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ABSTRACT We consider the distributed detection problem of a temporally correlated random radio
source signal using a wireless sensor network capable of measuring the energy of the received signals.
It is well-known that optimal tests in the Neyman-Pearson setting are based on likelihood ratio tests
(LRT), which, in this set-up, evaluate the quotient between the probability density functions (PDF) of the
measurements when the source signal is present and absent. When the source is present, the computation
of the joint PDF of the energy measurements at the nodes is a challenging problem. This is due to the
statistical dependence introduced to the received signals by the propagation through fading channels of
the radio signal emitted by the source. We deal with this problem using the characteristic function of the
(intractable) joint PDF, and proposing an approximation to it. We derive bounds for the approximation error
in two wireless propagation scenarios, slow and fast fading, and show that the proposed approximation
is exponentially tight with the number of nodes when the time-bandwidth product is sufficiently high.
The approximation is used as a substitute of the exact joint PDF for building an approximate LRT, which
performs better than other well-known detectors, as verified by Monte Carlo simulations.

INDEX TERMS Distributed detection, wireless sensor networks, joint PDF factorization, statistically
dependent observations.

I. INTRODUCTION

WIRELESS sensor networks (WSNs) as a key tech-
nology in the emerging paradigm of Internet of

Things (IoT) [1], [2], [3] have received considerable atten-
tion. Distributed signal processing is an important topic of
research in this area, because efficient information processing
in large networks of devices with limited communication,
sensing, storage and computing capabilities has the potential
of being cost-efficient and very robust [4]. Among the dif-
ferent signal processing tasks in WSNs, distributed detection
is one of the most important [5], [6], [7].
In the distributed detection problem, a set of nodes sense

the environment in search for the presence of a source
signal, which is typically linked with some physical process

extended over the geographical area where the network
is deployed. Through collaboration among the nodes, the
network is expected to decide with high confidence if the
above mentioned signal is present or not. A well-studied
application of this general problem is the spectrum sensing
task in cognitive radios [8]. An important issue is the
presence and influence of the spatial and temporal correlation
of the source signal on the implemented detection scheme.
The source signal is sometimes modeled as a stochastic
process which could present temporal correlation (e.g.,
cyclostationarities, [9]). On the other hand, when the source
signal is present, the measurements taken at each sensor node
are clearly correlated (and therefore, statistically dependent)
because these measurements are different noisy versions
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FIGURE 1. Two common network architectures. (a) Fully-distributed scenario. All
nodes (black dots) compute a local statistic, exchange information through
short-range communication links (light-blue lines), and lastly, build the final test
statistic to make a decision. (b) A block diagram for the scenario in (a). (c) The network
has a FC (orange square), where all the (quantized) measurements are sent from the
nodes and the final decision is made. (d) A block diagram for the scenario in (c).

(affected by channel effects such as path-loss, shadowing,
and fading) of the same random signal.

A. MOTIVATION AND SOME PREVIOUS WORKS
It is well-known that the optimal test [10], which can
take into account the correlation (or more generally, the
statistical dependence) of the signals, is the likelihood ratio
test (LRT), which is defined through the quotient between
the probability density functions (PDF) of the measurements
when the signal is present and not. However, in general,
the exact implementation of the optimal LRTs is difficult
in fully-distributed settings, where there is no fusion center
(FC), and the cooperation between different sensor nodes
is done through transmissions between neighbor nodes. See
Fig. 1 (a) and (b) for a schematic representation of the
problem. The reason is that those tests require network-wide
interactions between the measurements taken at the sensor
nodes. For example, when the signals captured at each sensor
site are Gaussian, the optimal tests involve the computation
of quadratic forms of the measurements. In fully-distributed
consensus detection schemes [11], [12], [13], this is prob-
lematic when the covariance matrix of the measurements
is not diagonal. The number of exchanges between the
nodes in the network needed to construct the consensus
decision could be large, which introduces severe penalties
in power and bandwidth consumption, which are typically
scarce resources in WSNs composed of typically inexpensive
nodes. When a FC is present (see Fig. 1 (c) and (d)),
the sensors could transmit their measurements to the FC,
which is responsible of computing the final decision about
the presence of the source signal [14], [15], [16]. This
centralized architecture also presents some weaknesses as,
for example, it lacks of robustness against the malfunctioning
of a single device, given that a failure in the FC may severely
degrade the performance of the system. Additionally, it
requires that sensor nodes, typically battery powered devices,

communicate through orthogonal channels with the FC, in
which case the energy and bandwidth resources increase with
the amount of sensors and the area in which the network is
deployed. This could be alleviated, in principle, using fusion
decision algorithms [17], [18], [19], [20], [21], where the
local measurements (or a statistic of them) are quantized
to a few bits. These decisions are then communicated to a
FC, where a typically suboptimal final test statistic is built
and the final decision is made. However, the influence of
spatial/temporal correlation in the construction of the local
and final test statistic is not usually taken into account for
their design, not modeled, or even discarded without an
analytical justification.

B. OUR CONTRIBUTIONS AND PAPER ORGANIZATION
Instead of restricting us to a specific architecture (with
or without a FC), we begin in Section II formulating the
problem of detecting an arbitrary temporal-correlated random
source signal. We consider that the source signal and the
additive noise at each sensor are Gaussian distributed signals,
and that the sensors deliver energy measurements. Because
the source signal is modeled as a random signal, the node’s
observations are statistically dependent, given that each
sensor receives a noisy version of the same source signal
propagated through the corresponding wireless channel. The
exact PDF of the energy measurements at the sensor sites
when the source signal is present, which corresponds to
the diagonal entries of a Wishart-distributed matrix, is not
known in closed form [22]. Although there exist some
recent results [23], [24] in terms of multidimensional series
that involve Laguerre polynomials, the expressions are not
particularly easy to handle and compute (specifically in high-
dimensional scenarios, i.e., many nodes, due to numerical
precision issues), and they do not cover the more general
case considered in this paper (the arbitrarily temporally
correlated source signal case). From this starting point, our
main contribution is the derivation of a tight approximation
to the actual joint PDF of the energy measurements, which
conveniently factorizes itself in the product of N (the number
of sensors) PDFs, each of one is parameterized through
parameters that each node can compute or obtain locally.
This approximation is treated in two typical and important
propagation scenarios: slow and fast fading. This finding
presents two major advantages in distributed detection
scenarios: i) It allows us to build simpler cooperative
schemes for detecting a radio source by using any of the two
network architectures shown in Fig. 1. ii) If desirable, it is
possible to design simpler quantization schemes by relying
on the local PDF in each node instead of the intractable joint
PDF.
In Section III, we calculate in closed form the character-

istic function (CF) of the energy measurements. From this
exact CF, and under the hypothesis of a high time-bandwidth
product WT , which is a common situation in several practical
applications, the approximation to the true joint PDF of
the energy measurements is derived. This product PDF is
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non-trivial (i.e., it is not the product of the marginals of
the true joint PDF) and can be used as a replacement of
the true non-product joint PDF for implementing the LRT
or quantization schemes, among others. In addition, this
result implies that, when WT is large and for energy-based
detectors, the temporal and spatial statistical dependence of
the measurements are not critical in this set-up.
In Section IV, a theoretical study of the obtained

approximation for the true PDF is also provided for
both above-mentioned scenarios, showing the quality of
the approximation in terms of the value of WT and the
network size N. In this respect, the most important fact
is that the approximation is exponentially tight with N. In
Section V, in order to cope with the unknown remaining
parameters in the obtained approximations, we obtain the
corresponding generalized likelihood ratio tests (GLRT).
Finally, in Section VI, some numerical simulations are
also conducted to evaluate the performance of the obtained
tests for detecting the presence of a radio source with
unquantized energy measurements. The paper is finalized
with some concluding remarks and future research directions.
The proofs of some mathematical results are relegated to the
appendices.
This work is an extension of our conference paper [25],

where only preliminary results were presented. Specifically,
we here provide new results for the fast fading scenario, the
theoretical error approximation analysis and new simulations
for both fast and slow fading scenarios. We also include the
mathematical proofs of the results.

