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in which f(Xk) is assumed to be observable. Based on this equation a
recursive algorithm called GPOMDP is presented in [1].

If the recurrent state i� is observable, we have the following algo-
rithm (cf. Algorithm 3):

d��

d�
= E

d

d�
p�(Xk; Xk+1)

p(Xk;Xk+1)

u �1

l=k+1

[f(Xl)� �] :

IV. REMARKS AND DISCUSSIONS

Early work on sample-path-based performance gradient estimation
include the PA [18], [6], [13] and the likelihood ratio (LR) [also called
the score function (SF)] methods [15], [16], [22], [23]. PA was first
developed for queueing networks; efficient algorithms have been de-
veloped [17]. The main idea of PA, perturbation realization, was later
extended to performance gradients of Markov systems [7], [8].

Policy gradient [1], [2] is a terminology used in recent years in RL
community for sample-path-based performance gradient estimate of
PA. However, there is a slight difference in their emphases. Most policy
gradient papers focus on developing simulation/online algorithms for
estimating performance gradients. PA, on the other hand, emphasizes
two aspects: deriving performance gradient formulas (those similar to
(2)), and developing estimation algorithms. With the concept of pertur-
bation realization factors, we can flexibly derive sensitivity formulas
for many problems; these formulas are otherwise difficult to conceive
[11]. Sample-path-based algorithms can be developed/designed only
after these performance gradient formulas are derived. The readers can
find some examples of the performance gradient formulas for systems
with special structures in [11]. The basic formula (7) and the general
algorithm (8) presented in this note provide a direction for developing
performance gradient algorithms using the performance gradient for-
mulas.
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A Min-Plus Derivation of the Fundamental
Car-Traffic Law

Pablo A. Lotito, Elina M. Mancinelli, and Jean-Pierre Quadrat

Abstract—We give deterministic and stochastic models of the traffic on
a circular road without overtaking. From this model the mean speed is de-
rived as an eigenvalue of the min-plus matrix describing the dynamics of
the system in the deterministic case and as the Lyapunov exponent of a
min-plus stochastic matrix in the stochastic case. The eigenvalue and the
Lyapunov exponent are computed explicitly. From these formulas, we de-
rive the fundamental law that links the flow to the density of vehicles on the
road. Numerical experiments using the MAXPLUS toolbox of SCILAB con-
firm the theoretical results obtained.

Index Terms—Cellular automata, fundamental diagram, Lyapunov ex-
ponent, max-plus algebra.

I. INTRODUCTION

For simple traffic models a well known relation exists between the
flow and the density of vehicles called fundamental traffic law. This
law has been studied empirically and theoretically using exclusion pro-
cesses (see, for example, [5]–[7], [3], [12], and [8]) and cellular au-
tomata (see [1]).
In this note, we analyze the simplest deterministic and stochastic

traffic models using the so called min-plus algebra. Within this algebra
the equations of the dynamics become linear and the eigenvalue or
the Lyapunov exponent of the corresponding min-plus matrix gives the
mean speed from which we easily derive the density-flow relation.

Manuscript received August 20, 2003; revised April 15, 2004 and July 6,
2004. Recommended by Associate Editor A. Giua.

P. A. Lotito is with the GRETIA-INRETS, 94114 Arccueil, France (e-mail:
pablo.lotito@inria.fr).

E. M. Mancinelli is with the INRIA, 78153 Le Chesnay, Cedex, France, and
also with the CONICET, Argentina (e-mail: elina.mancinelli@inria.fr).

J.-P. Quadrat is with the INRIA, 78153 Le Chesnay, Cedex, France (e-mail:
jean-pierre.quadrat@inria.fr).

Digital Object Identifier 10.1109/TAC.2005.848336

0018-9286/$20.00 © 2005 IEEE



700 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005

The traffic model consists of N cars on a circular road of unitary
length. In the deterministic case all cars want to move at a common
desired given velocity �, and must respect a safety distance of � with
respect to the car ahead. In the stochastic model the cars choose their
velocities randomly and independently between two possible values �
and � (with � < �), respectively with probabilities (�; �). We consider
here only the case where the cars are not allowed to overtake other cars.

First, in the deterministic case, the fundamental law is derived from
the explicit computation of the min-plus eigenvalue of the matrix de-
scribing the dynamics of the system.

