denote its (𝑖, 𝑗) element as [𝐑]𝑖,𝑗 . #
enotes the cardinality of a set.

. System model and APA recursions

In this section we review the standard linear and widely linear
odels, which are commonly used. The former is usually considered
nder the hypotheses of complex circularly symmetric signals, while
he latter is considered in the general case of non-circular signals.
he standard APA [26] is developed for the linear model, while the
APA [9] is considered for the widely linear model.

We review both models and show that a common representation can
e used. We also show that in this common representation both algo-
ithms can be written in a similar fashion, leading, for our purposes, to
unified treatment.

.1. Widely linear model and AAPA recursion

We start from the widely linear model [13], in which a reference
ignal 𝑑𝑖 is generated as:

𝑖 = 𝐮𝑇𝑖 𝐡 + 𝐮𝐻𝑖 𝐠 + 𝑣𝑖, (1)

here 𝐡 and 𝐠 are complex vectors in C𝑀×1. The input vector 𝐮𝑖 =
𝑢𝑖,… , 𝑢𝑖−𝑀+1]𝑇 contains samples of a non-circular complex second-
rder stationary process with zero mean and 𝑣𝑖 is complex non-circular
ero-mean white measurement noise of total (sum of real and imagi-
ary) variance 𝜎2𝑣 , independent of the input.

To characterize 𝐮𝑖 we may separate the real and imaginary parts of
𝑖 as 𝐮𝑖 = 𝐮𝑅,𝑖 + 𝑗𝐮𝐼,𝑖. The complex vector 𝐮𝑖 is characterized by its
×𝑀 correlation and pseudocorrelation matrices:

𝐮 = E
[

𝐮𝑖𝐮𝐻𝑖
]

(2)

= 𝐑𝐮𝑅 + 𝐑𝐮𝐼 + 𝑗
[

𝐑𝐮𝐼 ,𝐮𝑅 − 𝐑𝐮𝑅 ,𝐮𝐼

]

, (3)

𝐏𝐮 = E
[

𝐮𝑖𝐮𝑇𝑖
]

(4)

= 𝐑𝐮𝑅 − 𝐑𝐮𝐼 + 𝑗
[

𝐑𝐮𝐼 ,𝐮𝑅 + 𝐑𝐮𝑅 ,𝐮𝐼

]

, (5)

here 𝐑𝐮𝑅 = E
[

𝐮𝑅,𝑖𝐮𝑇𝑅,𝑖
]

, 𝐑𝐮𝐼 = E
[

𝐮𝐼,𝑖𝐮𝑇𝐼,𝑖
]

, 𝐑𝐮𝐼 ,𝐮𝑅 = E
[

𝐮𝐼,𝑖𝐮𝑇𝑅,𝑖
]

and

𝐮𝑅 ,𝐮𝐼 = E
[

𝐮𝑅,𝑖𝐮𝑇𝐼,𝑖
]

are the correlation and cross-correlation matrices
f the real and imaginary parts. In the special case when 𝑢 is circular
e have 𝐏𝐮 = 𝟎 which implies 𝐑𝐮𝑅 = 𝐑𝐮𝐼 and 𝐑𝐮𝐼 ,𝐮𝑅 + 𝐑𝐮𝑅 ,𝐮𝐼 = 𝟎. In

his case 𝐑𝐮 is sufficient to characterize the process.
The goal at time 𝑖 is to obtain estimates 𝐡𝑖, 𝐠𝑖 of the unknown system

ectors 𝐡, 𝐠 using the observations {𝑑𝑛,𝐮𝑛}𝑛≤𝑖. For the widely linear
odel the estimator is constructed as:

̂ 𝑇 𝐻

𝑖 = 𝐮𝑖 𝐡𝑖 + 𝐮𝑖 𝐠𝑖. (6)
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If we define the 𝑀 × 𝐾 data matrix 𝐔𝑖 =
[

𝐮𝑖 …𝐮𝑖−𝐾+1
]

, and the 𝐾 × 1
eference data vector 𝐝𝑖 = [𝑑𝑖,… , 𝑑𝑖−𝐾+1]𝑇 , we can define an error

vector

𝐞𝑖 = 𝐝𝑖 − 𝐔𝑇
𝑖 𝐡𝑖 − 𝐔𝐻

𝑖 𝐠𝑖, (7)

which measures the error that 𝐡𝑖 and 𝐠𝑖 will produce estimating the
eference signal for the time range 𝑖,… , 𝑖 − 𝐾 + 1. The AAPA [9]

recursion can be expressed as:

𝐡𝑖+1 = 𝐡𝑖 + 𝐔∗
𝑖 𝐒𝑖𝐞𝑖, (8)

𝐠𝑖+1 = 𝐠𝑖 + 𝐔𝑖𝐒𝑖𝐞𝑖, (9)

where 𝐒𝑖 = 𝜇(𝐔𝐻
𝑖 𝐔𝑖+𝐔𝑇

𝑖 𝐔
∗
𝑖 +𝛽𝐈𝐾 )

−1. The parameter 𝛽 > 0 is a regulariza-
tion which is included to improve the conditioning of the matrix 𝐒𝑖, 𝜇 is
a step size parameter which controls the convergence of the algorithm,
and 𝐈𝐾 is the 𝐾 × 𝐾 identity matrix. For tractability, in this work we
consider that 𝛽 = 0. The parameter 𝜇 > 0 controls the speed, tracking
and final error of the algorithm. A value of 𝜇 close to zero reduces the
final error, while a value of 𝜇 closer to 1 improves the convergence
peed and tracking of the algorithm. For this reason, a time-varying
tep-size 𝜇𝑖 can be used [12,27–29]. These time-varying step-sizes aim
t accelerating convergence and/or increasing robustness by iteratively
pdating 𝜇 based on carefully chosen optimality constraints. In general,

these constraints result in expressions in which the step-size is close to
1 at the beginning and decreases as convergence is achieved, to obtain
a fast convergence and a small final error.

We also define a misalignment vectors �̃�𝑖 = 𝐡 − 𝐡𝑖 and �̃�𝑖 =
− 𝐠𝑖, which measure the difference between the estimates and the

rue system vectors. With this we can define the a priori error vector
s 𝐞𝑎,𝑖 = 𝐔𝑇

𝑖 �̃�𝑖 + 𝐔𝐻
𝑖 �̃�𝑖. This gives the estimation error of 𝐝𝑖 without

onsidering the additive noise component. Using the noise vector 𝐯𝑖 =
𝑣𝑖,… , 𝑣𝑖−𝐾+1]𝑇 , we can now write the error vector as 𝐞𝑖 = 𝐞𝑎,𝑖 + 𝐯𝑖.

The widely linear model and the AAPA recursion can also be written
n a more compact manner. Defining the vectors 𝐰 = [𝐡𝑇 , 𝐠𝑇 ]𝑇 and
𝑖 = [𝐮𝐻𝑖 ,𝐮𝑇𝑖 ]

𝑇 we may write the widely linear model (1) as:

𝑖 = 𝐱𝐻𝑖 𝐰 + 𝑣𝑖. (10)

dditionally, defining the estimator vector 𝐰𝑖 = [𝐡𝑇𝑖 , 𝐠
𝑇
𝑖 ]

𝑇 we may
ewrite the estimator (6) as:

�̂� = 𝐱𝐻𝑖 𝐰𝑖. (11)

inally, defining the 2𝑀 ×𝐾 extended data matrix 𝐗𝑖 =
[

𝐔𝐻
𝑖 𝐔𝑇

𝑖
]𝑇 the

rror vector (7) is written as:

𝑖 = 𝐝𝑖 − 𝐗𝐻
𝑖 𝐰𝑖. (12)

he AAPA recursion given by (8) and (9) can be written compactly as:

𝑖+1 = 𝐰𝑖 + 𝐗𝑖𝐒𝑖𝐞𝑖, (13)

here 𝐒𝑖 is written as 𝐒𝑖 = 𝜇(𝐗𝐻
𝑖 𝐗𝑖 + 𝛿𝐈𝐾 )−1. Finally, defining the

xtended misalignment vector �̃�𝑖 = 𝐰 − 𝐰𝑖 we may write the a priori
rror as 𝐞𝑎,𝑖 = 𝐗𝐻

𝑖 �̃�𝑖.

.2. Linear model, APA and common notation

The standard linear model is normally used together with the as-
umption of complex circularly symmetric inputs. We can derive the
inear model by considering that 𝐡 = 𝟎 in the widely linear model
1). The estimator for the linear model and the expression of the error
ector are then obtained by setting 𝐡𝑖 = 𝟎 in (6) and (7), respectively.
fter doing this, we see that, in fact, the compact expressions for the
idely linear model (10), (11) and (12) are also valid for the linear
odel, if we take:

inear Model

⎧

⎪

⎪

⎨

⎪

⎪

𝐰 = 𝐠
𝐰𝑖 = 𝐠𝑖
𝐱𝑖 = 𝐮𝑖
𝐗𝑖 = 𝐔𝑖.

(14)
3

⎩

a

or the widely linear model on the other hand we used:

idely Linear Model

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐰 = [𝐡𝑇 , 𝐠𝑇 ]𝑇

𝐰𝑖 = [𝐡𝑇𝑖 , 𝐠
𝑇
𝑖 ]

𝑇

𝐱𝑖 = [𝐮𝐻𝑖 𝐮𝑇𝑖 ]
𝑇

𝐗𝑖 =
[

𝐔𝐻
𝑖 𝐔𝑇

𝑖
]𝑇

(15)

sing the notation from (14), we may write the recursion of the
tandard APA for the linear model as [26]:

𝑖+1 = 𝐰𝑖 + 𝐗𝑖𝐒𝑖𝐞𝑖, (16)

ith 𝐒𝑖 = 𝜇(𝛽𝐈𝐾 + 𝐗𝐻
𝑖 𝐗𝑖)−1. Notice that (16) for APA is formally the

ame as (13) for AAPA, except that for AAPA we use (15).