C. NOTATION AND ACRONYMS
Vectors/matrices are denoted by lowercase/uppercase bold-
face. Also, depending on the context, with uppercase
boldface letters we denote random vector and matrices. With
diag(a1, a2, . . . , aN) we denote the diagonal N × N matrix
with diagonal entries given by a1, a2, . . . , aN . The trace and
the determinant of square matrix A are denoted by Tr(A) and
|A|, respectively. For a complex number z ∈ C, we denote
its magnitude with |z|. The use of |·| for the determinant of a
square matrix or for the magnitude of complex number will
be clear from the context. The Kronecker product between
matrices A and B is denoted as A⊗B. A vector y complex
circular Gaussian distributed with mean a and covariance
matrix B has PDF denoted by y ∼ CN (a,B). The N × N
identity matrix is denoted as IN . Symbols Pfa and Pmd denote
the false-alarm probability and miss-detection probability of
the statistical detection test considered. We use the big-O
notation, that is, f (x) = O(g(x)) as x → ∞ and for g(x)
a strictly positive function if | f (x)| ≤ Kg(x) when x > x0
for K and x0 positive constants. The symbol ≡ is used to
introduce the definition of a new quantity.
For easier reference, we list some common acronyms used

in the text:

CF Characteristic Function
CSI Channel State Information

CROC Complementary Receiver Operating
Characteristic

FC Fusion Center
GLRT Generalized Likelihood Ratio Test
IoT Internet of Things
LRT Likelihood Ratio Test
MLE Maximum Likelihood Estimator
PDF Probability Density Function
SNR Signal to Noise Ratio
UMPT Uniformly Most Powerful Test
WSN Wireless Sensor Network

II. PROBLEM SETTING
Consider the problem of N sensors distributed in a given
geographical area. All of them have sensing and commu-
nication capabilities. It is assumed that a radio source is
located in the same area. The location of this radio source
is unknown for the sensing network, and it is assumed that
it emits an arbitrarily temporally-correlated Gaussian signal.
Each node of the network senses the environment during L
time-windows, each of duration M symbols. During the l-th
time-window (with l ∈ [1 : L]), the received signal at each
sensor n ∈ [1 : N] can be written as:

yn,l = hn,lsl + vn,l, (1)

where for each n, l, yn,l ∈ C
M is the temporal baseband

signal at sensor n and time-window l, which is composed
of the noise signal vn,l ∈ C

M , and the source signal (when
present) sl ∈ C

M . This source signal is affected by the
channel gain hn,l ∈ C which includes, among other effects,
the path-loss gain and fading that exists between the position
of the source and the n-th sensor position at measurement
window l. This coefficient, is highly dependent on the
scenario under study (i.e., a high mobility situation or a
stationary one) and it is typically unknown in practice or
difficult and too complex to acquire in scenarios where the
source does not cooperate to be detected. Notice that, as
the signal sl is the same for each sensor (although affected
by different channel coefficients hn,l), the signals {yn,l}Nn=1
received at each sensor node are spatially correlated for each
measurement window l. Besides that, as the radio source
signal sl can also be temporally correlated, the signals yn,l
can also present temporal correlation.
It is assumed that the sensors have limited sensing

capabilities and they can only sense the average energy
during each measurement window. This is a practical and
typical situation in several applications such as cognitive
radio [26], and it was extensively studied [27], [28]. Energy
detectors are typically available even in inexpensive hardware
and they do not require coherent demodulation procedures,
in which prior information related to the radio source’s
waveform or modulation is needed. Besides that, the optimal
detection test for stochastic Gaussian signals (1) has the well-
known estimator-correlator structure that leads to a weighted
energy decision statistic [29], [30]. Therefore, dealing with
the case where the nodes deliver only energy measurements
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is reasonable, from a practical and a theoretical point of view.
So, for each time-window l ∈ [1 : L], each sensor n ∈ [1 : N],
outputs the value En,l ≡ 1

β(M)‖yn,l‖2, where β(M) > 0 is an
appropriate normalizing constant, that depends on the length
of yn,l. This constant is increasing with M and some usual
choices could be β(M) = M or β(M) = M1/2. These energy
values are then used, through the following hypothesis test,
by the sensing network to determine if the radio source is
actually transmitting or not:{

H0 : En,l = 1
β(M)‖vn,l‖2, n ∈ [1 : N], l ∈ [1 : L]

H1 : En,l = 1
β(M)‖hn,lsl + vn,l‖2.

(2)

It is well-known that the likelihood ratio between the PDFs
under both hypotheses is a key element for optimal detection
strategies. We denote with El = [E1,l,E2,l, . . . ,EN,l]T

the energy measurements at each sensor site during time-
window l, and with p0

l (El) and p
1
l (El) the PDFs underH0 and

H1, respectively. We assume that the energy measurements
{El}Ll=1 are independent for different time windows l.1 The
optimal decision statistics in the Neyman-Pearson sense
is [10]:

log

∏L
l=1 p

1
l (El)∏L

l=1 p
0
l (El)

H1
≷
H0

τ, (3)

where τ is a threshold usually chosen to set the false alarm
probability Pfa ≡ P{decidefor H1|H0}. The miss-detection
probability is defined by Pmd ≡ P{decidefor H0|H1}. For
this reason and in order to analyze this hypothesis testing
problem, we first need the joint PDF, over the sensing
nodes, of the energy measurements El, for each measurement
window.
In order to closely investigate the PDFs under both

hypotheses we will make some standard assumptions. Under
H0 (the radio source is not emitting), the signal vn,l is
a complex Gaussian circular noise, that is, for each n, l,
vn,l ∼ CN (0, σ 2

v IM), σ
2
v > 0. When the radio source is

emitting (under H1), the signal at each sensor comprises
the noise signal vn,l with the same characteristics as before,
and also the signal hn,lsl. It is assumed that sl is a complex
and circular Gaussian signal distributed as sl ∼ CN (0, �s,l),
independent of the noise signal, and where �s,l ∈ C

M×M
is the temporal correlation matrix of the radio source signal
during the measurement window l.
Although the Gaussian assumption may seem restrictive,

it is widely used, even in situations where it is not strictly
true. This is the case of, for example, cognitive radio
applications, where the radio source’s waveform is an
orthogonal frequency-division multiplexing (OFDM) signal,
with symbols taking values from a discrete set (e.g., QAM).
In this example, the signal presents temporal correlation
due to the cyclic prefix introduced by OFDM. We include
numerical experiments of this scenario in Section VI.
Moreover, as it is shown in the next section, the Gaussian

1. In practical scenarios, if M is set large enough, the temporal statistical
dependence of the source signal between different time-windows vanishes.

assumption will permit us to obtain closed-form expressions
of several important quantities and to deal with the spatial
and temporal correlation of the measurements in the above
detection problem.
The model assumed above and the results in Sections III

and IV are, in principle, agnostic of the considered fusion
setup (fully-distributed or centralized setup with a FC).
Depending on the chosen fusion setup, the main differences
will be in the demanded network communications resources
to compute the test statistics derived from our PDF approx-
imation.
Remark 1: It is straightforward to show that the

performance of the LRT is invariant to the scaling coefficient
β(M) in (2). That is, for a given value of Pfa, Pmd does not
depend on β(M). So, the assumed scaling coefficient has
no practical consequence to the implementation of the LRT
in (3). However, the scaling coefficient will be pivotal in
Sections III and IV, where we will analyze the influence of
the spatial dependence in El under H1, when M is large.

III. ON THE APPROXIMATION OF THE PDF OF EL
In this section, we first study the PDFs of the energy
measurements under both hypotheses. We consider two
scenarios:
1) The slow fading scenario: The channel gains between

the source signal and sensor sites are fixed for all measure-
ment windows, i.e., hn,l ≡ hn ∀l ∈ [1 : L] and n ∈ [1 : N].
This is representative of a stationary environment.
2) The fast fading scenario: The channel gains between the

source signal and sensor sites change for each measurement
window according to a given distribution (e.g., Rayleigh
distribution). This is representative of a high-mobility envi-
ronment.
For these two scenarios, as obtaining the joint PDF of the

measurements is a challenging problem, the study of the CF
of El conditioned on the values of channels gains between
the source signal and the sensors proves to be critical. For
that reason, we will proceed by obtaining a closed form
expression of this CF and use it to obtain and mathematically
justify our approximations. In the following, and except
when this will be strictly needed to avoid confusion, we will
consider a fixed measurement window with l ∈ [1 : L] of size
M and we will omit the subscript l in all relevant quantities
in order to use a less cumbersome notation. We will also
define the vector of channel gains h = [h1, h2, . . . , hN]T .
We will begin analyzing the CF of E for the slow fading
scenario which is mathematically equivalent to the CF of E
conditioned on h.