Next, we study the stochastic model showing that the average speed
is the Lyapunov exponent of a stochastic min-plus matrix. In general,
it is very difficult to compute a Lyapunov exponent. In our case, it is
possible to characterize completely the stationary regime and from this
characterization to obtain the Lyapunov exponent. The fundamental
traffic law is then easily derived from this result.

The analysis of the deterministic model in terms of eigenvalues of a
maxplus matrix is new, but the model and the results are very close1

to [3]. In [11], more realistic deterministic models are studied. The
state is defined by the vehicle position and its speed instead of only the
position. Nevertheless, we obtain also a typical hat-shaped fundamental
traffic law. This fact suggests that the acceleration is not fundamental
in first order approximations. In fact, in Nagel–Hermann we see that in
the stationary regime, for the parallel updating rule (the one used here),
the system reaches the maximal allowed speed.

The stochastic model proposed is new. Its interest is mainly theo-
retical since the traffic law obtained is a smoothed version of the hat
shape obtained in the deterministic case. The complete analysis can
be done only in the simple case when the speed, which is random,
can take only two values and when the size of the vehicles is zero.
However, numerical experiments show that improving the model of
speeds and giving a nonzero size to the cars has a negligible influence.
Moreover, the analysis in the oversimplified but feasible case used here
is qualitatively very informative. The more realistic stochastic model
of Nagel–Schreckenberg [12] gives the same kind of traffic law, but
the analysis can be done only by numerical experiments. Derrida, in
[5]–[7], gives a complete theoretical analysis of an exclusion stochastic
process modeling of traffic which is different from the one proposed
here (a vehicle is characterized only by its position and can jump ahead
with a given probability if the position ahead is free). In the Derrida
model, the process is ergodic and the invariant probabilistic measure
can be computed explicitly. Here, the process is not ergodic. However,
we can characterize the stationary regimes and determine completely
the invariant measures.

II. DETERMINISTIC MODELLING

We considerN cars moving on a one-way circular road of length 1.
Each car, indexed by n = 1; . . . ; N , has a desired speed �, a size 0,
and must respect a security distance � with the car ahead (N� � 1). A
discrete-time dynamic model is used where, at each unitary time step t,
the driver tries to cover the distance � taking into account that it cannot
overtake the car ahead. The total distance covered at time t by car n is
denoted xtn. In order to determine the dynamics of the system, we have
to know at what precise instant the safety distances have to be verified.
We consider two cases.

i) The move of the driver ahead is anticipated (at time t the
driver n knows the position that will have the car ahead at

1In our model there are no cells, but the Blank’s cell model is also maxplus
linear and can be analyzed by the same method and gives the same traffic law.

time t+ 1). Having in mind that the road is circular and that
its length is one,2 the covered distances are given by

x
t+1
n =

min xtn + �; xt+1n+1 � � ; if n < N

min xtN + �; xt+11 + 1� � ; if n = N:
(1)

ii) The move of the driver ahead is not anticipated. The dis-
tances covered by the cars are

x
t+1
n =

min xtn + �; xtn+1 � � ; if n < N

min xtN + �; xt1 + 1� � ; if n = N:
(2)

For these two models, we will derive a relation between the car den-
sity and the average car flow, that will correspond to the fundamental
traffic law in traffic theory.

III. MIN-PLUS ALGEBRA

To derive the fundamental traffic law we need to compute the
eigenvalue of a min-plus matrix describing the dynamics of the
traffic system. In this section, we present the principal definitions
and properties of the min-plus algebra. The reader is referred to
[2] for an in-depth treatment of the subject. A min-plus algebra is
defined by the set [ f+1g together with the operations min
(denoted by�) and+ (denoted by
). The element " = +1 satisfies
"� x = x and "
 x = " (" acts as zero). The element e = 0 satisfies
e 
 x = x (e is the identity). The main difference with respect to the
conventional algebra is that x � x = x (idempotency). We denote
min = ( [ f+1g;�;
) this structure. min is a special instance

of dioid (semiring with idempotent addition).
This min-plus structure on scalars induces a dioid structure on square

matrices with matrix productA
B, for two compatible matrices with
entries in min, defined by (A
X)ik = minj(Aij+Bjk), where the
unit matrix is denoted E. We associate to a square matrix A a prece-
dence graph G(A) where the nodes correspond to the columns (or the
rows) of the matrixA and the arcs to the nonzero entries (the weight of
the arc (i; j) being the non zero entry Aji). We define jpjw the weight
of a path p in G(A) as the sum of the weights of the arcs composing the
path. The arc number of the path p is denoted jpjl. We will use the three
fundamental results resumed in the following proposition (see [2]).