.3. Scenarios under consideration

In the previous sections we showed that the linear and widely linear
odels can be both characterized by (10), (11) and (13). For the widely

inear model the magnitudes in these equations are defined by (15),
hile for the linear model, the magnitudes are given by (14). In our
nalysis we will consider two scenarios:

• Scenario 1: the signal 𝑑 is generated using the widely linear
model, with 𝑢 and 𝑣 possibly non-circular complex stationary
processes. The AAPA (13) is used, with the notation given by (15).

• Scenario 2: the signal 𝑑 is generated using the standard lineal
model, with 𝑢 and 𝑣 circularly symmetric complex stationary
processes. The standard APA (16) is used, with the notation in
(14).

.4. Structure of the matrix 𝐗𝐻
𝑖 𝐗𝑖−𝑚 for each model

In this section we briefly describe the structure of the matrices
𝐻
𝑖 𝐗𝑖−𝑚 which we will use in our analysis in the next section. For the

widely linear case we have:

𝐗𝐻
𝑖 𝐗𝑖−𝑚 = 𝐔𝑇

𝑖 𝐔
∗
𝑖−𝑚 + 𝐔𝐻

𝑖 𝐔𝑖−𝑚 (17)

= (𝐔𝐻
𝑖 𝐔𝑖−𝑚)∗ + 𝐔𝐻

𝑖 𝐔𝑖−𝑚 (18)

= 2ℜ(𝐔𝐻
𝑖 𝐔𝑖−𝑚). (19)

If we define �̃�𝑖 = [𝑢𝑖,… , 𝑢𝑖−𝐾+1]𝑇 as a vector containing 𝐾 samples of
𝑢, it is straightforward to show from (19) that

E
[

𝐗𝐻
𝑖 𝐗𝑖−𝑚

]

= 2𝑀ℜE[�̃�𝑖�̃�𝐻𝑖−𝑚]
∗, (20)

= 2𝑀E
[

�̃�𝑅,𝑖�̃�𝑇𝑅,𝑖−𝑚 + �̃�𝐼,𝑖�̃�𝑇𝐼,𝑖−𝑚
]

. (21)

hat is, the expectation of 𝐗𝐻
𝑖 𝐗𝑖−𝑚 is a real Toeplitz matrix proportional

o the sum of the 𝐾th order time-shifted correlation matrix of the real
nd imaginary components of 𝑢. When 𝑚 = 0 we obtain the 𝐾th order
orrelation matrix without time shifts (as defined in (3) for size 𝑀):
[

𝐗𝐻
𝑖 𝐗𝑖

]

= 2𝑀
(

𝐑�̃�𝑅 + 𝐑�̃�𝐼

)

. (22)

his matrix is both Toeplitz and symmetric.
For Scenario 2 with the linear model we have that:

[

𝐗𝐻
𝑖 𝐗𝑖−𝑚

]

= E
[

𝐔𝐻
𝑖 𝐔𝑖−𝑚

]

= 𝑀E
[

�̃�𝑖�̃�𝐻𝑖−𝑚
]∗ , (23)

s the conjugate of the complex Toeplitz 𝐾th order time-shifted cor-
elation matrix of 𝑢. Again when 𝑚 = 0 we obtain the 𝐾th order

utocorrelation matrix of 𝑢 which is Hermitian and Toeplitz.
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3. Analysis of the correlation between the a priori error and noise

In this section, we analyze the correlation matrix between the
vectors 𝐞𝑎,𝑖 and 𝐯𝑖 for both APA and AAPA. These vectors are correlated
for 𝐾 > 1 because the noise samples 𝑣𝑖−1,… , 𝑣𝑖−𝐾+1 in 𝐯𝑖 appear in
previous updates of 𝐰𝑖. We mention that E[𝐞𝑎,𝑖𝐯𝐻𝑖 ]1,1 = 0 because the
first component of the a priori error vector is uncorrelated with the
noise sample 𝑣𝑖. For 𝐾 > 1 the remaining elements of E[𝐞𝑎,𝑖𝐯𝐻𝑖 ] are
unknown, except for the linear case and a white input signal for which
the trace is known [21]. In what follows we analyze this matrix and
provide some insights on its structure. We start from the recursion of
the misalignment vector from (16):

�̃�𝑖 = �̃�𝑖−1 − 𝐗𝑖−1𝐒𝑖−1𝐞𝑖−1, (24)

where 𝐒𝑖−1 = 𝜇𝑖−1(𝐗𝐻
𝑖−1𝐗𝑖−1)−1, now considers a variable step-size.

By continuing the iteration into the past, the following recursion is
obtained:

�̃�𝑖 =
𝐾
∏

𝑗=1
(𝐈 −𝐆𝑗 )�̃�𝑖−𝐾 −

𝐾
∑

𝑗=1

( 𝑗
∏

𝑘=1
(𝐈 −𝐆𝑘−1)

)

𝐉𝑗𝐯𝑖−𝑗 , (25)

where 𝐉𝑗 = 𝐗𝑖−𝑗𝐒𝑖−𝑗 and 𝐆𝑗 = 𝐉𝑗𝐗𝐻
𝑖−𝑗 , for 𝑗 > 0, and 𝐆0 = 0. We can

multiply (25) by 𝐗𝐻
𝑖 and 𝐯𝐻𝑖 to obtain:

E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

= E

[

𝐗𝐻
𝑖

𝐾
∏

𝑗=1
(𝐈 −𝐆𝑗 )�̃�𝑖−𝐾𝐯𝐻𝑖

]

−E

[

𝐗𝐻
𝑖

𝐾
∑

𝑗=1

( 𝑗
∏

𝑘=1
(𝐈 −𝐆𝑘−1)

)

𝐉𝑗𝐯𝑖−𝑗𝐯𝐻𝑖

]

. (26)

The first term on the right side vanishes because the noise vector 𝐯𝑖
as zero mean and is independent of the rest. For 𝐾 = 1 the second

expectation is also zero as mentioned before. For 𝐾 > 1 we then have:

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

= −
𝐾
∑

𝑗=1
E

[

𝐗𝐻
𝑖

( 𝑗
∏

𝑘=1
(𝐈 −𝐆𝑘−1)

)

𝐉𝑗

]

E
[

𝐯𝑖−𝑗𝐯𝐻𝑖
]

. (27)

We then write E
[

𝐯𝑖−𝑗𝐯𝐻𝑖
]

= 𝜎2𝑣 �̃�𝐾,𝑗 where �̃�𝐾,𝑚 ∈ C𝐾×𝐾 , is a matrix such
hat (𝑚 ∈ Z):

�̃�𝐾,𝑚
]

𝑞,𝑝 =

{

1 if 𝑝 − 𝑞 = 𝑚
0 otherwise.

(28)

e notice that �̃�𝐾,𝐾 = 𝟎, which means that the 𝐾th term in the second
xpectation in (27) vanishes. Then we have:
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

= −𝜎2𝑣𝐸
[

𝐗𝐻
𝑖 𝐉1

]

�̃�2,1 (𝐾 = 2), (29)

and for 𝐾 > 2:

E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

= −𝜎2𝑣

(

E
[

𝐗𝐻
𝑖 𝐉1

]

�̃�𝐾,1 +

+
𝐾−1
∑

𝑗=2
E

[

𝐗𝐻
𝑖

(𝑗−1
∏

𝑘=1
(𝐈 −𝐆𝑘)

)

𝐉𝑗

]

�̃�𝐾,𝑗

)

. (30)

The expression for 𝐾 > 2 is involved because of matrix product ∏𝑘(𝐈−
𝐆𝑘) which is non-commutative.

We now introduce an approximation for products of matrices of the
form 𝐗𝐻

𝑖 𝐗𝑖−𝑗 which appear in (30), under the assumption that 𝑀 ≫ 𝐾.
These approximations are extensions of approximations that have been
used for APA before [21,23,25], which we now also consider for AAPA:

• Scenario 1, widely linear model with non-circular inputs: we start
by analyzing the structure of the matrix 𝐗𝐻

𝑖 𝐗𝑖 and showing
that when 𝑀 ≫ 𝐾 it is reasonable to take the approximation
𝐗𝐻
𝑖 𝐗𝑖 ≈ 2𝑀

(

𝐑�̃�𝑅 + 𝐑�̃�𝐼

)

. To see this, we consider the vector
�̃�𝑖 = [𝑢𝑖,… , 𝑢𝑖−𝐾+1]𝑇 which was defined in Section 2.4. Using this
vector the matrix 𝐔𝑖 can be written as 𝐔𝑖 =

[

�̃�𝑖,… , �̃�𝑖−𝑀+1
]

and
we can write:
1 𝐗𝐻𝐗 = 1 (

𝐔𝑇𝐔∗ + 𝐔𝐻𝐔
)

(31)
4

𝑀 𝑖 𝑖 𝑀 𝑖 𝑖 𝑖 𝑖 E
= 1
𝑀

𝑀−1
∑

𝑗=0
�̃�𝑖−𝑗 �̃�𝐻𝑖−𝑗 + �̃�∗𝑖−𝑗 �̃�

𝑇
𝑖−𝑗 . (32)

Then assuming that the process is stationary ergodic when 𝑀 ≫
𝐾 we can approximate the time average on the right side of (32)
by the expectation of one of the terms in the summation:
1
𝑀

𝐗𝐻
𝑖 𝐗𝑖 ≈ E

[

�̃�𝑖−𝑗 �̃�𝐻𝑖−𝑗 + �̃�∗𝑖−𝑗 �̃�
𝑇
𝑖−𝑗

]

(33)

≈ 2
(

𝐑�̃�𝑅 + 𝐑�̃�𝐼

)

, (34)

which justifies the proposed approximation. In an analogous man-
ner and using the same justification, we can introduce the approx-
imation of the time shifted matrices:

𝐗𝐻
𝑖 𝐗𝑖−𝑗 ≈ 2𝑀E

[

�̃�𝑅,𝑖�̃�𝑇𝑅,𝑖−𝑚 + �̃�𝐼,𝑖�̃�𝑇𝐼,𝑖−𝑚
]

, (35)

which is the sum of the time-shifted correlation matrices of the
real and imaginary components of the input process, independent
of 𝑖 due to the stationarity condition. By comparing (35) with (21)
we observe that it is equivalent to approximation 𝐗𝐻

𝑖 𝐗𝑖−𝑗 by its
expectation.