A. ON THE CHARACTERISTIC FUNCTION OF E
CONDITIONED ON H
We define the vector y ≡ [yT1 , y

T
2 , . . . , y

T
N]T as the NM-

length vector that contains the signals during the considered
measurement window at the N sensor positions. Clearly,
y ∼ CN (0, σ 2

v INM) under H0. It is also not difficult to
show that y ∼ CN (0,hhH ⊗ �s + σ 2

v INM) under H1.
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The exact joint density of the vector E is a very difficult
problem [22], [31]. It is well-known that it is related to
the distribution of the diagonal of YYH , where Y is the
vertical concatenation of vectors yHn , n ∈ [1 : N]. Although
this problem has attracted some interest in the wireless
communications community (see [23] and [24]), most of the
results consider the case in which the vectors yn, n ∈ [1 : N]
are independent and identically distributed (i.i.d.), which is
not the case considered in this paper. The main reason behind
this is the presence of the channel coefficient between source
and sensor locations. This naturally generates a statistical
dependence between vectors yn, n ∈ [1 : N] which is difficult
to characterize and quantify. If in addition, the radio source
signal presents temporal correlation, this will also contribute
to the mentioned dependence. Most solutions, in the i.i.d.
case, consider inverse Fourier methods and series expansions
for the joint density. This is motivated by the fact that the
CF for the diagonal of YYH can be easily computed in that
case.
In this paper, we will perform the exact computation of

the CF of E, taking into account the specific signal model
defined in the previous section which does not match the
usual characteristics of the i.i.d. signal model assumed in
most of the literature. The obtained CF will then be used, not
for an exact series expansion for the PDF of E, but to obtain
a meaningful approximation to the PDF. As we will see, this
approximation has very useful properties for the distributed
detection problem in (2). Consider the CF of E conditioned to
h and the hypothesis Hi : � i(ω|h) ≡ E[e jω

TE|h,Hi] where
ω ∈ R

N and i = 0, 1 denotes the true state of nature (i.e., H0
or H1). The following lemma, proved in Appendix A, gives
us the exact result for � i(ω|h).
Lemma 1: The CF of E conditioned to h and the

hypotheses H0 and H1 are,2 respectively,

�0(ω|h) =
N∏
n=1

(
1 − j

ωnσ
2
v

β(M)

)−M
, (4)

�1(ω|h) =
∏N

n=1

(
1 − jωnσ

2
v

β(M)

)−M

∏M
m=1

(
1 − j λm

β(M)

∑N
n=1

|hn|2ωn
1−j ωnσ2

v
β(M)

) , (5)

where λ1, λ2, . . . , λN are the eigenvalues of the source signal
covariance matrix �s.

The previous lemma deserves some comments. In the first
place, under H0, the energy vector density is distributed
as N identical and independent central chi-square random

variables with 2M degrees of freedom and mean Mσ 2
v

β(M) .
Moreover, as the source is not transmitting, neither the
CF or PDF depend on h. Under H1, �1(ω|h) can not
be factored as

∏N
n=1 ψn(ωn|h), where each ψn with n ∈

[1 : N] is a characteristic function. As expected, {En}
2. Strictly speaking the characteristic function under H0 does not depend

on h. However, in order to use a uniform notation across the paper we will
continue using �0(ω|h).

are dependent random variables independently of the time
correlation characteristics of the source signal s. From (5),
this is true even when the source signal is uncorrelated in
time, i.e., λm = σ 2

s with m ∈ [1 : M]. This is a consequence
of the spatial correlation induced by the common source
signal present at each sensor site.
In principle, there is no known closed form expression for

the joint density of E. However it is easy to show, assuming
λi �= λj, with i �= j, that the marginal density for En with
n ∈ [1 : N] can be written as:

p1(En|h) =
M∑
m=1

M∏
j �=m

(
1 − λj|hn|2 + σ 2

v

λm|hn|2 + σ 2
v

)−1
β(M)

λm|hn|2 + σ 2
v

× exp

(
− β(M)En
λm|hn|2 + σ 2

v

)
, n ∈ [1 : N]. (6)

In the special case of an uncorrelated source signal s, in
which λm = σ 2

s for all m ∈ [1 : M], we have:

p1(En|h) =
(

β(M)

σ 2
s |hn|2 + σ 2

v

)M EM−1
n

(M − 1)!

× exp

(
− β(M)En
σ 2
s |hn|2 + σ 2

v

)
, n ∈ [1 : N], (7)

that is, a central chi-square random variable with 2M degrees

of freedom and mean M(σ 2
s |hn|2+σ 2

v )

β(M) . Although the marginal
densities are important, in order to implement a hypothesis
test for detecting the source signal, we need the full joint
PDF of the energy measurements at the sensors. Although,
as we pointed out above, this problem is hard, some insights
can be obtained when M is sufficiently large.

B. APPROXIMATION OF THE JOINT DENSITY OF E FOR
THE SLOW FADING SCENARIO
It is important to analyze, using the characteristic function
�1(ω|h) in (5), the case in which β(M) is large. This will
happen when M is large as we have assumed that β(M) is
an increasing function of M. Note that3 M ≈ WT , where
W is the bandwidth of the continuous time version of the
source signal and T is the analog time duration of the sensing
window in which the energy measurement in each sensor
is done [32], [33]. For practical applications (e.g., cognitive
radio [8], [26]) the time-bandwidth product WT will not be
small, and the following derivations will be useful. Under the
assumption of M large, we will use the following first-order
approximation of the exponential function:

1 − j λm
β(M)

N∑
n=1

|hn|2ωn
1 − jωnσ

2
v

β(M)

≈ exp

⎛
⎝−j λm

β(M)

N∑
n=1

|hn|2ωn
1 − jωnσ

2
v

β(M)

⎞
⎠,
(8)

3. Note that M needs to be a positive integer. This is satisfied considering
the largest integer smaller or equal to WT .

VOLUME 5, 2024 225



MAYA et al.: EXPONENTIALLY-TIGHT APPROXIMATE FACTORIZATION OF THE JOINT PDF

for m ∈ [1 : M] and n ∈ [1 : N]. Under this approximation,
�1(ω|h) ≈ �̂1(ω|h) where:

�̂1(ω|h) ≡

∏M
m=1 exp

(
j λm
β(M)

∑N
n=1

|hn|2ωn
1−j ωnσ2

v
β(M)

)

∏N
n=1

(
1 − jωnσ

2
v

β(M)

)M . (9)

Using that
∑M

m=1 λm = Tr(�s) we obtain:

�̂1(ω|h) =
N∏
n=1

exp

(
j

β(M)
Tr(�s)|hn|2ωn

1−j ωnσ2
v

β(M)

)
(

1 − jωnσ
2
v

β(M)

)M . (10)

For a large but fixed value of M, notice that the
approximation in (8) is a very good one when |ωn|, n ∈
[1 : N] are small. Clearly, for larger values, the approximation
is not so good. However, the denominator in (10) increases
rapidly with |ωn|, n ∈ [1 : N] when M is large and the scaling
β(M) is chosen carefully. This behaviour seems to have the
net effect that (10) approximates the true CF (5) reasonably
well over large regions in the ω space. In Section IV, we
will rigorously show that this is indeed the case by providing
a bound for supE∈RN≥0

|p1(E|h)− p̂1(E|h)| and obtaining its
scaling behaviour with M.

The most striking fact about the last expression is that,
as M grows, the entries of E becomes less statistically
dependent between them, as (10) is the CF of N independent
random variables, each with characteristic function given by:

ψ̂1(ωn|hn) ≡
exp

(
j

β(M)
Tr(�s)|hn|2ωn

1−j ωnσ2
v

β(M)

)
(

1 − jωnσ
2
v

β(M)

)M , n ∈ [1 : N]. (11)

It is well known that (11) is the characteristic function of
a non-central chi-square random variable. In more precise
terms, anti-transforming (10) we get p1(E|h) ≈ p̂1(E|h),
where

p̂1(E|h) ≡
N∏
n=1

β(M)
σ 2
v

exp
[
−β(M)

σ 2
v

(
En + Tr(�s)|hn|2

β(M)

)]

×
(

β(M)En
Tr(�s)|hn|2

)M−1
2
IM−1

(
2
σ 2
v

√
β(M)Tr(�s)|hn|2En

)
,

(12)

where IM−1 is the modified Bessel function of the first kind
and order M − 1.
Remark 2: It is clear that under H0, the components of E

are independent and identically distributed. In addition, it is
important to observe that, having M finite but large, allows
us to approximately consider that {En} are independent also
under H1. However, (12) is different to the product of its
marginals, given by (6). This shows that the result of the
approximation when M is finite but large is not trivial.
Remark 3: In applications for which M is large and (8)

leads to a tight CF approximation (10), we can use (12) as

a substitute of the true (unknown and intractable) joint PDF
of E conditioned to h and H1, for building an approximate
LRT for the detection problem at hand. This has a twofold
advantage. In the first place, although not exact, the approx-
imate likelihood can be easily computed in closed form and
we do not have to resort to any series approximation, which
actually are not readily available for the considered general
scenario. Secondly, as the approximation naturally leads to
a factorized PDF, it is well suited for distributed detection
scenarios. This is because each node is able to compute its
local statistic without cooperation with other nodes, while
the final test statistic is the network-wide average of those
local statistics, which implies relatively low communication
(energy and bandwidth) resources. Notice that likelihood
ratio tests using non-product PDF will typically demand
many communications resources and are not suitable for
distributed scenarios. This will be the case even when,
through the use of the multivariate central limit theorem,
and selecting β(M) = 1

M , the energy measurements are
approximated by a multivariate Gaussian PDF, as it is done
in several works [11], [26], [27], [34]. In those cases, the
likelihood ratio will be a quadratic form depending on the
precision matrix (the inverse of the covariance matrix), which
will be very costly to compute in distributed scenarios [35].