Proposition 1: Let A be a (N �N)- min-matrix, and C the set of
circuits of G(A). We have the following.

i) If the weights of all the circuits are positive, the equation
x = A
 x� b admits a unique solution x = A� 
 b where
A� = E�A� � � ��AN�1�� � � = E�A�� � ��AN�1.

ii) If G(A) is strongly connected, the matrix A admits a unique
eigenvalue � 2 min:

9 x 2 N
min : A
 x = �
 x with � = min

c2C

jcjw
jcjl

(3)

and the min-plus linear dynamic systemXt+1 = A
Xt is
asymptotically periodic

9T;K : 8k � K : Ak+T = �
T 
 A

k
:

IV. FUNDAMENTAL TRAFFIC LAW IN THE DETERMINISTIC

NONANTICIPATIVE CASE

Using the min-plus notation, the dynamics of the traffic in the non
anticipative case given by (2) may be written in scalar form as follows:

x
t+1
n =

� 
 xtn � (��)
 xtn+1; if n < N

� 
 xtN � (1� �)
 xt1; if n = N:
(4)

2This explains the “+1” in (1) and (2).
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Fig. 1. Precedence graph of A.

In vectorial form, defining Xt = [xt1; . . . ; x
t

N ]0, we have

Xt+1 = A 
Xt (5)

with

A =

� ��
. . .

. . .

. . . ��

1� � �

where the missing entries are ". The precedence graph associated with
A is given in Fig. 1.

In order to use the results given in the Proposition 1, we have to
compute the circuits of the graph. The elementary circuits are the loops,
of weight �, and the complete circuit weighting 1 � N�. Using the
eigenvalue formula (3), the eigenvalue of A is

� = min �;
1�N�

N
: (6)

Considering that the minimal space needed by a car on the road is �,
the car density d is N� divided by the length of the road, taken equal
to 1, therefore, d = N�. The average flow is equal to the car density
times the average speed, that is f = �N�. Then, replacing in (6) we
obtain the fundamental traffic law

f = minf�d; �(1� d)g:

Therefore, using this min-plus model, we find again the results pre-
sented in [3].

V. FUNDAMENTAL TRAFFIC LAW IN THE DETERMINISTIC

ANTICIPATIVE CASE

Using min-plus notation, the dynamics of the traffic in the anticipa-
tive case may be written

Xt+1 = A
Xt+1 �B 
Xt (7)

where

A =

" ��

"
. . .
. . . ��

1� � "

B =

�
. . .

. . .

�

:

This is an implicit system, to obtain an explicit system we have to
computeA� (see Proposition 1-i or [2]). The existence ofA� is verified
if and only if there is no circuit with negative weight in G(A), that is, if
1�N� � 0, which is true by assumption. This condition means that
there is enough place on the road for the N cars. The explicit form of
the equation is

Xt+1 = A� 
B 
Xt: (8)

The mean speed of the cars is the min eigenvalue of A� 
 B which
can be easily verified to be equal to �, therefore in this case, the funda-
mental traffic law is given by f = �d. This is an involved application of
[2, Th. 3.28], nevertheless the result can be guessed without any com-
putation. Indeed, in this deterministic anticipative case, all the cars can
move with speed �, (at the initial time the cars respect the security dis-
tance and they can move all together at speed � respecting the safety
distance).

VI. STOCHASTIC MODELLING

Now, we suppose that at each unitary time step t, each driver n
chooses his desired speed vtn independently and randomly between
f�; �g with probabilities f�; �g; � � �. That is, the random variables
fvtng, with n = 1; . . . ; N and t 2 , are i.i.d. Bernoulli random vari-
ables. We suppose that3: a) � = 0, b) that the safety distance is 0 (this
means that two cars may be in the same position), c) the drivers may
anticipate the move of the car ahead. Then, the dynamics of the system
are given by

xt+1n =
min vtn + xtn; x

t+1
n+1 ; if n < N

min vtN + xtN ; 1 + xt+11 ; ifn = N:
: (9)

This system is still linear in the min-plus algebra but now it is sto-
chastic. Within this algebra, (9) becomes

xt+1n =
vtn 
 xtn � xt+1

n+1; if n < N

vtN 
 xtN � 1
 xt+11 ; if n = N:
(10)

Defining: Xt = [xt1; . . . ; x
t

N ]0

A =

" e
. . .