• Scenario 2, linear model with circular inputs: using the same as-
sumptions as in the previous case, we can also introduce ap-
proximations when 𝑀 ≫ 𝐾. In this case the approximation is
𝐗𝐻
𝑖 𝐗𝑖 ≈ 𝑀E

[

�̃�𝑖�̃�𝐻𝑖
]∗, the correlation matrix of the circular input

process. In the same way we obtain:

𝐗𝐻
𝑖 𝐗𝑖−𝑗 ≈ 𝑀E

[

�̃�𝑖�̃�𝐻𝑖−𝑚
]∗ , (36)

which is a time shifted correlation matrix of the circular input
process, also independent of 𝑖 due to stationarity. As mentioned
before, for APA these approximations have already been used for
example in [21,23,25].

sing (30) as starting point and considering the approximations (35)
nd (36) we introduce our main result for this section:

heorem 1. When 𝑀 ≫ 𝐾, under the hypotheses of Scenarios 1 and 2,
nd assuming that (35) and (36) are valid approximations for Scenarios 1
nd 2, respectively, then E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

is an upper triangular matrix, and its
iagonal elements for 2 ≤ 𝑞 ≤ 𝐾 are:

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

𝑞,𝑞 = −𝜎2𝑣

(

𝜇𝑖−1 +
𝑞−1
∑

𝑗=2
𝜇𝑖−𝑗

𝑗−1
∏

𝑘=1
(1 − 𝜇𝑖−𝑘)

)

. (37)

urthermore, if the input process is white then E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

is a diagonal
atrix, that is, its only non-zero elements are given by (37).

roof. It is presented in Appendix. □

From Theorem 1 we outline the following conclusions:

• The elements below the main diagonal of E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

are zero.
• The diagonal of E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

can be computed in closed form it
depends only on the noise variance 𝜎2𝑣 and the sequence of step
sizes {𝜇𝑖}, that is, it does not depend on the statistics of the input
process 𝑢. This is true in the transient and steady-state of the
algorithms.

• In general the elements above the main diagonal will depend on
the statistics of the input process 𝑢 except for the white input case,
when they are zero.

onsidering a fixed step-size we have the following corollary which will
e used in the following section:

orollary 1. Considering a constant step-size 𝜇𝑖 ≡ 𝜇 in (37) we find that
or 1 ≤ 𝑞 ≤ 𝐾:
[ 𝐻 ] 2 [ 𝑞−1]
𝐞𝑎,𝑖𝐯𝑖 𝑞,𝑞 = −𝜎𝑣 1 − (1 − 𝜇) . (38)
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Notice that, in contrast to (37), this is also valid for 𝑞 = 1. Summing the
lements of the diagonal we find that:
[

𝐞𝐻𝑎,𝑖𝐯𝑖
]

= −𝜎2𝑣

[

𝐾 −
1 − (1 − 𝜇)𝐾

𝜇

]

. (39)

In the following section we use these results to derive a new
teady-state analysis of the algorithms.

. A steady-state error analysis without the independence assump-
ion

In this section we perform a small step-size analysis of the steady
tate behavior of the algorithms. We derive a new formula for the
teady state value of the MSE and we also find the steady-state energy
f the other components of the error vector 𝐞𝑖. This is done under the
onditions of Theorem 1 (𝑀 ≫ 𝐾) and under a weak approximation
n the energy of the error vector 𝐞𝑎,𝑖 in the steady state.

We start from the recursion of the error vector (24) and multiply by
𝐻
𝑖 to obtain:

𝐻
𝑖 �̃�𝑖+1 = 𝐗𝐻

𝑖 �̃�𝑖 − 𝜇𝑖𝐞𝑖. (40)

y taking the squared norm and the expectation we find that:
[

‖𝐗𝐻
𝑖 �̃�𝑖+1‖

2] = E
[

‖𝐗𝐻
𝑖 �̃�𝑖‖

2] + 𝜇2
𝑖 E

[

‖𝐞𝑖‖2
]

− 𝜇𝑖E
[

𝐞𝐻𝑖 𝐞𝑎,𝑖 + 𝐞𝐻𝑎,𝑖𝐞𝑖
]

.(41)

s 𝑖 → ∞, in the steady state condition, the step-size is assumed
o converge to a small steady-state value 𝜇 ≪ 1. Alternatively, we
an assume that the step-size is fixed and small for all time-instants
𝜇𝑖 ≡ 𝜇 ≪ 1). As mentioned before, in general, a time varying step-size
s preferred to benefit of the trade-off between high initial convergence
peed (𝜇 close to 1 at the initial iterations) and smaller final error (𝜇
educed as convergence is achieved) that we mention in Section 2.1.
ractical step-size expressions have this behavior (see [12,29] for exam-
le), and, for this reason, it is reasonable to assume that under normal
perating conditions, asymptotically the step size will have converged
o a small value in a stationary environment. The exact final value
chieved will depend on multiple factors such as the expression of the
pecific step-size and the color of the input signal, among others.

When the filter has converged and the step-size is small, the updates
ecome small enough such that on average there is almost no change in
he energy of the a priori error vector when filtering the same data be-
ore and after an update. This motivates the following approximation:

[

‖𝐗𝐻
𝑖 �̃�𝑖+1‖

2] ≈ E
[

‖𝐗𝐻
𝑖 �̃�𝑖‖

2] (as 𝑖 → ∞). (42)

his means that, on average, there will be almost no reduction in the
rror after an update in the steady-state small-step size condition. Using
his approximation in (41) we may obtain the following steady-state
quation:

E
[

‖𝐞‖2
]

∞ = E
[

𝐞𝐻𝐞𝑎
]

∞ + E
[

𝐞𝐻𝑎 𝐞
]

∞ , (43)

where the subscript (⋅)∞ denotes the steady-state values of the expecta-
tions as 𝑖 → ∞. This equation is valid in principle for any input process,
provided that 𝜇 ≪ 1. We would like to compare (43) to the general
steady-state equations that were presented in [20] for Scenario 2:

𝜇E
[

𝐞𝐻𝑖 (𝐗𝐻
𝑖 𝐗𝑖)−1𝐞𝑖

]

= E
[

𝐞𝐻𝑎,𝑖(𝐗
𝐻
𝑖 𝐗𝑖)−1𝐞𝑖

]

+E
[

𝐞𝐻𝑖 (𝐗𝐻
𝑖 𝐗𝑖)−1𝐞𝑎,𝑖

]

(𝑖 → ∞). (44)

This equation is valid without any approximation whatsoever. It is
interesting to notice that if in (44) we consider a white input and for
𝑀 ≫ 𝐾 we approximate 𝐗𝐻

𝑖 𝐗𝑖 ≈ 𝑀𝜎2𝑥𝐈 we obtain (43). This means
that (43) will be exact for a white input process for any value of 𝜇, but
our analysis shows it will be a good approximation for any other input
process when 𝜇 ≪ 1, that is, all input processes will behave as white
5

processes in the steady-state, provided that 𝜇 is small enough.
We can now use the results of Theorem 1 to characterize the
steady-state value of the error vector without using an independence
assumption. Using that 𝐞𝑖 = 𝐞𝑎,𝑖+𝐯𝑖 in (43) we can derive an expression
for the energy of the error vector:

E
[

‖𝐞‖2
]

∞ = 2
2 − 𝜇

(

E
[

‖𝐯‖2
]

∞ + E
[

𝐞𝐻𝑎 𝐯
]

∞ + E
[

𝐯𝐻𝐞𝑎
]

∞
)

. (45)

sing (39) in (45), the steady-state value of the energy of the error
ector evaluates to:
[

‖𝐞‖2
]

∞ =
2𝜎2𝑣

𝜇(2 − 𝜇)
(

1 − (1 − 𝜇)𝐾
)

. (46)

Considering the discussion on the validity of (43), we can see that this
expression will be valid for a white input for all values of 𝜇 and for
general inputs for small values of 𝜇. Also, for the energy of the a priori
error vector we can find a closed form equation:

E
[

‖𝐞𝑎‖2
]

∞ =
𝜇

2 − 𝜇
E
[

‖𝐯‖2
]

∞ +
𝜇 − 1
2 − 𝜇

(

E
[

𝐞𝐻𝑎 𝐯
]

∞ + E
[

𝐯𝐻𝐞𝑎
]

∞
)

, (47)

which can be evaluated using (39). In order to find the steady-state
energy of the components of the error vector we introduce a simple
assumption:

• (A1) In the steady-state, with a small step-size, the components
of the a priori error vector have the same energy, that is, for
1 ≤ 𝑞 ≤ 𝐾:

E
[

𝐞𝑎𝐞𝐻𝑎
]

𝑞,𝑞,∞ ≈
E
[

‖𝐞𝑎‖2
]

∞
𝐾

. (48)

Assumption (A1) is not new, it is known in the literature [9,20].
In fact, this assumption is a much weaker version of the standard
assumption [20] for the small step-size analysis, which assumes that
E
[

𝐞𝑎,𝑖𝐞𝐻𝑎,𝑖
]

is a multiple of the identity matrix. Under this approximation
we can write the excess mean square error (EMSE) as:

E
[

‖𝐞𝑎‖2
]

∞ ≈ 𝐾E
[

|𝑒𝑎|
2]