C. APPROXIMATION OF THE JOINT DENSITY OF E IN
THE FAST FADING SCENARIO
In this case, we consider that the channel gains hn are
random variables. These random values remain fixed during
a certain measurement window, but in the next window, they
change again according to the same distribution. Contrary
to the slow-fading case, here the channel gains are different
for each window, and this has to be taken into account.
Using the independence assumption of El across the L
measurements windows and that each El conditioned on
hl is independent of the vector channel gains at the other
measurements windows, the approximate joint PDF of the L
vector energy measurements E1,E2, . . . ,EL conditioned on
those channel gains can be expressed as:

p̂1(E1,E2, . . . ,EL|h1,h2, . . . ,hL) =
L∏
l=1

p̂1(El|hl), (13)

where each p̂1(El|hl) for l ∈ [1 : L] is given by (12).
Clearly, assuming that the L channel gains are known is not
a reasonable hypothesis. Assuming that they are unknown,
and to devise a test like the GLRT is possible. However, its
performance will not be good, as the number of parameters
to estimate is NL, which is equal to the number of total
energy measurements. Another possibility is to average (13)
over h1,h2, . . . ,hL and define4:

p̂1(E1,E2, . . . ,EL) ≡ E

[
L∏
l=1

p̂1(El|hl)
]
, (14)

4. This averaging is only needed for the energy measurements PDF under
H1, due to the resulting PDF under H0 does not depend on the channel
gains.
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where expectation is with respect to p(h1,h2, . . . ,hL), the
joint PDF of the channel vector gains. Assuming a high-
mobility scenario, it is reasonable to consider a fast-fading
model [36], where hl, l ∈ [1 : L] are assumed to be
independent and identically distributed random vectors. This
allows us to write:

p̂1(E1,E2, . . . ,EL) =
L∏
l=1

E

[
p̂1(El|hl)

]
, (15)

Then, we only need to analyze E[p̂1(El|hl)] for an arbitrary
l ∈ [1 : L]. We will also assume that nodes are separated
well enough. This means that the gains hn (in the following,
as we will be again analyzing an arbitrary measurement
window, we will drop the sub-index l) with n ∈ [1 : N]
can be modeled as independent random variables. Under this
assumption:

E

[
p̂1(E|h)

]
=
∫
p̂1(E|h)

N∏
n=1

pn(hn)dh1dh2 . . . dhN, (16)

where pn(hn) is the PDF of the channel gain hn. Several
channel distributions of interest can be considered, such
as Rayleigh and Nakagami [37]. In the following, we will
consider that the channel gains are Rayleigh distributed (non-
line-of-sight propagation scenario). Then, the squared gains
|hn|2 are exponentially distributed according to:

pn
(
|hn|2

)
= 1

σ 2
n

exp

(
−|hn|2
σ 2
n

)
, n ∈ [1 : N], (17)

where E[|hn|2] = σ 2
n > 0. It is not easy to perform direct

integration in (16). However, in the next lemma, using the
CF in (10), we will be able to obtain E[p̂1(E|h)]. The proof
is relegated to Appendix B.
Lemma 2: Assuming that pn(|hn|2) for n ∈ [1 : N] is given

by (17), and p̂1(E|h) is given by (12), we have that (16) can
be written as:

E

[
p̂1(E|h)

]
=

N∏
n=1

β(M)


(M − 1)

(
σ 2
v + Tr(�s)σ

2
n

)M−2

(
Tr(�s)σ 2

n

)M−1

× exp
(
− β(M)En
σ 2
v +Tr(�s)σ 2

n

)
γ
(
M − 1, β(M)Tr(�s)σ

2
n

σ 2
v (σ 2

v +Tr(�s)σ 2
n )
En
)
,

(18)

where γ (α, x) ≡ ∫ x
0 t
α−1e−tdt, α, x ≥ 0 is the incomplete

Gamma function.
The result of Lemma 2, jointly with (15), allows us to

express an approximation to the true joint PDF for the full L
measurements windows under H1 in the fast fading scenario.
In this way, we can use this approximation to implement
a LRT as in (3) also for this scenario, in addition to the
slow-fading one. The only issue that remains to be analyzed
is the case of the unknown parameters in the derived PDF
approximations in a practical application. In the slow fading
scenario these parameters are mainly the fixed channel gains
h across the measurement windows. Meanwhile, in the fast
fading scenario, the unknown parameters will be the values

of σ 2
n , n ∈ [1 : N] which are also fixed for each measurement

window. This will be studied in Section V.

IV. THEORETICAL ANALYSIS OF THE APPROXIMATIONS
The approximations (12) and (18) to the joint PDF of the
energies sensed at the sensor sites during a measurement
window seems to be satisfying from the practical point
of view: they are closed-form expressions and are built
on the product of PDFs, each of which can be computed
locally at each sensor site. However, it is important to have
some theoretical guarantees for these approximations. This
is important on its own, but it is also motivated by the fact
that no closed-form or even infinite series expressions are
available for the exact joint PDF of E under H1. Notice
that even in the case where an infinite series expression is
available for the mentioned joint PDF, as for a particular
case of the considered problem [23], the fact that E is an
N-dimensional vector, where the amount of sensor nodes N
is typically large, poses numerical issues for its computation.
Moreover, understanding how good these approximations
are for a given value of M permits to choose a proper
energy scaling β(M). Our main interest will be to obtain
a meaningful bound for supE∈RN≥0

|p1(E|h) − p̂1(E|h)| as a
function of M. This is loosely connected to the idea of a
local limit result [38] for the true density p1(E|h) when
M → ∞. However, some differences are worth noting.
In the first place, we are not interested in the limit of
p1(E|h) or p̂1(E|h) when M → ∞ (which could not even
be well defined). We are only interested in computing how
well these two expressions match when M is large. That
is, we want some estimate on the rate at which these two
expressions get closer. In the second place, under H1, and
for each n ∈ [1 : N], En ≡ 1

β(M)‖yn‖2 is not the sum of
independent random variables as the components of each yn
are dependent. Most results available in the literature about
local limit theorems, or even limit theorems for distribution
functions (like the celebrated Berry-Essen Theorem [39])
are restricted to the independent and identically distributed
case. It should be clear that obtaining meaningful bounds
on supE∈RN≥0

|p1(E|h) − p̂1(E|h)| could be more difficult
or would require stronger technical conditions that getting
similar results but for the distribution functions. However,
optimal LRTs depend on the PDFs under both hypotheses,
and not on the distribution functions. For this reason, we will
study the term supE∈RN≥0

|p1(E|h)− p̂1(E|h)|. In our case, we
will exploit the structure of the CFs given by (5) and (10).

From the fact that a PDF can be written as the N-
dimensional inverse Fourier transform of its CF, we can
easily get for all E ∈ R

N
≥0:∣∣p1(E|h)− p̂1(E|h)∣∣ ≤ 1
(2π)N

∫
RN

∣∣�1(ω|h)− �̂1(ω|h)∣∣dω,
(19)

from which we conclude that the L1 distance between
the CFs �1(ω|h) and �̂1(ω|h) is an upper bound for
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supE∈RN≥0
|p1(E|h)− p̂1(E|h)|. Let us define:

zm(ω) ≡ j
λm

β(M)

N∑
n=1

|hn|2ωn
1 − j σ

2
v ωn
β(M)

, m ∈ [1 : M]. (20)

Using (5) and (10), we can write:

∣∣∣�1(ω|h)− �̂1(ω|h)
∣∣∣ ≤

N∏
n=1

∣∣∣1 − j
σ 2
v ωn

β(M)

∣∣∣−M

×
∣∣∣ M∏
m=1

1

1 − zm(ω)
−

M∏
m=1

ezm(ω)
∣∣∣.

(21)

The following lemma is a consequence of the fact that
Re(zm(ω)) ≤ 0 for all ω ∈ R

N and m ∈ [1 : M]. and it is
proved in Appendix C:
Lemma 3: Let zm(ω), m ∈ [1 : M] defined in (20). Then

for all ω ∈ R
N :∣∣∣∣∣

M∏
m=1

1

1 − zm(ω)
−

M∏
m=1

ezm(ω)
∣∣∣∣∣

≤
M∑
m=1

min
{

2,
∣∣∣1 − zm(ω)− e−zm(ω)

∣∣∣} (22)

The following lemma is important because it allows us
to quantify the error on the first-order Taylor expansion of
e−z given by 1 − z when Re(z) ≤ 0. We want to emphasize
that as we are considering a Taylor expansion of an analytic
complex valued function special care has to be taken to
estimate the remainder of the expansion. The fact that the
value z where we are computing the approximation is in
a specific region of the complex plane allows us to obtain
better estimates of the remainder. The proof can be found
in Appendix D.
Lemma 4: Consider z ∈ C such that Re(z) ≤ 0. Then:

|1 − z− e−z| ≤ |z|2e−Re(z) (23)

At this point we can combine the results from
Lemma 3 and 4 to get:∣∣∣∣∣

M∏
m=1

1

1 − zm(ω)
−

M∏
m=1

ezm(ω)
∣∣∣∣∣

≤
M∑
m=1

min
{

2, |zm(ω)|2e−Re(zm(ω))
}
. (24)

It is easy to show that maxm∈[1 : M](− infω∈RN Re(zm(ω))) =
λmax
σ 2
v

∑N
n=1 |hn|2 where λmax is the maximum eigenvalue of

�s. Then, from (24) we can get:∣∣∣∣∣
M∏
m=1

1

1 − zm(ω)
−

M∏
m=1

ezm(ω)
∣∣∣∣∣

≤ min

{
2M, e

λmax
σ2
v

∑N
n=1 |hn|2 M∑

m=1

|zm(ω)|2
}
. (25)