. . .

. . . e

1 "

Bt = B(vt) =

vt1
vt2

. . .

vtN

where the missing entries are ", we can rewrite the equations more
compactly as

Xt+1 = A
Xt+1 �Bt 
Xt: (11)

In our case, A� is easy to compute

A� =

e e � � � e

1
. . .

...
...

. . .
. . . e

1 � � � 1 e

:

Then

Xt+1 = Ct 
Xt (12)

with Ct = A� 
 Bt.
Using the fact that the matrices Ct are all irreducible (because there

are no zero entries in Ct) we know by [2, Cor. 7.31] that

lim
t

xtn=t = �v 8n

where �v is called the Lyapunov exponent of the stochastic min-plus
matrix C (with (Ct)t2 , independent samples of C).

3Assumption a) is justified by the standard change of variables x = x +
�t ; t = t. Assumption b) allows us to obtain interesting mathematical results.
The more general case (� 6= 0) can be analogously modeled (see Section X)
and numerical experiments have shown that the qualitative results are similar.
Assumption c) is more realistic and can be analyzed mathematically but the non
anticipative case is easier to analyze and gives the same kind of fundamental
car-traffic laws.
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Fig. 2. Evolution of the system with 100 cars and � = 1=3.

Fig. 3. Evolution of the system with 50 cars and � = 0:3.

In general, there is not a known method to compute explicitly the
Lyapunov exponent. Explicit formulas involving computation of ex-
pectations are given in [10], but there is no way to compute explicitly
these expectations. Nevertheless, here we are able to characterize the
stationary regime of Xt. This allows us to compute explicitly the ex-
pectation appearing in �v.

VII. JAM REGIME

In order to represent graphically the system state we use the diagrams
shown on Figs. 2 and 3, where

i) each segment outside the outer ring has a length proportional
to the number of cars in that position;

ii) the black (blue) [respectively, grey (green)] length of seg-
ments between the two rings are proportional to the number
of cars with desired speed 0 [respectively, �].

In Fig. 2, we show the evolution of the system for 100 cars with
speeds 0 and � = 1=3.

In Fig. 3, we show the evolution of the system for 50 cars with speeds
0 and � = 0:3.

Definition 1: We call state the set of positions of the cars on the
circle. We call jam state, a state where the cars are concentrated in
k clusters, possibly empty, where k = d(1=�)e is the upper round
of 1=�. The positions of the clusters are given by f�1; . . . ; �kg with
�i+1 � �i = � for i = 1; . . . ; k � 1. In such a jam state, the distance
between two clusters is � except for at most one pair where the distance
is  = 1�(k�1)�.When 1=� 2 we say that the jam state is regular,
and the distance between all the clusters is �.

Definition 2: When for all t � T the system stays in a jam state we
say that after T the system is in a jam regime.

Proposition 2: A jam state is characterized by �(x) = 0, where

�(x) = min
h=1;...;N

fxj+1 � xjg ; (13)

fxg = x� �
x

�
:

For nonjam states, we have �(x) > 0. Moreover

�(XT ) = 0) �(Xt) = 0 8t � T

that is, after reaching a jam state the system remains in a jam regime.

Proof: It is easy to see that �(x) = 0 for a jam state x. The
question is then to show the converse. Let us suppose that �(x) = 0 by
definition of � there is an h� such that

j 6=h

fxj+1 � xjg = 0

we can suppose without loss of generality that h� = N , then for every
j 6= N; xj+1 � xj is a multiple of �. Defining k = d(1=�)e, and
considering that

1 � xN � x1 =

N�1

j=1

xj+1 � xj

we have that there are at most k� 1 nonzero terms j1; . . . jk�1 which
define the k � 1 cluster in position �1 = xj ; . . . ; �k�1 = xj and
the last cluster k is in position xN . Therefore, the system is in a jam
state.
Suppose the system has reached a jam state. Then, all the clusters are

separated by � except for the clusters h and h+1 which are separated
by . As the cars try to move �, it is easy to see that if the cluster h+1
is not empty, all the clusters will remain at the same relative position. If
that cluster is empty then only the relative positions of clusters h, h+1
and h + 2 will change from �h+1 � �h = ; �h+2 � �h+1 = � to
�h+1 � �h = �; �h+2 � �h+1 = , remaining in a jam state.
The function �(x) can be seen as a sort of distance to a jam regime

and it verifies the following property.
Theorem 1: The sequence t 7! �(Xt) is nonincreasing.
The proof of the theorem is in Appendix 1.
Theorem 2: A jam regime is almost always reached, i.e., with prob-

ability one.
Proof: In order to prove that a jam regime is reachable, we con-

struct a finite sequence of independent events with positive probability
after which the system reaches a jam state. Then, this finite sequence
will appear with probability one in an infinite sequence of events (Can-
telli–Borel).
The dynamics of the system is given by the matrix C(!) =