∞ (49)

here 𝑒𝑎,𝑖 = 𝑑𝑖−𝐱𝐻𝑖 �̃�𝑖 is the first component of 𝐞𝑎,𝑖. Now replacing (49)
n (47) and noting that E

[

𝐯𝐻𝑖 𝐞𝑎,𝑖
]

is a real magnitude we can write the
xcess mean square error (EMSE) in the steady-state as:

[

|𝑒𝑎|
2]

∞ =
𝜇𝜎2𝑣
2 − 𝜇

+
2(𝜇 − 1)
𝐾(2 − 𝜇)

E
[

𝐞𝐻𝑎 𝐯
]

∞ . (50)

The first term in (50) is the formula for the EMSE for small 𝜇 presented
in [9] for Scenario 1 and [20] for Scenario 2 using the independence
assumption and others. This expression does not consider the important
dependence of the EMSE with 𝐾. The second term is a new additional
term which depends on 𝐾 and under (49) allows us to correct the EMSE
using the correlation between the noise and the a priori error vector.
Finally, using (39) we can obtain a new and simple expression for the
steady state EMSE as:

E
[

|𝑒𝑎|
2]

∞ = 𝜎2𝑣

[

1 −
2(1 − 𝜇)

(

1 − (1 − 𝜇)𝐾
)

𝐾𝜇(2 − 𝜇)

]

. (51)

inally, the energy of the 1 ≤ 𝑞 ≤ 𝐾 components of the error vector is
iven by:
[

𝐞𝑖𝐞𝐻𝑖
]

𝑞,𝑞 = E
[

𝐞𝑎,𝑖𝐞𝐻𝑎,𝑖
]

𝑞,𝑞
+ E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

𝑞,𝑞 + E
[

𝐯𝑖𝐞𝐻𝑎,𝑖
]

𝑞,𝑞
+ 𝜎2𝑣 . (52)

nder approximation (A1) all the components of the a priori error
ector have energy given by (51). Then, using (51) and (38) we can
btain the energy of each component of the error vector as (1 ≤ 𝑞 ≤ 𝐾):

[

𝐞𝐞𝐻
]

𝑞,𝑞,∞= max

{

0, 2𝜎2𝑣

[

(1 − 𝜇)𝑞−1 −
(1 − 𝜇)

(

1 − (1 − 𝜇)𝐾
)

𝐾(2 − 𝜇)𝜇

]}

.(53)

The max is included because it can be seen that the expression will
become negative as 𝜇 → 1 for 𝑞 > 1. By setting 𝑞 = 1 in this expression
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we obtain the steady state mean square error, which may be also
obtained by adding 𝜎2𝑣 to (51):

MSE∞ = 2𝜎2𝑣

[

1 −
(1 − 𝜇)

(

1 − (1 − 𝜇)𝐾
)

𝐾(2 − 𝜇)𝜇

]

. (54)

The analysis in this section shows that AAPA in Scenario 1 and APA in
Scenario 2 achieve the same steady state MSE for a small asymptotic
value of the step-size. In the case in which APA is used with the widely
linear model, the MSE is larger than when using AAPA [9].

4.1. Comparison of the MSE formula with previous expressions

It is interesting to compare the new proposed expression for the
steady-state MSE (54) with previous known formulas both for APA and
AAPA. We focus on expressions that are proposed for arbitrary values
of 𝜇 or for small values, excluding some formulas which exist that were
proposed for large 𝜇.

The simplest and well-known expression valid for small 𝜇 for APA
with circular signals [20] is:

MSE =
2𝜎2𝑣
2 − 𝜇

. (55)

he complexity of this formula is comparable to (54) since it does not
epend on the statistical properties of the input signal. However, in
ontrast to (54) it does not depend on the projection order 𝐾, and
ence, some key behaviors are lost. In [18], another expression for
teady-state MSE of APA was introduced, as a generalization of the one
n [17]:

SE = 𝜎2𝑣 +
𝜇𝜎2𝑣
2 − 𝜇

E
[

1
‖𝐱𝑖‖2

]

tr(𝐑𝑥)(1 + 2𝛤 ), (56)

𝛤 =
𝑀
∑

𝑖=1
𝑝𝑖

𝐾−1
∑

𝑞=1

[(

1 −
1 − (1 − 𝑝𝑖)𝑞

1 − (1 − 𝑝𝑖)𝐾

)

(1 − 𝜇)𝑞
]

, (57)

𝑝𝑖 = 𝜆𝑖∕tr(𝐑𝑥), and 𝜆𝑖 are the eigenvalues of 𝐑𝑥. This expression requires
knowledge of the eigenvalues of the autocorrelation matrix of the input
process and the expectation of the inverse of the norm of the input
vector. A different expression, valid for any value of 𝜇 is (31) from [22],
which is a generalization from [20]. This formula depends on the
expectation of several matrices which are constructed from Kronecker
products of matrices of size 𝑀 × 𝑀 . Therefore, the final expression
involves matrices of size 𝑀2 ×𝑀2, which depend on the input process,
and which need to be computed through Monte Carlo simulations. This
makes the formula increasingly difficult to compute as the order of the
filter 𝑀 increases; in fact, for large values of 𝑀 we were not able to
compute it on a standard desktop computer. Comparing these formulas
with (54), we see that (54) is simpler and requires less information to
be computed, since it does not require specific knowledge of the char-
acteristics of the input process or extensive Monte Carlo simulations.
Furthermore in the Numerical Results section, we show that in the
regime of small 𝜇 and moderately long filters, (54) provides comparable
or sometimes better performance than the aforementioned alternatives.

For the case of AAPA it is shown in [9] that (55) is still valid, with
he same mentioned limitations. A more exact formula for AAPA is (47)
rom [12]. This formula is presented in the analysis of the steady-state
erformance of VSS-WLCAPA but the hypotheses and approximations
nvolved can be used for the analysis of other step-size expressions or
or a constant step-size and Gaussian noise. Hence (47) from [12] can
lso be compared to (54). The expression from [12] is constructed from
ronecker products of expectation of certain matrices which depend
n the input process. As a result, the computation of (47) from [12]
nvolves Monte Carlo estimations of matrices of size 4𝑀2 ×4𝑀2 which

depend on the input process, and these become increasingly difficult to
compute as 𝑀 increases.
6

m

Fig. 1. Example of mismatch for APA and AAPA using the averaged time step to test
Theorem 1. The ARMA process is given by (58). 𝑀 = 64, 𝐾 = 4, SNR = 20 dB.

5. Numerical results

In this section we perform simulations to explore the validity of
the proposed expressions. For both APA and AAPA we assume that
the system vector 𝐰 is drawn as a realization of a circular complex
white Gaussian vector with unit variance taps, of length 𝑀 and 2𝑀 ,
respectively. For AAPA the inputs are chosen to correspond to Scenario
1 with some circular and non-circular inputs, while for APA they
correspond to Scenario 2, with circular inputs.

The input process 𝑢𝑖 for APA is assumed to be a white Gaussian
circular process or a circular first order Gaussian autoregressive process
(AR1) with a pole at 0.95. The input process 𝑢𝑖 for AAPA is a complex
white non-circular Gaussian process with unit variance for the real
part and 1/2 variance for the imaginary part, or a circular first order
Gaussian autoregressive process (AR1) with a pole at 0.95 (the same as
for APA), or the complex non-circular autoregressive moving average
(ARMA) from [9] with recursion:

𝑢𝑖 = 0.5𝑢𝑖−1 + 2𝑛𝑖 +
1
2
𝑛∗𝑖 + 𝑛𝑖−1 + 0.5𝑛∗𝑖−1, (58)

here 𝑛𝑖 is a complex circular white Gaussian noise.
The additive noise 𝑣𝑖 is complex circular white Gaussian noise,

ith variance 𝜎2𝑣 , which is adjusted in each simulation to obtain the
rescribed signal-to-noise ratio (SNR). We denote by 𝐽 the number
f averaged runs to obtain each plot. Finally, both algorithms are
nitialized with a zero initial condition.

.1. Correlation between the a priori error and the noise

We first explore the validity of the results from Theorem 1 about
he E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

. These results are valid for the transient and steady-state
onditions of the algorithms, and for any determinisitic time varying
tep-size sequence. It important to discuss how these results are to
e validated. In general, variable step-size formulas are designed as
eterministic sequences which depend on average values of different
agnitudes of the algorithm. For example, the step size from [12]

nvolves the magnitudes E
[

‖𝐞𝑖‖2
]

and E
[

‖𝐞𝑎,𝑖‖2
]

. If we knew these
agnitudes precisely the sequence of step-sizes would be deterministic
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Fig. 2. Comparison of Monte Carlo simulations of E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

with the results of
Theorem 1 for APA. SNR = 20 dB. 𝐽 = 16000.

and the results from Theorem 1 would apply directly. In practice
these magnitudes are estimated using time-running averages of the
instantaneous error magnitudes of the algorithm, which implies that
the step size sequence is random and for each run there is a different
realization. For this reason, to be theoretically consistent we cannot
estimate E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

by averaging independent runs of the algorithm,
because we would be considering different step-size sequences in each
run. Given this observation, in order to test Theorem 1 we must
consider a deterministic step-size sequence. In order to obtain one with
a realistic behavior, we do as follows: for each simulation setup we
perform 3200 runs of the algorithm (APA or AAPA) using the variable
step size from [12] with configuration parameters 𝛼 = 0.975 and 𝜃 = 3.
The step-size sequences of the 3200 runs are then averaged to define
a deterministic time sequence for each setup. Then 𝐽 = 16000 runs of
the algorithms are computed using this deterministic time sequence,
which follows realistically the behavior of the step-size for each setup
of each algorithm. It is worth mentioning that the step-size in [12]
was designed with AAPA in mind but nevertheless it has a reasonable
behavior and can be used for APA as means to prove the validity
of Theorem 1. In Fig. 1 we can see an example plot of the average
step-size sequence and mismatch (defined as ‖�̃�𝑖‖

2∕‖𝐰‖2) attainable
for two examples of APA and AAPA. We see that both the mismatch
and the step-size exhibit the expected behavior. We note that the filter
has not reached steady-state, but this is not important, since E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

converges when the step-size sequence does, which is sufficient for
testing Theorem 1.