Using (20), the term
∑M

m=1 |zm(ω)|2 can be bounded as:

M∑
m=1

|zm(ω)|2 =
M∑
m=1

∣∣∣∣∣∣ j
λm

β(M)

N∑
n=1

|hn|2ωn
1 − j σ

2
v ωn
β(M)

∣∣∣∣∣∣
2

≤ δ(h)M
β2(M)

N∑
p=1

N∑
r=1

|ωp||ωr|√
1 + σ 4

v ω
2
p

β2(M)

√
1 + σ 4

v ω
2
r

β2(M)

,

where δ(h) ≡ λ2
max maxn∈[1 : N] |hn|4. In this way we can

bound (25) as:∣∣∣∣∣
M∏
m=1

1

(1 − zm(ω))
−

M∏
m=1

ezm(ω)
∣∣∣∣∣

≤ min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2M, δ
′(h)M
β2(M)

N∑
p=1

N∑
r=1

|ωp||ωr|√
1 + σ 4

v ω
2
p

β2(M)

√
1 + σ 4

v ω
2
r

β2(M)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(26)

where δ′(h) ≡ δ(h)e
λmax
σ2
v

∑N
n=1 |hn|2

. At this point we can
proceed integrating (21) using the bound in (26). The next
theorem, whose proof is in Appendix E, follows:
Theorem 1: The maximal error between p1(E|h) and

p̂1(E|h) can be bounded as:

sup
E∈RN≥0

|p1(E|h)− p̂1(E|h)|

= O
(

min

{
βN (M)

M
N
2 −1

, δ′(h)β
N (M)

M
N
2

})
. (27)

From the above theorem we can obtain the following
conclusions for the two scenarios we are considering:

1) SLOW FADING SCENARIO

WhenM sufficiently large the second term in the RHS in (27)
is the tighter term. We see that for supE∈RN≥0

|p1(E|h) −
p̂1(E|h)| → 0 when M → ∞ for every value of h, we need
β(M)

M
1
2

→ 0. This means that β(M) = M1/2−ε for 0 < ε < 1/2

would be a valid choice. With this choice we get:

sup
E∈RN≥0

|p1(E|h)− p̂1(E|h)| = δ′(h)O
(

1

MNε

)
(28)

which means that the approximation is exponentially fast
in N, the size of the network.

2) FAST FADING SCENARIO

In this case we should proceed with more care. We need
to consider a bound on supE∈RN≥0

|E[p1(E|h)]−E[p̂1(E|h)]|.
We can write:

sup
E∈RN≥0

|E
[
p1(E|h)

]
− E

[
p̂1(E|h)

]
|

≤ E

⎡
⎣ sup
E∈RN≥0

|p1(E|h)− p̂1(E|h)|
⎤
⎦. (29)
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At this point we can use (27). As the second term in the

RHS of (27) includes the term e
λmax
σ2
v

∑N
n=1 |hn|2

, the simplest
way to guarantee a non-trivial bound, independent of the
channel gains distribution, is to use the first term in the RHS
of (27). We obtain:

sup
E∈RN≥0

|E
[
p1(E|h)

]
− E

[
p̂1(E|h)

]
| = O

(
βN(M)

M
N
2 −1

)
. (30)

Clearly choosing β(M) = M1/2−ε with 1
N < ε < 1/2 − 1

N
we have:

sup
E∈RN≥0

|E
[
p1(E|h)

]
− E

[
p̂1(E|h)

]
| = O

(
1

M
N
(
ε− 1

N

)
)
. (31)

Remark 4: We see that in the fast fading scenario there
is a small penalty in the possible rate of convergence of the
maximal error of the approximation. This penalty decrease
with the network size. It is worth to mention that this
penalty appears because of the way we use (27) in (29). A
more thoughtful use of (27) or even a direct treatment of
supE∈RN≥0

|E[p1(E|h)]−E[p̂1(E|h)]| using similar arguments
to those in Appendix E will surely lead to a better scaling
and even one without any penalty with respect to the slow
fading case. However, the result obtained is already sufficient
for us and an improvement of this result is out of scope for
the present paper.

V. PROPOSED TEST STATISTICS
In this section, we define two test statistics for the slow
and fast fading scenarios, using the approximations to the
joint PDF presented in Sections III-B and III-C, respectively.
Those expressions depend on parameters that are typically
unknown for the setup at hand, as for example, the power of
the transmitting source, the channel gains in the slow fading
case and the channel variance in the fast fading case.5 This
fact prevents the implementation of the LRT. In addition,
the uniformly most powerful test (UMPT) [10] typically
does not exist for problems with multidimensional unknown
parameters as in the case of this work. Therefore, we resort to
the GLRT [10], where the unknown parameters are estimated
using the maximum likelihood estimator. We will consider
the special case in which �s,l ≡ �s for every l = 1, . . . ,L.
That is, during the L measurement windows the statistical
properties of the source signal are invariant.

A. APPROXIMATE GLRT FOR THE SLOW FADING
SCENARIO
In the slow fading case, we assume that the channel gains
between the source position and the sensors are invariant
during the L measurement windows. Therefore, we have that

5. The value of the noise variance σ 2
v is also usually not known. However,

it can be easily estimated under source silence periods to obtain a constant
false alarm rate test. For this reason, it will be assumed to be known.

hn,l = hn for every n = 1, . . . ,N and l = 1, . . . ,L. We
define cn ≡ Tr(�s)|hn|2 for n = 1, . . . ,N leading to the test:

T̃GLRT-SF(E1, . . . ,EL) =
N∑
n=1

L∑
l=1

log

(
p̃1
SF

(
En,l; ĉn

)
p0
(
En,l
)
)

H1
≷
H0

τ,

(32)

where, from (12), we define:

p̃1
SF

(
En,l; cn

) ≡ β(M)

σ 2
v

exp

[
−β(M)

σ 2
v

(
En + cn

β(M)

)]

×
(
β(M)En
cn

)M−1
2

IM−1

(
2

σ 2
v

√
β(M)cnEn

)
(33)

and ĉn ≡ arg maxcn≥0
∑L

l=1 log p̃1
SF(En,l; cn). We used the

fact that the unknown parameters are positive and only affect
the energy measurements under H1. The PDF p0(En,l) is
given by:

p0(En,l) ≡
(
β(M)

σ 2
v

)M EM−1
n

(M − 1)!
exp

(
−β(M)En

σ 2
v

)
. (34)

The threshold τ is given by the desired probability of false
alarm Pfa depending only on the distribution of the test under
H0 (and independent of the unknown parameters under H1)

and its computed by Monte Carlo simulations using (34).

B. APPROXIMATE GLRT FOR THE FAST FADING
SCENARIO
In the fast fading case, we assume that the channel statistics
between the source position and the sensors are invariant
during the L measurement windows. Therefore, we have that
σ 2
n is constant during the whole sensing time. We define
dn ≡ Tr(�s)σ

2
n for n = 1, . . . ,N leading to the test:

T̃GLRT-FF(E1, . . . ,EL) =
N∑
n=1

L∑
l=1

log

⎛
⎝ p̃1

FF

(
En,l; d̂n

)
p0
(
En,l
)

⎞
⎠ H1

≷
H0

τ,

(35)

where, from (18), we define

p̃1
FF
(
En,l; dn

) ≡ β(M)


(M − 1)

(
σ 2
v + dn

)M−2

dM−1
n

× exp

(
−β(M)En
σ 2
v + dn

)
γ

(
M − 1,

β(M)dn
σ 2
v
(
σ 2
v + dn

)En
)

and d̂n ≡ arg maxdn≥0
∑L

l=1 log p̃1
FF(En,l; dn). As in the

previous case, we used the fact that the unknown parameters
are positive and only affect the energy measurements under
H1. The PDF p0(En,l) is defined in (34). Again, the threshold
τ is determined numerically by the desired Pfa using (34).
Remark 5: Both statistics T̃GLRT-FF(E1, . . . ,EL) and

T̃GLRT-SF(E1, . . . ,EL) need to be implemented by the
network in order to make a decision about the presence
or not of the source signal. In any of the two network
architectures (with or without FC) shown in Fig. 1, the
sensor nodes need reporting communication channels for
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TABLE 1. Selected parameters for the simulation setup.

building the statistics. In both cases, the sensor nodes
compute the corresponding inner sum over index l in (32)
and (35). Then, in the case of a network with a FC, the
nodes communicate those quantities to the FC, where the
outer sum over n in (32) and (35) is computed. In the case
of a network without a FC, an average consensus algorithm
(e.g., see [11], [40]) can be used to compute the outer
sum cooperatively among the nodes via messages exchanges
between the nodes. Once the statistics are computed, the
decision is made. In this work, given that our main focus is
on how to obtain a closed-form approximation of the joint
density, and its use to compute the Neyman-Person test, we
assume error-free communication channels6 in each of the
network architectures. Channel impairments, as considered
for example in [18], [41], [42], [43], are left for future works.
More importantly, the approximate factorization of the joint
PDF proposed in (12) and (18) allows us to also factorize
the LRT in (3) through the spatial index n, and efficiently
compute the statistics in a distributed scenarios (with or
without FC), as explained before, using communication
resources only for computing the outer sum over n.