A�B(v(!)), where B is the diagonal matrix of car desired-speeds
chosen randomly and independently between 0 and �. Let us consider
the matrix Cj associated with the speed (0 � � � 0; �; 0 � � � 0) with � in
position j. All the matrices Cj ; j = 1 � � �N have a strictly positive
probability of occurrence.
Consider the finite sequence of independent events associated to the

following matrix product, where k is the number of clusters

Ck
1C

k
2 ; . . . ; C

k
N�2C

k
N�1:

It is easy to understand why after these events, all the cars are together
in only one cluster. The last car (N) stays at the same position, the
previous car (N � 1) tries to move k times � joining the carN and so
on. At the end, all the cars will be together in only one cluster obtaining
a jam state.
The particular jam state used in the proof, has only the property of

being easily characterized. Other jam states are reachable with a higher
probability.

VIII. STATIONARY CAR DISTRIBUTION

Let us determine the stationary distribution of the population of cars
b = (b1; . . . ; bk) in the k clusters.

Theorem 3: The stationary distribution of b is uniform on the sim-
plex

BN;k = b j b:1 = N; b 2 k
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Fig. 4. Equally probable transitions.

where N is the total number of cars, k is the number of clusters in the
stationary regime and 1 is a k-column vector of 1.

Proof: Let us consider the Markov chain where the states belong
toBN;k having N+k�1

N nodes. Let us show that for each outgoing arc
from a node there is an incoming arc with the same transition proba-
bility (which shows that the transition matrix is bistochastic).

Outgoing: Let us consider the transition from the state b to the state
b0. This state can be written as b0 = b � d + �d where � denotes the
circular shift of a vector, � : d = (d1; . . . ; dk) 7! (dk; d1; . . . ; dk�1)
and d is the leaving cluster vector (this means that there are dj cars that
leave the cluster j to the cluster j+1), this is represented in the second
line of Fig. 4. The probability of that event is

� d � �(b �d ) where �(s) =
0; if s = 0

1; otherwise:

Incoming: We consider now the state b� d+ ��1d from which we
can reach the state b with ��1d as leaving cluster vector (see the first
line of Fig. 4). The probability of this event is

� d � �(b �d +d �d )

but �(bj �dj +dj+1�dj+1) = �(bj �dj) and, thus, it has the same
probability than the corresponding outgoing arc.

To complete the proof, we have to show that the map that associates
to each output arc an input one, is bijective. For that, since the map is
injective, let us show that the number of outgoing arcs from a particular
state b is equal to the number of incoming arcs to this state. The number
of outgoing arcs from b is the number of elements of the set fd j 0 �
d � bg where the order relation is considered componentwise. The
incoming arcs to state b is given by d0 such that there exists a state b0

with b0�d0+�d0 = b and 0 � d � b0, but this implies that 0 � d0 � b.
Therefore, the set of incoming arcs to b is defined by fd0 j 0 � d0 � bg
which has the same cardinality that the set of outgoing arcs from b.

IX. MEAN SPEED COMPUTATION

The knowledge of the distribution of probability of n allows the ex-
plicit computation of the mean speed. We do that in the following the-
orem.