In Fig. 2 we compare the results of Theorem 1 for APA under a
white (𝐾 = 4, 𝑀 = 64) and AR1 (𝐾 = 8, 𝑀 = 128) inputs for SNR =
20 dB (Scenario 2). For the white input E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

is diagonal and real,
with only the (𝑞, 𝑞) with 𝑞 > 1 are nonzero and given by (37). For the
AR1 the matrix is upper triangular with the same diagonal. We see that
in both cases the simulations match the theory very well. In Fig. 3 we
show results for APA in more demanding scenarios where the condition
𝑀 ≫ 𝐾 is strained and SNR= 10 dB. We consider the white (𝐾 = 8,
𝑀 = 64) and AR1 (𝐾 = 4, 𝑀 = 32) inputs as well. We can see that even
in this scenario the simulations match the theoretical results well.

We now focus on the AAPA. In Fig. 4 we can see the result for
7

non-circular white (𝐾 = 4, 𝑀 = 64), circular AR1 (𝐾 = 4, 𝑀 = 64)
Fig. 3. APA. Comparison of Monte Carlo simulations of E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

compared to (37)
nd other results of Theorem 1 for different input processes. SNR = 10 dB. 𝐽 = 16000.

nd non-circular ARMA (𝐾 = 8, 𝑀 = 128) for SNR = 20 dB. In the
hree cases, we see that the simulations match the results accurately.
inally, in Fig. 5 we test the results of Theorem 1 in a more demanding
cenario, where the hypotheses 𝑀 ≫ 𝐾 is strained, and the SNR =

10 dB. In particular we consider the white non-circular input(𝐾 = 8,
𝑀 = 64), non-circular ARMA (𝐾 = 8, 𝑀 = 64) and non-circular AR1
𝐾 = 4, 𝑀 = 32). Again in this case we see that both simulations are in

excellent agreement with the theoretical values, even in this regime.
To conclude this section, we see that both for the case of APA

with circular inputs, and AAPA with circular and non-circular inputs,
the results of Theorem 1 give a good fit the simulated values. We see
however, that the variance of the Monte Carlo estimation is quite large,
requiring a substantial number of runs as compared to for example, the
mismatch curves.

5.2. Steady-state error analysis

In this section we evaluate the accuracy of the steady-state ex-
pression of Section 4. On one hand we want to validate Eq. (46) of
E
[

‖𝐞‖2
]

∞, which is valid for a small step-size with general signals
and for any step-size for white signals (provided that 𝑀 ≫ 𝐾). Then
we want to validate Eq. (53) of the diagonal of the steady-state error
covariance matrix E

[

𝐞𝐞𝐻
]

∞, and in particular, the steady-state MSE.
We start by studying the validity of (46) for E

[

‖𝐞‖2
]

∞. We would
like to mention that this expression was presented in [21] for circu-
lar white input signals for APA, but we present the white case for
completeness. In Fig. 6 we show the results for APA with a circular
white and AR1 input processes with SNR = 20 dB. In Fig. 7 we show
the same simulations for AAPA, with white non-circular, circular AR1
(0.95) and for the non-circular ARMA inputs. Each curve was obtained
by averaging 𝐽 = 400 runs of the error to convergence and averaging
the last 400 samples of the run. Since the formula is not dependent on
𝑀 we do the simulations for different values of 𝑀 . We see that similar
conclusions can be drawn for APA and AAPA. For a white input the
formula is exact for 0 ≤ 𝜇 ≤ 1, provided that 𝑀 ≫ 𝐾. The simulations
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Fig. 4. AAPA. Comparison of Monte Carlo simulations of E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

compared to (37)
and other results of Theorem 1 for different input processes. SNR = 20 dB. 𝐽 = 16000.

indeed support this both for APA with circular and AAPA for non-
circular white noises: for 𝐾 = 2, 4 𝑀 = 32 already provides excellent
results, while for 𝐾 = 8 we see that the accuracy improves with 𝑀 . For
the circular AR1 process, as expected the formula is valid for 𝜇 ≪ 1,
as long as 𝑀 ≫ 𝐾. For example, for 𝐾 = 8 the accuracy increases as
𝑀 increases. Finally, for AAPA with the non-circular ARMA process we
observe that the approximations are also good provided that 𝜇 is small.
t is interesting to mention that the observed behavior on the validity
f (46) for white signals for all 𝜇 and for small 𝜇 for arbitrary signals is
ompatible with the analysis presented in Section 4. Finally, we would
ike to point out that (46) depends on the approximation (42) and on
39). Eq. (39) has already shown to be accurate in the previous section,
hich means that by studying the validity of (46) we have also shown

he accuracy of approximation (42) for small 𝜇.
Next we evaluate the formula for the MSE (54) compared to the

xpressions discussed in Section 4.1. In Fig. 8 we plot the steady-state
SE for APA with circular white and AR1 (0.95) input for 𝐾 = 2, 4, 8

nd SNR = 20 dB. The theoretical expression (54) is valid when 𝑀 ≫
, so the value of 𝑀 is increased with 𝐾 in a linear fashion, setting
= 16𝐾. We compare (54) with (55), with (41) from [18] (reproduced

s (56) in this paper), and with (31) from [22]. The characteristics of
8

hese formulas have already been discussed in Section 4.1. Eq. (55) is (
Fig. 5. AAPA. Comparison of Monte Carlo simulations of E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

compared to (37)
nd other results of Theorem 1 for different input processes. SNR = 10 dB. 𝐽 = 16000.

ery simple, but shows the worst performance of all since it does not
epend on 𝐾; hence it under-estimates the MSE in all cases. Comparing
54) with (31) from [18] we see that for white inputs both formulas
ive very similar results for all values of 𝜇. This may be because in
hat case the eigenvalues of the input process are all the same. For the
R1 input, the expressions give different results for large 𝜇 but are close

or small 𝜇 and close to the simulated values, making them useful to
redict the behavior of the algorithm. Finally, neither give useful results
or large 𝜇; this is expected for (54) but less expected for (31), which
epends on the statistics of the input process. On the other hand, (41)
rom [22] for 𝐾 = 2 and 𝐾 = 4 appears to under-estimate the MSE for
hite inputs, and for the AR1 input it gives useful results for small 𝜇,
lthough the other expressions seem to be more accurate. For the case
f 𝐾 = 8 and 𝑀 = 128 it was not possible to this expression on a desktop
omputer due the large memory requirements. As a conclusion we see
hat for small 𝜇 and when 𝑀 ≫ 𝐾 (54) is as accurate as the alternatives,
equires less information and is computationally less demanding.

In Fig. 9 we show the results for the MSE of AAPA with white
on-circular, circular AR1 (0.95) and ARMA non-circular inputs the
ame setup as before. In this case we compare against (55) and also
ith (47) from [12]. Eq. (55) has the same limitations as in the case
f APA, and in general underestimates the MSE. Comparing (54) with
47) from [12] for 𝐾 = 2 and 𝐾 = 4 we see that both predict similar
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Fig. 6. APA: steady-state of the square norm of the error vector for different inputs.
The theoretical expression is (46). SNR = 20 dB. 𝐽 = 400.

results for small 𝜇 and are very close to the Monte Carlo simulations.
For 𝑀 = 128 it was not possible to compute (47) on a desktop computer
due to the large memory required. However, (54) is still straightforward
to compute and provides a good approximation to the MSE. For large
values of 𝜇 all the formulas become less accurate because in this regime
the asymptotic MSE is strongly dependent on the characteristics of
the input process; however, this is not a typical asymptotic operating
condition for the algorithm.

We now show an example of application of the proposed expression
(54) to predict the performance of the VSS-WLCAPA from [12]. In [12]
the authors propose the following equation to estimate the asymptotic
value of the step-size under Gaussian noise (erf is the standard error
function):

E[𝜇∞] = exp(−𝜃) +
√

𝜋𝜃
[

erf(
√

𝜃) − 1
]

. (59)

his formula depends only on a tuning parameter 𝜃, typically in the
ange (1, 4). Using (59) together with (47) from [12], the authors are
ble to predict the asymptotic value of the MSE as a function of 𝜃. We
ow compare the predicted value of this approach with the predicted
alue obtained using (59) with the proposed formula (54). The results
an be seen in Fig. 10 for 𝐾 = 2 and 𝐾 = 4, where we have selected
alues of 𝑀 for which the assumption 𝑀 ≫ 𝐾 does not hold very
ell. We do not show the case 𝐾 = 8,𝑀 = 64 because we could not

ompute the results from [12] using a desktop computer. The results
rom Fig. 10 show that (54) provides predicted performances which
re compatible with the ones from [12] for practical values of 𝜃 at
much reduced computational cost and allows the estimation of the

symptotic MSE for longer filters with good performance. For large 𝜃
he formulas are less accurate of the dependence on the asymptotic MSE
n the characteristics of the input process, but these values of 𝜃 are not
n the practical range to achieve a good asymptotic performance.

To finish the section, we explore the validity of (53) to estimate
teady-state energy of the other components of the error. The results
or APA and AAPA can be seen in Figs. 11 and 12, respectively. We plot
9

he estimated and simulated components of the energy of the errors for i
Fig. 7. AAPA: steady-state of the square norm of the error vector for different inputs.
The theoretical expression is (46). SNR = 20 dB. 𝐽 = 400.

𝐾 = 4, 𝑀 = 32 and SNR = 20 dB. In this scenario the condition 𝑀 ≫ 𝐾
does not hold very well, but we see that nevertheless the estimations
are accurate are quite accurate for small values of 𝜇 even for colored
signals. The same behavior is seen for larger values of 𝐾 provided the
values of 𝑀 are raised proportionately.