VI. NUMERICAL RESULTS
In this section, we first assess the theoretical bounds
presented in Section IV, and then compute the performance
of the algorithms GLRT-SF and GLRT-FF proposed in the
previous section.

A. THEORETICAL BOUNDS ASSESSMENT
Next, we numerically evaluate the theoretical bounds for
the error approximation of the joint PDF of the energy
measurements given in (28) and (31). Given that the true joint
PDF of the energy measurements are unknown for the two
considered scenarios (fast and slow fading), we numerically
compute the bound in (19) based on the true characteristic
functions of the corresponding joint PDFs. The right hand
side (RHS) of (19), which involves a multidimensional
integral, is computed via Monte Carlo simulations with 107

trials. On the other hand, as the theoretical bounds (28)
and (31) are expressed in terms of the big-O notation,
they do not provide the positive proportional constant of
the bounds. Therefore, we are here interested in comparing
the slopes of the curves. The bounds are plotted in Fig. 2
in semi-log graphs. The scenario parameters are selected
as in the following section for the Gaussian source, with
SNR = 10 dB and ε = 1

4 (see also Table 1 for other
relevant parameters). These curves verify that the error
approximation of the joint PDF of the energy measurements
decays exponentially with the number of nodes N. The

6. We also do not consider the quantization procedure needed in digital
communication schemes.

FIGURE 2. Evaluation of the joint PDF approximation error bounds for slow and fast
fading.

slightly difference in the slopes in each scenario can be
explained in terms of the bounding techniques used in the
derivation of the bounds, which are not tight. However, it
is clear that the approximation proposed is very good for
reasonable values of M and N.

B. PERFORMANCE ANALYSIS OF GLRT-SF AND
GLRT-FF
We consider the problem presented in Section II for both
slow fading and fast fading scenarios. This problem can be
motivated by a cooperative spectrum sensing application,
where a set of secondary nodes senses a frequency band
reserved to a primary user. The main idea is that, if the
primary user is not using the band, then the secondary users
could use it. As the primary user has priority in using
this band, it is very important to have a robust detection
procedure to avoid interference from the secondary user
to the primary one. The slow and fast fading scenarios
can model situations in which secondary nodes and/or
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the primary user are stationary or moving terminals. The
numerical performance of each algorithm is computed using
104 Monte Carlo runs. The data is generated following the
model in (2). The channel variance σ 2

n , which is equal to the
quotient between the received power (without considering
the noise) and the transmitted power, is modeled using the
path-loss/log-normal shadowing model [44],

σ 2
n (dB) = K − 10α log10(dn/d0)− ηn, (36)

where dn is the distance between the source position and the
n-th node position, K (in dB) is the path-loss attenuation at
a certain distance d0, α is the path-loss exponent, and ηn is a
zero-mean Gaussian random variable with variance σ 2

η which
models the shadowing effect. In both slow and fast fading
scenarios, the large-scale shadowing effect is assumed to be
the same for all the sensing intervals, i.e., the variance (36)
remains constant in the whole sensed interval. Then, for
each Monte Carlo run, σ 2

n is sampled following (36). Thus,
we obtain the average performance of the algorithms with
respect to network channel variance distribution (induced by
the source-node distance distribution, to be defined next, and
the path-loss/shadowing model).
The channel gains are determined as follows. In the slow

fading case, it is assumed that the source and the sensors
are static, so the channel gains {hn}Nn=1 (which are the
same for all time-windows l ∈ [1 : L]) are i.i.d. sampled
from the PDF CN (0, σ 2

n ) for each Monte Carlo run. On
the other hand, in the fast fading scenario, it is assumed
that the source and the sensors move, experiencing different
small-scale fading realizations. This is modeled by sampling
the channel gains {hn,l}N,Ln=1,l=1 i.i.d. (in both sensor index
n and time-window index l) from the PDF CN (0, σ 2

n ),
n ∈ [1 : N], for each Monte Carlo run. In both slow and
fast fading, the channel amplitudes are Rayleigh distributed,
a model representative of non-line-of-sight propagation
scenarios.
The chosen parameters for the simulation setup are shown

in Table 1. The selected propagation model parameters (K,
α, d0 and ση) are typical for outdoors scenarios [44, Ch. 2].

The signal-to-noise ratio is defined by SNR ≡
√
MPsσ̄ 2

WN0
,

where σ̄ 2 is the average variance of the channels (36) across
the nodes. Notice that the source power Ps = Tr(�s)/T will
be varied to be consistent with the corresponding SNR. The
covariance matrix �s is set to be a Toeplitz matrix with first
row PsT

M [1, ρ, . . . , ρM−1], where ρ = 0.5.
The source is assumed to be at (0, 0) m, and the

location of each node in the plane (x, y) is determined
by x = dn cos(ζn) and y = dn sin(ζn). The distance
between the source and the n-th node dn is assumed to
be independently uniformly distributed in the log-scale,7

i.e., log10(dn/d0) ∼ U[ log10(800m/d0), log10(8000m/d0)],

7. The nodes distribution is selected such that nodes sensing relatively
high power in a given frequency band wish to cooperate for detecting the
source. This fits well in spectrum sensing schemes where cooperative nodes
get some revenue for lending their sensing capabilities, as in [45].

FIGURE 3. One realization of the sensor network for N = 100 sensors represented
with black dots. The source is depicted with a red triangle.

and ζn is i.i.d. randomly selected from the uniform
distribution U[0, π ]. In Fig. 3, we show a realization of
the sensor network. The computation of the MLE in (32)
and (35), needed for implementing both GLRT-SF and
GLRT-FF algorithms, cannot be done through a closed form
formula. So, we need a numerical procedure for solving this
one-dimensional nonlinear problem with a bound constraint
(the positiveness of the parameters cn and dn) at each
node. We use here a trust-region algorithm [46] for which,
depending on the scenario (fundamentally on the SNR) and
the stopping criteria parameters (e.g., gradient tolerance and
step tolerance), it typically takes 5-10 iterations to converge
to a local maximum.
We compare the performance of the proposed algorithms

against the ones shown in Table 2 (see the definitions
of the acronyms in the third column). The CSI-SF and
CSI-FF detectors are the version of GLRT-SF and GLRT-
FF, respectively, for which the parameters of the channel
(channel state information, CSI) and the source are perfectly
known. These statistics, of course, are unrealizable in
practice and they are included only as a reference for
the comparison. Note that some performance loss of the
GLRT-based algorithms is expected with respect to these
genie-aided test statistics given the estimation errors of the
unknown parameters.
In Table 2, we also include the computational complexity

of the test statistics considered in our simulations. It is
straightforward to see that MD, SD, SC and SSC have
complexity O(NL). Both ME and SSC require the compu-
tation of the eigenvalues of the sample covariance matrix
of energy measurements at the nodes. This is computational
demanding, requiring O(N3) computations [47]. The cost
of constructing the sample covariance matrix is O(N2L).
Therefore, the total computational complexity of these
algorithms is O(N2(N + L)). The complexity for the genie-
aided cases CSI-SF and CSI-FF in which the parameters cn
and dn are known is O(NL). When those parameters are
unknown, GLRT-SF and GLRT-FF estimate them. Then, we
need to add the cost of estimating the unknown parameters
cn and dn by a maximization procedure. It is important to
note that the problem of obtaining the N optimal values
of cn or dn can be decomposed into N scalar optimization
problems, which are obviously significantly less complex
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than a single N−dimensional optimization problem. This
is a consequence of the factorized PDF obtained by our
approximations. In our case, we used a trust-region algorithm
which is based on the conjugate gradient method. This is an
iterative method whose complexity depends on the accuracy
required for the solution. It is known that if a tolerance of ξ
is the solution required, the worst-case complexity is O(ξ−υ)
where υ ∈ [1, 2] depending on the properties of the function
to be optimized [48]. In practice, the average complexity
seems to be significantly lower. In our experience, for the
problem considered in this paper and as explained above,
the convergence to a local maximum was very fast, and the
complexity of both GLRT-SF and GLRT-FF is dominated by
O(NL).

The test statistic MD is the mean detector, i.e., the
average of all network measurements, and is equivalent to
the equal gain combining (EGC), typically used in low SNR
regimes [49]. The test statistic SD is the square detector.
We also include two eigenvalue-based detectors (ME and
SSE) which are typically used in the present scenario.
These detectors naturally consider the statistical dependence
of the observations under H1 at different sensor nodes,
introduced by the random signal source, given that they are
based on the eigenvalues {λn}Nn=1 of the sample covariance
matrix of the observations {El}Ll=1. Nevertheless, judging
by the analysis in the previous section, and the following
numerical results, the statistical dependence appears to have
a negligible impact in the detectors’ performance when
considering energy observations. Finally, we also include
the SC detector [28], which selects the highest average
measured energy among all the sensors, and the SSC
detector [34].