Theorem 4: For the regular case the mean speed �v�(N; k) can be
obtained recursively as

�v�(N + 1; k) =
�

N + k
(1 +N�v�(N; k)) (14)

where �v�(1; k) = ��. Moreover, for large N , we have the asymptotic
result

�v�(N; k) =
�

N�
+ o(1=N): (15)

Proof: Let us compute the mean speed. Consider a cluster, the
first car in the cluster leaves with probability � increasing the mean
speed in ��=N , then the second car leaves this cluster with probability
�2 increasing the mean speed in �2�=N and so on. Then, the mean
speed will be (V ) where

V =

k

s=1

b

j=1

�j
�

N
: (16)

Developing (16), we obtain

V = �
�

N

k

s=1

1� �b

1� �
=

�

�

�

N
k �

k

s=1

�b

and by linearity

�v�(N; k) = (V ) =
�

�

�

N
(k � Sk(N)) (17)

where we have denoted

Sk(N) =

k

s=1

�b : (18)

Using the fact that the probability distribution of b is uniform, we
have that

Sk (N) =

k

s=1

�b =
B

�N;k

k

s=1

�b (19)

where we have denoted �N;k = ( N+k�1
N )�1. Interchanging the sum-

mation order we obtain

Sk(N) = �N;k

N

h=0

k

s=1 B

f�h j bs = hg

= �N;k

N

h=0

k

s=1

N�h+k�2
N�h �h

= k�N;k

N

h=0

N�h+k�2
N�h �h:

Now, for N + 1, we have

Sk(N + 1) = k�N+1;k

N+1

h=0

N+1�h+k�2
N+1�h �h

=
k(k � 1)

N + k
+ k�N+1;k

N

h=0

N�h+k�2
N�h �h+1

=
k(k � 1)

N + k
+

N + 1

N + k
�Sk(N):

Replacing the recursive formula of Sk in (17) we obtain (14). To find
the asymptotic result (15) we remark that Sk(N) goes to 0 when N
goes to1.
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Fig. 5. Flow as a function of the density in the stochastic anticipative case for
a continuation of � when � = �.

Fig. 6. Flow as a function of the density in the stochastic nonanticipative case
for a continuation of � when � = 3�.

As an example we obtain for N = 3 and k = 3 that �v�(3; 3) =
�(6�+ 3�2 + �3)=10, and for N = 4 and k = 4 �v�(4; 4) = �(�4 +
4�3 + 10�2 + 20�)=35.

X. EXTENSIONS AND NUMERICAL RESULTS

The previous analysis of the stochastic model may be done also in
the nonanticipative case. It can be extended to the case where the cars
have a non negligible size �. The models are still stochastic min-plus
linear. For example, in the latter case, we have

xt+1n =
vtnx

t
n � (��)xt+1n+1; if n < N

vtNxtN � (1� �)xt+11 ; if n = N:

Using the formula, obtained, or a simulator using the MAX-PLUS
SCILAB toolbox [14] we can plot the fundamental traffic law in the
different cases; see Figs. 5 and 6.

XI. CONCLUSION

For traffic engineers, the main result is the obtainment of a realistic
fundamental traffic law shape using a stochastic maxplus linear model
defined by four parameters: Two possible desired speeds chosen ran-
domly and a security length between the cars. This model can be still
more simplified by taking only one desired speed. These models give
the typical hat shape of the fundamental traffic law that can be adjusted
by choosing these four parameters.

For system engineers, we have given an application ofmaxplus linear
systems. The analysis of the deterministic case is a straightforward ap-
plication of known results about maxplus algebra. On the other hand,
the stochastic case is a rare example where a Lyapunov exponent can
be computed explicitly.

APPENDIX

PROOF OF THEOREM 1

Using the following notation for 0 � j < l � N

�l
j(x) =

l�1

i=j

fxi+1 � xig

and

�̂l
j(x) = min

i
�i

j(x) + �l
i+1(x)

the function � can be written as

�(x) = �̂N
1 (x)

where the car numbered N + 1 is identified with the car 1. If we call
hampered at time t a car j such that xtj+1 � xtj < vtj , Theorem 1 is an
immediate consequence of the following lemma.

Lemma 1: At time t, for a sequence (j+1; . . . ; l�1) of hampered
cars and for unhampered cars j and l we have

�l
j(x

t+1) � �l
j(x

t) �̂l
j(x

t+1) � �̂l
j(x

t):

Proof:

i) �l
j(x

t+1) � �l
j(x

t).
Indeed, in this case, we have

�l
j(x

t) = fxtj+1 � xtjg+ xtl � xtj+1:

If car l moves �, the cars j + 1; . . . ; l � 1 move also � and
whatever is the desired speed of j we have �j

i (x
t+1) =

�j
i (x

t).
If car l does not move, as fa+ bg � fag+ b and car j is

unhampered, then

�l
j(x

t+1) � xtj+1 � xtj + xt+1j+1 � xtj+1 +�l
j+1(x

t+1)

moreover, as car l does not move, we have

�l
j+1(x

t+1) � xtl � xt+1j+1

= xtl � xtj+1 � (xt+1j+1 � xtj+1)

and the result follows.
ii) Denoting i an index reaching the minimum in the definition

of �̂l
j(x

t), we have

�̂l
j(x

t+1) � �i
j(x

t+1) + �l
i+1(x

t+1)

� �i
j(x

t) + �l
i+1(x

t) = �̂l
j(x

t):
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Stabilization of Oscillations Through Backstepping in
High-Dimensional Systems

Javier Aracil, Francisco Gordillo, and Enrique Ponce

Abstract—This note introduces a method for obtaining stable and robust
self-sustained oscillations in a class of single input nonlinear systems of di-
mension 2. The oscillations are associated to a limit cycle that is pro-
duced in a second-order subsystem by means of an appropriate feedback
law. Then, the controller is extended to the full system by a backstepping
procedure. It is shown that the closed-loop system turns out to be general-
ized Hamiltonian and that the limit cycle can be thought as born in a Hopf
bifurcation after moving a parameter.

Index Terms—Backstepping control, generalized Hamiltonian systems,
Hopf bifurcation, limit cycle stabilization, nonlinear oscillations.

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

Self-sustained oscillations are one of the distinctive behavioral char-
acteristics of nonlinear systems. Whenever an oscillatory behavior is
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found or is to be built, there is or must be introduced an underlying non-
linearity. In this note, a procedure to obtain a nonlinear feedback law
that renders a class of single input cascade systems oscillatory is intro-
duced. The oscillation is associated with a stable limit cycle and there-
fore it is self-sustained and robust. The method is based on matching
the open-loop system to a closed-loop one that displays such a stable
limit cycle. The feedback law is obtained in two steps. In the first step,
a second-order subsystem is controlled to yield a robust nonlinear os-
cillator. To this end, a fourth-degree polynomial Lyapunov function is
introduced that guarantees the appropriate properties. Then, the cas-
cade structure of the open-loop system allows us to apply backstep-
ping to recursively obtain the feedback law for the full system. A very
appealing byproduct is that the closed-loop system obtained has a gen-
eralized Hamiltonian structure [1].
The problem considered here is, therefore, the synthesis of limit cy-

cles and belongs to the class of so-called inverse problems in dynam-
ical systems. Several authors have considered this problem in the past
(see, for instance, [2]–[4] and the references therein) by working with
systems of moderate dimension. One of the interests of the algorithm
proposed in this note is its ability to cope with arbitrary dimensions.
Related material can be found in [5].
To set the problem under study in a precise form, consider the cas-

cade systems for which the backstepping method is applicable. In par-
ticular, we will be concerned with the special class of strict-feedback
systems [6] given by

_x1=x2

_x2=f0(x1; x2) + g0(x1; x2)x3

_x3=f1(x1; x2; x3) + g1(x1; x2; x3)x4

...

_xn�1=fm�1(x1; x2; . . . ; xn�1)+gm�1(x1; x2; . . . ; xn�1)xn

_xn=fm(x1; x2; . . . ; xn) + gm(x1; x2; . . . ; xn)u (1)

with m = n � 2 and gi 6= 0, 8i in the domain of interest. The form
for the first equation is quite usual, mainly in mechanical and electrical
systems.
Our goal is to design a feedback law u for (1) that causes it to os-

cillate in a stable and robust way. This will be obtained through a con-
troller such that the closed-loop system displays a limit cycle as a limit
set. This limit cycle is responsible for the oscillatory behavior.
The note is organized as follows. In Section II, for n = 2, a control

law that renders systems of the form (1) oscillatory is proposed. Next, in
Section III the law is extended to arbitrary dimensionn. The note closes
with a section of conclusions and some technical details are relegated
to the Appendix.

II. OSCILLATIONS IN TWO-DIMENSIONAL SYSTEMS

We start with the subsystem formed by the first two equations of (1)

_x1 =x2

_x2 = f0(x1; x2) + g0(x1; x2)x3 (2)

where x3 has to be interpreted as a virtual control x3 = �0(x1; x2).
Now we design a feedback law to render this two-dimensional sub-
system oscillatory. To that end, we adopt as reference behavior that of
the nonlinear oscillator

_x1 =x2

_x2 = � x1 � k0x2�(x1; x2) (3)
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