6. Conclusion

In this paper we performed an analysis of correlation between the
noise and a priori error vector of both APA (for circular signals) and
AAPA (for general signals) using a unified framework. We showed that
both algorithms share some common expressions of this correlation
both in the transient and steady-state. We used this analysis to perform
a new steady-state analysis of both algorithms in the small step-size
regime. We have shown that under these conditions both algorithms
satisfy the same closed-form formulas for the MSE, which does not
depend on the statistics of the input signal. We have also provided
approximate expressions for the energy of the other components of the
error vector which are common to both algorithms.

CRediT authorship contribution statement

Andrés Altieri: Formal analysis, Investigation, Methodology, Writ-
ng – original draft, Writing – review & editing.



Signal Processing 218 (2024) 109386A. Altieri

e
𝑀

Fig. 8. APA: steady-state MSE for different inputs and values of 𝐾. The theoretical
xpression is (54). SNR = 20 dB. 𝐽 = 400. (31) from [22] could not be computed for
= 128. 500 runs were used for [22].
10
Fig. 9. AAPA: steady-state MSE for different inputs and values of 𝐾. The theoretical
expression is (54). SNR = 20 dB. 𝐽 = 400. It was not possible to compute (47) from [12]
for 𝑀 = 128. 450 runs where used for [12].
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Fig. 10. Comparison of the asymptotic MSE for VSS-WLCAPA obtained from using (59)
n (57) from [12] to using (59) in (54), as a function of setup parameter 𝜃. 450 runs

where used for the formulas from [12].

Fig. 11. APA: steady-state energy of the error components. The theoretical expression
is (53). 𝐾 = 4, 𝑀 = 32, SNR = 20 dB. 𝐽 = 400.

Fig. 12. AAPA: steady-state energy of the error components. The theoretical expression
is given by (53). 𝐾 = 4, 𝑀 = 32, SNR = 20 dB. 𝐽 = 400.
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Appendix. Proof of Theorem 1

We first present two subsections with preliminary results, and the
proof itself is in Appendix A.4.

A.1. Auxiliary linear algebra results

We present some auxiliary definitions and properties which will
simplify the main proof of the theorem. The proofs in this section are
straightforward and are omitted.

Definition A.1. Let 𝑚 be the set of matrices in C𝐾×𝐾 whose last 𝐾−𝑚
rows are zero:

𝑚 ∶=
{

𝐀 ∈ C𝐾×𝐾 ∶ [𝐀]𝑖,𝑗 = 0 if 𝑚 < 𝑖 ≤ 𝐾
}

. (60)

Definition A.2. Let 𝑚 be the set of matrices in C𝐾×𝐾 whose first 𝑚
columns are zero:

𝑚 ∶=
{

𝐀 ∈ C𝐾×𝐾 ∶ [𝐀]𝑖,𝑗 = 0 if 1 ≤ 𝑗 ≤ 𝑚
}

. (61)

The following properties on the products of matrices hold:

roperty A.1. If 𝐀 ∈ 𝑚 and 𝐑 ∈ C𝐾×𝐾 , then 𝐀𝐑 ∈ 𝑚.

roperty A.2. If 𝐀 ∈ 𝑚 and 𝐑 ∈ C𝐾×𝐾 then 𝐑𝐀 ∈ 𝑚.

roperty A.3. If 𝐀 ∈ 𝑛, 𝐁 ∈ 𝑚 and 𝐑 ∈ C𝐾×𝐾 , then from
roperties A.1 and A.2 we have that 𝐀𝐑𝐁 ∈ 𝑛 ∩ 𝑚.

roperty A.4. If 𝐀 ∈ 𝑚 and 𝑗 ∈ Z, 𝑗 < 0 then �̃�𝐾,𝑗𝐀 ∈ 𝑚−𝑗 , with �̃�𝐾,𝑗
iven by (28).

roperty A.5. If 𝐑 ∈ 𝑚 ∩ 𝑚 then 𝐑 is an upper-triangular matrix, and
iag (𝐑) = 𝟎.

efinition A.3. Let 𝐈𝐾,𝑚 be a diagonal matrix such that the first 𝑚
lements in the diagonal are 0, and the rest are 1:

𝐈𝐾,𝑚
]

𝑖,𝑗 =

{

1 if 𝑖 = 𝑗 and 𝑖 > 𝑚
0 otherwise.

(62)

otice that 𝐈𝐾,0 is the 𝐾 ×𝐾 identity matrix.

Consider the matrices �̃�𝐾,𝑚 given by (28). When multiplying a matrix
̃
𝐾,𝑚 with another matrix it will move the rows of a matrix up or down
nd pad with zeros. In addition, �̃�𝐾,0 is the 𝐾 ×𝐾 identity matrix.

We will use the following properties:

roperty A.6. For 1 ≤ 𝑚 ≤ 𝐾 − 1, �̃�𝐾,−𝑚 �̃�𝐾,𝑚 = 𝐈𝐾,𝑚.

roperty A.7. If 𝑚, 𝑛 ∈ {1,… , 𝐾 − 1} then �̃�𝐾,𝑚 �̃�𝐾,𝑛 = �̃�𝐾,𝑛+𝑚.

.2. A matrix decomposition for the shifted correlation matrices

Consider a complex second order stationary process 𝑢𝑖 and the
ector �̃�𝑖 = [𝑢𝑖,… , 𝑢𝑖−𝐾+1]𝑇 as defined in Section 2.4. Under scenario 1
with 𝑢𝑖 non-circular) let us define the time-shifted correlation matrix:
𝐑𝑥,−𝑚 = E

[

�̃�𝑅,𝑖�̃�𝑇𝑅,𝑖−𝑚 + �̃�𝐼,𝑖�̃�𝑇𝐼,𝑖−𝑚
]

. Under scenario 2 (with 𝑢𝑖 circular)
let us define the conjugate time-shifted correlation matrix as 𝐑𝑥,−𝑚 =
E
[

�̃�𝑖�̃�𝐻𝑖−𝑚
]∗. These two matrices appeared in Section 2.4 when comput-

ing E
[

𝐗𝐻
𝑖 𝐗𝑖−𝑚

]

and are shown to be Toeplitz matrices. For 𝑚 = 0 there
is no time shift so we simply write 𝐑𝑥,0 ≡ 𝐑𝑥.

Lemma A.1. For 0 < 𝑚 < 𝐾 the matrix 𝐑𝑥,−𝑚 can be written in terms of
𝐑𝑥 as:

𝐑 = �̃� 𝐑 +𝐌 , (63)
𝑥,−𝑚 𝐾,−𝑚 𝑥 𝑚
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where 𝐌𝑚 is some matrix in 𝑚. When 𝑥 is a white process, 𝐌𝑚 is the zero
matrix.

The proof is straightforward and is omitted. Essentially �̃�𝐾,−𝑚 moves
the rows of 𝐑𝑥 downwards padding with rows of zeros from the top,
while 𝐌𝑚 completes the first 𝑚 rows of 𝐑𝑥,−𝑚.

A.3. Expansion of a product of matrices as a sum

We now rewrite the product
𝑗−1
∏

𝑘=1
(𝐈 −𝐆𝑘) = (𝐈 −𝐆1)(𝐈 −𝐆2)...(𝐈 −𝐆𝑗−1), (64)

which appears in (30) as a summation. Each of its terms can be obtained
by selecting from each (𝐈−𝐆𝑘) either the identity or the 𝐆𝑘 matrix. Since
the identity matrices do not affect the product, we can represent each
term in the summation as a list of ordered indexes which correspond to
the 𝐆𝑘 matrices which appear in the summation term. Also, each term
of the summation will be multiplied by (−1) if there is an odd number of
𝐆𝑘 matrices involved. The 𝑝th term will be represented by an ordered
list of indexes:

𝑝 = [𝜎1,𝑝,… , 𝜎#𝐼𝑝 ,𝑝], (65)

and the matrix product will be written as:
𝑗−1
∏

𝑘=1
(𝐈 −𝐆𝑘) = 𝐈 +

∑

𝑝
(−1)#𝑝

#𝐼𝑝
∏

𝑛=1
𝐆𝑖−𝜎𝑛,𝑝 (66)

= 𝐈 +
∑

𝑝
(−1)#𝐼𝑝

#𝑝
∏

𝑛=1
𝐗𝜎𝑛,𝑝𝐒𝜎𝑛,𝑝𝐗

𝐻
𝜎𝑛,𝑝

. (67)

The summation will contain 2𝑗−1 −1 terms and any indexed list 𝑝 will
satisfy the following properties:

1. 𝜎𝑖,𝑝 ∈ N ∀𝑖 > 𝐾.
2. #𝑝 < 𝑗.
3. 𝑖 > 𝜎1,𝑝 > 𝜎2,𝑝 > ⋯ > 𝜎#𝑝 ,𝑝 > 𝑖 − 𝑗.

A.4. Proof of Theorem 1

In order to prove the theorem we need to start from (30). We focus
on 𝐾 > 2, and leave 𝐾 = 2 for the reader. Using (67) in (30) and
rearranging the terms we obtain (𝐾 > 2):

E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

= −𝜎2𝑣
𝐾−1
∑

𝑗=1
E
[

𝐗𝐻
𝑖 𝐉𝑗

]

�̃�𝐾,𝑗

−𝜎2𝑣
𝐾−1
∑

𝑗=2

∑

𝑝
(−1)#𝑝E

⎡

⎢

⎢

⎣

𝐗𝐻
𝑖

⎛

⎜

⎜

⎝

∏

𝜎𝑛∈𝑝

𝐗𝜎𝑛𝐒𝜎𝑛𝐗
𝐻
𝜎𝑛

⎞

⎟

⎟

⎠

𝐉𝑗
⎤

⎥

⎥

⎦

�̃�𝐾,𝑗 . (68)

The coefficients 𝜎𝑛 are a function of 𝑝 also, but to simplify the notation,
we do not make this dependence explicit, that is, 𝜎𝑛,𝑝 ≡ 𝜎𝑛. Likewise we
do not include the limits of the summation in 𝑝 because it is not used.
Now we simplify both terms of these expressions using the preliminary
results of this appendix.