In Fig. 4 and 5 (top figures), we plot the complementary
receiver operating characteristic (CROC), i.e., the miss
detection probability against the false alarm probability (both
defined in Section II), for the algorithms in Table 2, in the
slow fading and the fast fading scenario, respectively, for
the indicated SNRs. Additionally, in the respective bottom
figures, we plot the miss detection probability against the
SNR, when Pfa = 10−2. As expected, the genie-aided test
statistics outperform the rest of the algorithms. Among the
test statistics capable of being implemented in practice,
GLRT-SF and GLRT-FF, achieve the best performance for
each scenario. These gains seem to increase for large
values of SNRs. This is important, because among the other
methods there are some that explicitly exploit information
about spatial correlation (as ME and SSE) and others that
do not (as MD and SC). In addition, the proposed detectors
demand similar communication resources to the simplest
ones, and provide better performance than the ones that
make use of the spatial correlation information among
the nodes and also demand more network communication
resources [35].

Finally, in Fig. 6, we also consider a case where the source
signal is not Gaussian but a OFDM signal. We consider

FIGURE 4. Performance of the algorithms for slow fading channels. Top:
Complementary receiver operating characteristics for SNR = −18dB (left) and SNR
= −9dB (right). Notice that on the right plot, the CSI-SF curve is not seen because it
falls outside below the range shown. Bottom: Miss detection probabilities vs SNR for
false alarm probability Pfa = 0.01.

a NB-IoT and LTE-M scenarios, where typical small FFT
sizes are used, such as 12 or 24, to allow for narrower
subcarrier spacing and more efficient transmission of low-
rate IoT data [52]. Notice that also a setting with such a small
OFDM symbol length M is interesting as can be thought as
a limiting case to our assumption that M ≈ WT is large. In
particular, in our case, the number of subcarriers is set to 12
(a resource block in Long Term Evolution cellular systems)
and the cyclic prefix is defined to be 3 samples. Then, the
OFDM symbol has a length of M = 15. We consider a
64-QAM as the subscarriers modulation. We can see that
similar conclusions as for the Gaussian signal can be drawn,
which validates the theoretical approach used in this work
for this particular setup.

VII. CONCLUDING REMARKS
We have considered the problem of energy-based distributed
detection of a stochastic Gaussian radio source signal, for
which the measurements at each sensor node present spatial
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TABLE 2. Test statistics to be compared with GLRT-SF and GLRT-FF. † are
genie-aided detectors.

and temporal correlation. Using the closed-form expression
for the CF of the joint PDF of the energy measurement
at each sensor site, we computed an approximation of the
joint PDF (when the source signal is present), under the
assumption of a large time-bandwidth product, and for both
wireless scenarios of common interest: slow and fast fading.
We also provided two deviation bounds for the obtained
approximation respect to the true intractable joint PDF. These
bounds prove to be exponential on the number of nodes
in the network. The bounds indicate that the spatial and
temporal correlation of the measurements at each node site
are not extremely critical given that the exact joint PDF
can be tightly approximated by a factorized PDF. These
PDF approximations were used to implement likelihood
ratio tests that show performance gains with respect to
other usual schemes typically used in practice. Moreover,
the product nature of the obtained PDF was shown to be
valuable in implementing simpler cooperative schemes in
distributed scenarios. It also can be an asset for designing
simple quantization schemes relying on the local PDF at each
node in order to cope, among other things, with the usual
reporting channel impairments between the nodes and/or the
FC. Another possible line of work could include the use
of the approximation to analyze the outage probability of
different receiving techniques of large MIMO systems with
correlation on the transmitter and receiver antennas (see
for example the results in [23] and [24]). The application
of the obtained results for characterizing performance of
distributed radar systems [53], can also be explored in the
future.

FIGURE 5. Performance of the algorithms for fast fading channels. Top:
Complementary receiver operating characteristics for SNR = −12dB (left) and SNR
= −9dB (right). Notice that on the right plot, the CSI-FF curve is not seen because it
falls outside below the range shown. Bottom: Miss detection probabilities vs SNR for
false alarm probability Pfa = 0.01.

APPENDIX A
PROOF OF LEMMA 1
We can write (under both hypotheses H0 and H1):

�(ω|h) = E

[
e j

1
β(M)

∑N
n=1 ωn‖yn‖2]

. (37)

Assuming that �s = Q�QH where Q is unitary and
� = diag(λ1, λ2, . . . , λM) with λm the m-largest positive
eigenvalue of �s, we can define ỹ ≡ (IN ⊗ Q)y. It is
immediate to see that under H0, ỹ ∼ CN (0, σ 2

v INM) and
under H1, ỹ ∼ CN (0,hhH ⊗ � + σ 2

v INM). Moreover, we
have that

�(ω|h) = E

[
e j

1
β(M)

∑N
n=1 ωn‖ỹn‖2] = E

[
e j

1
β(M) ỹ

HAω ỹ
]
, (38)

where we have used that Q preserves the norm and with
Aω = diag(ω1, ω2, . . . , ωN)⊗IM . As under both hypotheses,
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FIGURE 6. OFDM signal: Performance of the algorithms for slow fading channels
when the source follows an OFDM modulation. Top: Complementary receiver
operating characteristics for SNR = −12dB (left) and SNR = −9dB (right). Notice that
on the right plot, the CSI-SF curve is not seen because it falls outside below the range
shown. Bottom: Miss detection probabilities vs SNR for false alarm probability
Pfa = 0.01.

ỹ is a complex and circular Gaussian random vector, it is
easy to obtain that under H0:

�0(ω|h) =
N∏
n=1

1(
1 − jωnσ

2
v

β(M)

)M . (39)

Under H1 we obtain:

�1(ω|h) = 1∣∣∣INM − j (
hhH⊗�+σ 2

v INM)Aω

β(M)

∣∣∣ (40)

Note that we can write:(
hhH ⊗ �

)
Aω =

(
hhHdiag(ω1, ω2, . . . , ωN)

)
⊗ �, (41)

where we have used that (A ⊗ B)(C ⊗ D) = (AC)⊗ (BD).
Consider now the commutation matrix KN,M [54]. This
matrix is a permutation matrix of size NM×NM with several
interesting properties. The one we need is the following: for
square matrices A ∈ C

N×N , B ∈ C
M×M , we have A ⊗ B =

KN,M(B⊗A)KT
N,M . Using this matrix and the result of (41)

we can express INM − j (hh
H⊗�+σ 2

v INM)Aω

β(M) as:

KN,M

(
INM − j

� ⊗ (hhH�
)+ σ 2

vK
T
N,M(� ⊗ IM)KN,M

β(M)

)

× KT
N,M,

where we have defined � = diag(ω1, ω2, . . . , ωN). In first
place note that, as KT

N,M = KM,N , KT
N,M(� ⊗ IM)KN,M

transforms into IM ⊗ �. In second place, the matrix � ⊗
(hhH�) is a block-diagonal matrix with diagonal blocks
given by λmhhH� with m = 1, . . . ,M. As a consequence,
and using the fact that |KN,M||KT

N,M| = 1, (41) can be put
as:

�1(ω|h) = 1∏M
m=1

∣∣∣IN − j σ
2
v �

β(M) − jλmhh
H�

β(M)

∣∣∣ . (42)

Finally, using the fact that |A + uvH| = |A|(1 + vHA−1u),
for every invertible matrix A and vectors u, v of appropriate
size, we get:

�1(ω|h) =
∏M

m=1

∣∣∣IN − j σ
2
v �

β(M)

∣∣∣−1

∏M
m=1

(
1 − j λm

β(M)h
H
(
IN − j σ

2
v �

β(M)

)−1
h
) . (43)

As � is a diagonal matrix we can easily get the result of
the Lemma.

APPENDIX B
PROOF OF LEMMA 2
As p̂1(E|h) in (12) is product PDF and the channel gains
are independent we can write:

E

[
p̂1(E|h)

]
=

N∏
n=1

∫ ∞

0
p̂1
(
En||hn|2

)
pn
(
|hn|2

)
d|hn|2, (44)

where

p̂1
(
En||hn|2

)
= β(M)

σ 2
v

exp

[
−β(M)

σ 2
v

(
En + Tr(�s)|hn|2

β(M)

)]

×
(

β(M)En
Tr(�s)|hn|2

)M−1
2
IM−1

(
2
σ 2
v

√
β(M)Tr(�s)|hn|2En

)
,

for n ∈ [1 : N]. Then, we need only to consider the
computation of:

E

[
p̂1
(
En||hn|2

)]
=
∫ ∞

0
p̂1
(
En||hn|2

)
pn
(
|hn|2

)
d|hn|2 (45)

Let us define the CF ψ̃1
n (ωn) of E[p̂1(En||hn|2)] with n ∈

[1 : N]. Using Fubini’s Theorem [55] we can write:

ψ̃1
n (ωn) =

∫ ∞

0
E

[
p̂1
(
En||hn|2

)]
e jωnEndEn

=
∫ ∞

0

[∫ ∞

0
p̂1
(
En||hn|2

)
e jωnEndEn

]
pn
(
|hn|2

)
d|hn|2

= E

[
ψ̂1(ωn|hn)

]
(46)
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where ψ̂1(ωn|hn) was defined in (11). It is easy to show
that E[ψ̂1(ωn|hn)] has a closed form when pn(|hn|2) is as
in (17):

ψ̃1
n (ωn) = 1(

1 − j σ
2
v ωn
β(M)

)M−1

1(
1 − jσ

2
v +Tr(�s)σ 2

n
β(M) ωn

) . (47)

Notice that ψ̃1
n (ωn) is the product of two well-known CFs.