The first term on the right side of (68) can be written as:

−𝜎2𝑣
𝐾−1
∑

𝑗=1
E
[

𝐗𝐻
𝑖 𝐉𝑗

]

�̃�𝐾,𝑗 ≈ −𝜎2𝑣
𝐾−1
∑

𝑗=1
𝜇𝑖−𝑗𝐑𝑥,−𝑗𝐑−1

𝑥 �̃�𝐾,𝑗 (69)

using (35) for Scenario 1 or (36) for Scenario 2. Now we have the
following lemma:

Lemma A.2. The right side of (69) can be written as:
𝐾−1
∑

𝑗=1
𝜇𝑖−𝑗𝐑𝑥,−𝑗𝐑−1

𝑥 �̃�𝐾,𝑗 =
𝐾−1
∑

𝑗=1
𝜇𝑖−𝑗

(

𝐈𝐾,𝑗 +𝐌𝑗𝐑−1
𝑥 �̃�𝐾,𝑗

)

(70)

for certain matrices 𝐌 ∈  . In addition, 𝐌 𝐑−1 �̃� ∈  ∩  .
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Proof. To show this, we use Lemma A.1, to write 𝐑𝑥,−𝑗 = �̃�𝐾,−𝑗𝐑𝑥+𝐌𝑗 ,
where 𝐌𝑗 ∈ 𝑗 . After replacing this in (69) we use Property A.6 to show
that 𝐈𝐾,𝑗 = �̃�𝐾,−𝑗 �̃�𝐾,𝑗 . Finally, notice that using Property A.3 we know
that 𝐌𝑗𝐑−1

𝑥 �̃�𝐾,𝑗 ∈ 𝑗 ∩ 𝑗 . □

Then for the second term on the right side of (68) we replace 𝐒𝜎𝑛
and 𝐉𝑗 in terms of 𝜇𝜎𝑛 , 𝜇𝑖−𝑗 , 𝐗𝜎𝑛 and 𝐗𝑖−𝑗 . We then define: 𝑐(𝑝) = #𝑝
and define ̃(𝑝) = [𝜎1,… , 𝜎𝑐(𝑝)−1] as the list in which the last element
has been removed. Then, according to the scenario we use (35) or (36)
to approximate:

• 𝐗𝐻
𝑖 𝐗𝜎1 ≈ 𝑀𝐑𝑥,𝜎1−𝑖.

• 𝐗𝐻
𝜎𝑛
𝐗𝜎𝑛+1 ≈ 𝑀𝐑𝑥,𝜎𝑛+1−𝜎𝑛 .

• 𝐗𝐻
𝜎𝑐(𝑝)

𝐗𝑖−𝑗 ≈ 𝑀𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝) .

where 𝐑𝑥,−𝑚 has been defined in Appendix A.2. With this we can
approximate:

E
⎡

⎢

⎢

⎣

𝐗𝐻
𝑖

⎛

⎜

⎜

⎝

∏

𝜎𝑛∈𝑝

𝐗𝜎𝑛 (𝐗
𝐻
𝜎𝑛
𝐗𝜎𝑛 )

−1𝐗𝐻
𝜎𝑛

⎞

⎟

⎟

⎠

𝐉𝑗
⎤

⎥

⎥

⎦

�̃�𝐾,𝑗 ≈ 𝐑𝑥,𝜎1−𝑖

×𝐑−1
𝑥

⎡

⎢

⎢

⎣

∏

𝜎𝑛∈̃(𝑝)
𝐑𝑥,𝜎𝑛+1−𝜎𝑛𝐑

−1
𝑥

⎤

⎥

⎥

⎦

𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑
−1
𝑥 �̃�𝐾,𝑗 . (71)

lthough this expression is involved, it is possible to prove the follow-
ng Lemma:

emma A.3. The left side of (71) can be written as:

𝑥,𝜎1−𝑖𝐑
−1
𝑥

⎛

⎜

⎜

⎝

∏

𝜎𝑛∈̃(𝑝)
𝐑𝑥,𝜎𝑛+1−𝜎𝑛𝐑

−1
𝑥

⎞

⎟

⎟

⎠

𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑
−1
𝑥 �̃�𝐾,𝑗 = 𝐈𝐾,𝑗 + 𝐓0,𝑝,𝑗 , (72)

here 𝐓0,𝑝,𝑗 ∈ 𝑗 ∩ 𝑗 .2 For a white input, 𝐓0,𝑝,𝑗 is the null matrix.

roof. The proof proceeds by evaluating the product in (72) from
ight to left. To do this we proceed by induction, by showing that the
ollowing formula is valid:

∏

𝜎𝑘∈̃(𝑝)∶𝑘≥𝑛
𝐑𝑥,𝜎𝑘+1−𝜎𝑘𝐑

−1
𝑥

⎞

⎟

⎟

⎠

𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑
−1
𝑥 �̃�𝐾,𝑗 = �̃�𝑖−𝑗−𝜎𝑛 �̃�𝐾,𝑗 + 𝐓𝑛, (73)

ith 𝐓𝑛 ∈ 𝑡𝑛 ∩ 𝑗 , 𝑡𝑛 = max
{

𝜎𝑛 − (𝑖 − 𝑗), 𝜎𝑛 − 𝜎𝑚
}

and 𝑛 = 1…(𝑚 − 1).
he induction proceeds backwards, starting from 𝑘 = 𝑐(𝑝) − 1 to 𝑘 = 1.
ith this expression, (72) can be simplified to complete the proof.
First we factor the matrix 𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝) using Lemma A.1 and we

implify the left side of (73) as:

𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑
−1
𝑥 �̃�𝐾,𝑗 =

(

�̃�𝑖−𝑗−𝜎𝑐(𝑝) �̃�𝐾,𝑗 + 𝐓𝑐(𝑝)

)

, (74)

here 𝐓𝑐(𝑝) = 𝐌𝑐(𝑝)𝐑−1
𝑥 �̃�𝐾,𝑗 . Since 𝐌𝑐(𝑝) ∈ 𝜎𝑐(𝑝)−(𝑖−𝑗) and �̃�𝐾,𝑗 ∈ 𝑗 then

sing Property A.3 we have 𝐓𝑐(𝑝) ∈ 𝜎𝑐(𝑝)−(𝑖−𝑗) ∩ 𝑗 .
Now we prove that the result is valid for 𝑛 = 𝑐(𝑝)−1. In this case, the

roduct (73) indexed by 𝑘 only has the term 𝑘 = 𝑐(𝑝) − 1. Applying the
ecomposition from Lemma A.1 to this term and using (74) we have:

𝐑𝑥,𝜎𝑐(𝑝)−𝜎𝑐(𝑝)−1𝐑
−1
𝑥

)

𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑
−1
𝑥 �̃�𝐾,𝑗 =

(

�̃�𝜎𝑐(𝑝)−𝜎𝑐(𝑝)−1 +𝐌𝑐(𝑝)−1𝐑−1
𝑥

)

×
(

�̃�𝑖−𝑗−𝜎𝑐(𝑝) �̃�𝐾,𝑗 + 𝐓𝑐(𝑝)

)

. (75)

e now expand and analyze the four terms of (75):

• Since 𝜎𝑐(𝑝) − 𝜎𝑐(𝑝)−1 < 0 and 𝑖− 𝑗 − 𝜎𝑐(𝑝) < 0 we apply Property A.7
to show that �̃�𝜎𝑐(𝑝)−𝜎𝑐(𝑝)−1 �̃�𝑖−𝑗−𝜎𝑐(𝑝) �̃�𝐾,𝑗 = �̃�𝑖−𝑗−𝜎𝑐(𝑝)−1 �̃�𝐾,𝑗 .

• Since 𝐓𝑐(𝑝) ∈ 𝜎𝑐(𝑝)−(𝑖−𝑗) ∩ 𝑗 we apply Property A.4 to show that
�̃�𝜎𝑐(𝑝)−𝜎𝑐(𝑝)−1𝐓𝑐(𝑝) ∈ 𝜎𝑐(𝑝)−1−(𝑖−𝑗) ∩ 𝑗 .

2 We write 𝐓0,𝑝,𝑗 to indicate they depend on the 𝑗th and 𝑝th indexes of the
summations in (68). During the proof we do not explicit the indexes 𝑝, 𝑗.
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• 𝐌𝑐(𝑝)−1𝐑−1
𝑥 �̃�𝑖−𝑗−𝜎𝑐(𝑝) �̃�𝐾,𝑗 ∈ 𝜎𝑐(𝑝)−1−𝜎𝑐 (𝑝) ∩𝑗 since 𝐌𝑐(𝑝)−1 ∈ 𝜎𝑚−𝜎𝑚−1

and 𝐈𝐾,𝑗 ∈ 𝑗 (Property A.3).
• 𝐌𝑐(𝑝)−1𝐑−1

𝑥 𝐓𝑐(𝑝) ∈ 𝜎𝑐(𝑝)−1−𝜎𝑐 (𝑝) ∩ 𝑗 because 𝐌𝑐(𝑝)−1 ∈ 𝜎𝑐(𝑝)−𝜎𝑐(𝑝)−1
and 𝐓𝑐(𝑝) ∈ 𝑗 (Property A.3).

Thus, all the terms, except the first belong either to (𝜎𝑐(𝑝)−1−𝜎𝑐 (𝑝)∩𝑗 ) or
(𝜎𝑐(𝑝)−1−(𝑖−𝑗) ∩ 𝑗 ). We now define 𝑡𝑐(𝑝)−1 ≜ max

{

𝜎𝑐(𝑝)−1 − (𝑖 − 𝑗), 𝜎𝑐(𝑝)−1
−𝜎𝑐(𝑝)

}

and:

𝐓𝑐(𝑝)−1 ≜ �̃�𝜎𝑐(𝑝)−𝜎𝑐(𝑝)−1𝐓𝑐(𝑝) +𝐌𝑐(𝑝)−1𝐑−1
𝑥 �̃�𝑖−𝑗−𝜎𝑐(𝑝) �̃�𝐾,𝑗

+𝐌𝑐(𝑝)−1𝐑−1
𝑥 𝐓𝑐(𝑝), (76)

so that 𝐓𝑐(𝑝)−1 ∈ 𝑡𝑐(𝑝)−1 ∩ 𝑗 . Then, (75) is written as:

𝐑𝑥,𝜎𝑐(𝑝)−𝜎𝑐(𝑝)−1𝐑
−1
𝑥 𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑

−1
𝑥 �̃�𝐾,𝑗 = �̃�𝑖−𝑗−𝜎𝑐(𝑝)−1 �̃�𝐾,𝑗 + 𝐓𝑐(𝑝)−1, (77)

where 𝐓𝑐(𝑝)−1 ∈ 𝑡𝑐(𝑝)−1 ∩ 𝑗 and 𝑡𝑐(𝑝)−1 = max
{

𝜎𝑐(𝑝)−1 − (𝑖 − 𝑗), 𝜎𝑐(𝑝)−1
−𝜎𝑚

}

> 0, which shows that the expression is valid for 𝑛 = 𝑐(𝑝) − 1.
Now we assume that (73) is valid for 𝑘 = 𝑛 + 1 and show that it is

valid for 𝑘 = 𝑛. This means that:
∏

𝜎𝑘∈̃(𝑝)∶𝑘≥𝑛

(

�̃�𝜎𝑘+1−𝜎𝑘 +𝐌𝑘𝐑−1
𝑥

)

𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑
−1
𝑥 �̃�𝐾,𝑗 (78)

=
(

�̃�𝜎𝑛+1−𝜎𝑛 +𝐌𝑛𝐑−1
𝑥

)(

�̃�𝑖−𝑗−𝜎𝑛+1 �̃�𝐾,𝑗 + 𝐓𝑛+1

)

, (79)

where we have applied the inductive hypothesis. We have that 𝐓𝑛+1 ∈
𝑡𝑛+1 ∩ 𝑗 with 𝑡𝑛+1 = max

{

𝜎𝑛+1 − (𝑖 − 𝑗), 𝜎𝑛+1 − 𝜎𝑐(𝑝)
}

. Expanding the
product and analyzing the terms we have:

• �̃�𝜎𝑛+1−𝜎𝑛 �̃�𝑖−𝑗−𝜎𝑛+1 �̃�𝐾,𝑗 = �̃�𝑖−𝑗−𝜎𝑛 �̃�𝐾,𝑗 .
• �̃�𝜎𝑛+1−𝜎𝑛𝐓𝑡𝑛+1 ∈ 𝑡𝑛+1+(𝜎𝑛−𝜎𝑛+1) ∩ 𝑗 .
• 𝐌𝑛𝐑−1

𝑥 �̃�𝑖−𝑗−𝜎𝑛+1 �̃�𝐾,𝑗 ∈ 𝜎𝑛+1−𝜎𝑛 ∩ 𝑗 .
• 𝐌𝑛𝐑−1

𝑥 𝐓𝑡𝑛+1 ∈ 𝜎𝑛+1−𝜎𝑛 ∩ 𝑗 .

But since 𝑡𝑛+1 > 0 we have 𝜎𝑛 − 𝜎𝑛+1 + 𝑡𝑛+1 > 𝜎𝑛 − 𝜎𝑛+1. In addition:

𝑡𝑛 = max
{

𝜎𝑛+1 − (𝑖 − 𝑗), 𝜎𝑛+1 − 𝜎𝑚
}

+ 𝜎𝑛 − 𝜎𝑛+1
= max

{

𝜎𝑛 − (𝑖 − 𝑗), 𝜎𝑛 − 𝜎𝑚
}

.

So we find that:

𝐓𝑛 = �̃�𝜎𝑛+1−𝜎𝑛𝐓𝑡𝑛+1 +𝐌𝑛𝐑−1
𝑥 �̃�𝑖−𝑗−𝜎𝑛+1 �̃�𝐾,𝑗 +𝐌𝑛𝐑−1

𝑥 𝐓𝑡𝑛+1 ∈ 𝑡𝑛 ∩ 𝑗 , (80)

with 𝑡𝑛 = max
{

𝜎𝑛 − (𝑖 − 𝑗), 𝜎𝑛 − 𝜎𝑚
}

. This proofs that (73) is valid.
We can now simplify (72) by replacing (73) with 𝑘 = 1:

𝐑𝑥,𝜎1−𝑖𝐑
−1
𝑥

⎛

⎜

⎜

⎝

∏

𝜎𝑛∈̃(𝑝)
𝐑𝑥,𝜎𝑛+1−𝜎𝑛𝐑

−1
𝑥

⎞

⎟

⎟

⎠

𝐑𝑥,𝑖−𝑗−𝜎𝑐(𝑝)𝐑
−1
𝑥 �̃�𝐾,𝑗 = 𝐑𝑥,𝜎1−𝑖𝐑

−1
𝑥

×
(

�̃�𝑖−𝑗−𝜎1 �̃�𝐾,𝑗 + 𝐓1

)

. (81)

Applying once more the decomposition of Lemma A.1 to 𝐑𝑥,𝜎1−𝑖 we get:

𝐑𝑥,𝜎1−𝑖𝐑
−1
𝑥

(

�̃�𝑖−𝑗−𝜎1 �̃�𝐾,𝑗 + 𝐓1

)

= �̃�𝜎1−𝑖 �̃�𝑖−𝑗−𝜎1 �̃�𝐾,𝑗 + 𝐓0, (82)

with 𝐓0 = �̃�𝜎1−𝑖𝐓1 +𝐌0𝐑−1
𝑥 �̃�𝑖−𝑗−𝜎1 �̃�𝐾,𝑗 +𝐌0𝐑−1

𝑥 𝐓1.
Following a similar reasoning as with the other terms we can prove

that 𝐓0 ∈ 𝑡0 ∩ 𝑗 with 𝑡0 = max
{

𝑖 − 𝜎1, 𝑖 − 𝜎1 + max
{

𝜎1 − (𝑖 − 𝑗), 𝜎1
−𝜎𝑚

}}

= 𝑖−𝜎1 +max
{

𝜎1 − (𝑖 − 𝑗), 𝜎1 − 𝜎𝑚
}

= max
{

𝑗, 𝑖 − 𝜎𝑚
}

. But since
𝜎𝑚 > 𝑖 − 𝑗 we have that 𝑡0 = 𝑗, which shows that 𝐓0 ∈ 𝑗 ∩ 𝑗 . Finally,
we conclude the proof by noting that: �̃�𝜎1−𝑖 �̃�𝑖−𝑗−𝜎1 �̃�𝐾,𝑗 = �̃�𝐾,−𝑗 �̃�𝐾,𝑗 = 𝐈𝐾,𝑗 ,
which is obtained using Properties A.6 and A.7. The result for a white
input follows by noting that all the 𝐌 matrices from the decomposition
(63) are zero for a white input. □

To conclude the proof of Theorem 1, we use the results of Lem-
mas A.2 and A.3. We replace (72) in (71) and this result together with
(70) in (68) to obtain:

E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

≈ −𝜎2𝑣
𝐾−1
∑

𝜇𝑖−𝑗
(

𝐈𝐾,𝑗 +𝐌𝑗𝐑−1
𝑥 �̃�𝐾,𝑗

)

13

𝑗=1
−𝜎2𝑣
⎡

⎢

⎢

⎣

𝐾−1
∑

𝑗=2

∑

𝑝
(−1)𝑓 (𝑝)𝜇𝑖−𝑗

⎛

⎜

⎜

⎝

∏

𝜎𝑛∈𝑝

𝜇𝜎𝑛

⎞

⎟

⎟

⎠

(

𝐈𝐾,𝑗 + 𝐓0,𝑝,𝑗
)

⎤

⎥

⎥

⎦

. (83)

Using Property A.5 we have that 𝐓0,𝑝,𝑗 and 𝐌𝑗𝐑−1
𝑥 �̃�𝐾,𝑗 are upper trian-

gular matrices, so E
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

also is. In particular for a white input, 𝐓0,𝑝,𝑗
and 𝐌𝑗 are the zero matrix, so E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

is a diagonal matrix. In both
cases, from Property A.5 we have that diag(𝐓0,𝑝,𝑗 ) = diag(𝐌𝑗𝐑−1

𝑥 �̃�𝐾,𝑗 ) =
𝟎 for all 𝑗, 𝑝. So we can simplify this expression to obtain:

diagE
[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

≈ −𝜎2𝑣𝜇𝑖−1diag
(

𝐈𝐾,1
)

−𝜎2𝑣
𝐾−1
∑

𝑗=2
𝜇𝑖−𝑗

⎡

⎢

⎢

⎣

1 +
∑

𝑝
(−1)𝑓 (𝑝)

⎛

⎜

⎜

⎝

∏

𝜎𝑛∈𝑝

𝜇𝜎𝑛

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

diag
(

𝐈𝐾,𝑗
)

. (84)

Now we conclude the proof by observing that

1 +
∑

𝑝
(−1)𝑓 (𝑝)

∏

𝜎𝑛∈𝑝

𝜇𝜎𝑛 =
𝑗−1
∏

𝑘=1
(1 − 𝜇𝑖−𝑘). (85)

that is, we revert the matrix factorization from Appendix A.2 which
is also valid for scalars. E

[

𝐞𝑎,𝑖𝐯𝐻𝑖
]

𝑞,𝑞 can be found by considering the
individual elements of the diagonal.
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