In first place, the first term in the RHS of (46) is the CF

of a Gamma distribution with shape M − 1 and scale σ 2
v

β(M) .
Similarly, the second term in the RHS of (46) is the CF of

an exponential distribution with scale parameter σ
2
v +Tr(�s)σ

2
n

β(M) .
Clearly the PDF E[p̂1(En||hn|2)] which corresponds to the
CF ψ̃1

n (ωn) is the convolution of the above described pdfs.
The calculation can be easily done to obtain for each n ∈
[1 : N]:

E

[
p̂1
(
En||hn|2

)]
= β(M)


(M−1)

(
σ 2
v +Tr(�s)σ

2
n
)M−2

(Tr(�s)σ 2
n )

M−1

× exp
(
− β(M)En
σ 2
v +Tr(�s)σ 2

n

)
γ
(
M − 1, β(M)Tr(�s)σ

2
n

σ 2
v (σ 2

v +Tr(�s)σ 2
n )
En
)
,

where γ (α, x) ≡ ∫ x
0 t
α−1e−tdt, α, x ≥ 0 is the incomplete

Gamma function. The final result can be easily obtained
from here.

APPENDIX C
PROOF OF LEMMA 3
As Re(zm(ω)) ≤ 0 for all ω ∈ R

N and m ∈ [1 : M] we have:∣∣∣∣ 1

1 − zm(ω)

∣∣∣∣ ≤ 1,
∣∣∣ezm(ω)∣∣∣ ≤ 1,∀ω ∈ R

N, m ∈ [1 : M].

(48)

We can write:
M∏
m=1

1
1−zm(ω) −

M∏
m=1

ezm(ω) =
(

1
1−zM(ω) − ezM(ω)

)

×
M−1∏
m=1

ezm(ω) + 1
1−zM(ω)

(
M−1∏
m=1

1
1−zm(ω) −

M−1∏
m=1

ezm(ω)
)
.

(49)

Using (48) we obtain:∣∣∣∣∣
M∏
m=1

1

1 − zm(ω)
−

M∏
m=1

ezm(ω)
∣∣∣∣∣ ≤

∣∣∣∣ 1

1 − zM(ω)
− ezM(ω)

∣∣∣∣
+
∣∣∣∣∣
M−1∏
m=1

1

1 − zm(ω)
−

M−1∏
m=1

ezm(ω)
∣∣∣∣∣. (50)

Repeating this argument M times we get:∣∣∣∣∣
M∏
m=1

1

1 − zm(ω)
−

M∏
m=1

ezm(ω)
∣∣∣∣∣ ≤

M∑
m=1

∣∣∣∣ 1

1 − zm(ω)
− ezm(ω)

∣∣∣∣
(51)∣∣∣∣ 1

1 − zm(ω)
− ezm(ω)

∣∣∣∣ ≤ 2. (52)

Also, using (48) we can write:∣∣∣∣ 1

1 − zm(ω)
− ezm(ω)

∣∣∣∣ =
∣∣∣∣ 1

1 − zm(ω)

∣∣∣∣∣∣∣ezm(ω)∣∣∣
×
∣∣∣1 − zm(ω)− e−zm(ω)

∣∣∣
≤
∣∣∣1 − zm(ω)− e−zm(ω)

∣∣∣. (53)

Then, combining (51), (53) and using that for each m ∈
[1 : M] and ω ∈ R we have | 1

1−zm(ω) − ezm(ω)| ≤ 2, we get
the desired result.

APPENDIX D
PROOF OF LEMMA 4
Consider z ∈ C such as Re(z) ≤ 0 and e−tz with t ∈ [0 : 1].
It is easy to show that:

z
∫ 1

0
e−tzdt = 1 − e−z. (54)

At the same time we have:∣∣∣∣∣
∫ 1

0
e−tzdt

∣∣∣∣∣ ≤
∫ 1

0
e−tRe(z)dt ≤ e−Re(z), (55)

where in the last inequality we used that Re(z) ≤ 0.
Combining the last two equations we get |1 − e−z| ≤
|z|e−Re(z). Similarly, we can write:

z
∫ 1

0

(
e−tz − 1

)
dt = 1 − z− e−z (56)

and from Re(z) ≤ 0 and |1 − e−z| ≤ |z|e−Re(z):∫ 1

0
|e−tz − 1|dt ≤ |z|e−Re(z). (57)

Finally, using (56) and (57) we get the desired result.

APPENDIX E
PROOF OF THEOREM 1
The following bound can be trivially derived:∫

RN

∣∣∣�1(ω|h)− �̂1(ω|h)
∣∣∣dω

≤ min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2M
∫
RN

N∏
n=1

∣∣∣∣1 − j
σ 2
v ωn

β(M)

∣∣∣∣
−M

dω,

δ′(h)M
β2(M)

∫
RN

N∑
p=1

N∑
r=1

∏N
n=1

∣∣∣1 − j σ
2
v ωn
β(M)

∣∣∣−M|ωp||ωr|√
1 + σ 4

v ω
2
p

β2(M)

√
1 + σ 4

v ω
2
r

β2(M)

dω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(58)

We will mainly analyze the second term in the min operator
in the RHS of the above equation. The first term can be
easily analyzed with the same arguments that will be given
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in the following. First notice that the mentioned second term
can be cast as the sum of N2 multidimensional integrals.
Each one of those integrals can be written as:

∫
RN

⎛
⎜⎝ N∏
n=1

1(
1 + σ 4

v ω
2
n

β2(M)

)M/2
⎞
⎟⎠ |ωp||ωr|√

1 + σ 4
v ω

2
p

β2(M)

√
1 + σ 4

v ω
2
r

β2(M)

dω,

(59)

for each p, r ∈ [1 : N]. We need to analyze two cases:

1) CASE 1: P �= R

In this case (59) reduces to:

⎛
⎜⎝∫ ∞

−∞
1(

1 + σ 4
v ω

2

β2(M)

)M/2 dω
⎞
⎟⎠
N−2
⎛
⎜⎜⎝
∫ ∞

−∞
|ω|(

1 + σ 4
v ω

2

β2(M)

)M+1
2

dω

⎞
⎟⎟⎠

2

(60)

2) CASE 1: P = R

In this case (59) reduces to:⎛
⎜⎝∫ ∞

−∞
1(

1 + σ 4
v ω

2

β2(M)

)M/2 dω
⎞
⎟⎠
N−1 ∫ ∞

−∞
ω2(

1 + σ 4
v ω

2

β2(M)

)M+2
2

dω.

(61)

From (60) and (61), we see that the calculation of (58)
depends on the values of 3 different one-dimensional
improper integrals. In first place we consider:∫ ∞

−∞
|ω|(

1 + σ 4
v ω

2

β2(M)

)M+1
2

dω = 2β2(M)

σ 4
v (M − 1)

, (62)

where the final value is easily obtained from simple change
of variables. In second place from [56] (Equation (3.251))
we can obtain8:∫ ∞

−∞
1(

1 + σ 4
v ω

2

β2(M)

)M
2

dω = (M − 3)!!β(M)π

(M − 2)!!σ 2
v

, (63)

and ∫ ∞

−∞
ω2(

1 + σ 4
v ω

2

β2(M)

)M+2
2

dω = (M − 3)!!β3(M)π

(M)!!σ 6
v

, (64)

where n!! for n ∈ N is the double factorial of n. It is well
known that when n = 2l with l ∈ N, then n!! = 2ll! and
when n = 2l − 1, n!! = (2l)!

2ll!
. Using those facts, combining

all the above results, and using Stirling approximation we

8. We assume that M is even. Using complex contour integration we can
obtain results when M is odd. However, as we are interesting in the results
when M is large and in order to save space, we only consider this case.

can obtain the following bound for the second term in the
RHS in (58):

∫
RN

N∑
p=1

N∑
r=1

∏N
n=1

∣∣∣1 − j σ
2
v ωn
β(M)

∣∣∣−M|ωp||ωr|√
1 + σ 4

v ω
2
p

β2(M)

√
1 + σ 4

v ω
2
r

β2(M)

dω

= O
(
βN+2(M)

M
N+2

2

)
, (65)

Finally we can get:

1

(2π)N

∫
RN

∣∣∣�1(ω|h)− �̂1(ω|h)
∣∣∣dω

= O
(

min

{
βN(M)

M
N
2 −1

, δ′(h)
βN(M)

M
N
2

})
. (66)

from which and (19) the desired result follows.
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