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The concept of optical conductance is introduced in order to characterize the transport properties of
waveguides built into finite photonic crystals. The conductance is given by the integral of the
transmission cross section as a function of the incoming angle. This concept is illustrated by exact
calculations of the light-guiding properties of a waveguide built into a photonic crystal slab based
on a square lattice of dielectric cylinders in air. In analogy with their electronic counterparts, the
optical conductance of a waveguide is quantized and thus provides a direct measure of the number
of guided modes supported by the system. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2761223�

Photonic crystals �PCs� provide a set of unique options
to control the electromagnetic states and light transport with-
out radiation and absorption losses.1–3 Their ability to guide
light on the wavelength scale4,5 makes them especially suit-
able to miniaturization of optical components. Line defects
in photonic crystals are receiving considerable attention be-
cause their waveguiding mechanism is fundamentally differ-
ent from conventional dielectric waveguides. The existence
of a band gap prohibits radiation of energy through the crys-
tal and, as a consequece, the confinement of electromagnetic
waves in photonic crystal waveguides �PCWs� resembles the
electron wave confinement in nanowires.

In the study of electron transport in nano- and mesos-
copic systems, the discovery of the quantization of conduc-
tance of narrow constrictions in fabricated semiconductor
structures6 has had a profound impact. For a long, defect-
free, constriction the conductance is proportional to the inte-
ger number of propagating modes or channels and increases
in steps of G0=2e2 /h each time a channel opens up as its
width increases. This result, independent of any material de-
tail, plays a key role in the understanding of electron trans-
port on the wavelength scale: from semiconductor structures6

down to nanowires and atomic-scale metallic contacts.7 Sur-
prisingly, in contrast with the study of their electronic coun-
terparts, the concept of optical conductance of a PCW has
not received special attention.

In this letter, we introduce the concept of optical conduc-
tance in order to characterize the transport properties of pho-
tonic crystal waveguides. Conductance quantization �CQ�has
its optical analogue in the stepwise increase of the transmis-
sion cross section of a slit illuminated by diffusive mono-
chromatic light.8 The diffuse illumination is equivalent to the
isotropic momentum distribution of the incoherent electron

waves incident on a constriction. This is in contrast with the
standard approach to analyze the scattering and diffraction
characteristics of PCWs. These systems are usually studied
assuming spatial coherent illumination �from plane wave or
dipole sources�.4,5,9,10 In general, the ratio of transmitted
power to incident flux �the transmission cross section� de-
pends in a complicated way on the angle of incidence, PCW
shape, and size as well as on the details of the mode conver-
sion at the aperture. Diffuse illumination simplifies this com-
plex dependence.8 Here we show that the conductance can be
measured with coherent illumination by integrating the trans-
mission cross section as a function of the incoming angle. In
contrast with other “transmission” coefficients, the conduc-
tance is an intrinsic property of the PCW and can be calcu-
lated and, eventually, measured unambiguously.

To illustrate the concept of optical conductance of a
PCW, we present exact calculations of the photonic and
waveguiding properties of two-dimensional PC slab
waveguides. The optical conductance of the PCW is ana-
lyzed as a function of the width of the waveguide, wave-
length, and crystal size. As we will show, in analogy with
their electronic counterparts, the optical conductance of a
waveguide is quantized and provides a direct measure of the
number of guided modes supported by the system. Most of
the work on PCWs is based on the waveguiding properties of
single or multiple line defects in an otherwise perfect crystal.
In a different approach, the walls of two PCs provide an
equivalent confinement of light,9 similar to that provided by
perfect metals. With the aim of studying and characterizing
the propagation of electromagnetic modes in a PCW, we con-
sider a dielectric PCW made up of two identical finite pho-
tonic crystals. In this way we obtain a PCW with a variable
width W �see Fig. 1� just by changing the gap between the
two PCs, in analogy with the slit problem.8 Each PC is an
array of infinitely long cylinders parallel to the z axis, em-
bedded in air, and forming a square lattice with lattice con-a�Electronic mail: silvia.albaladejo@uam.es
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stant a. Each finite crystal has M rows and N columns along
the x and y axes, respectively. The band structure and scat-
tering properties of a square lattice of dielectric rods or nano-
pillars have been discussed before.3,11–16 For an infinite
square lattice of cylinders in air, band gaps only open up for
TM or s polarization �with the electric field along the cylin-
der axis�, while for the TE polarization no band gaps are
expected.3 We shall then focus on the scattering of TM po-
larized electromagnetic waves. We will also consider silicon
dielectric rods as a typical dielectric material. Our results,
however, are general and independent of the nature of the
PCW.

A Gaussian beam,17 Einc�r� of half-width W0, focused on
the entrance of the waveguide �x=y=0�, is incident upon the
system from y�0; its vector wave k0=k sin �0 ux+k cos �0
uy �with k=� /c=2� /�� is contained in the x-y plane.

In order to compute numerically the scattered field, we
use the coupled dipole method18,19 which allows us to solve
the electromagnetic scattering problem rigorously. We con-
sider subwavelength silicon cylindrical rods with a ratio
R /a=0.16 between radius R and lattice spacing a=0.6 �m.
The field scattered from a single subwavelength cylinder n
can then be written as,18,20

En
scatt�r� = �zzEin�rn�k2G0�r,rn� , �1�

where G0�r ,rn�= �i /4�H0�k�r−rn�� is the free-space Green’s
function �H0 is the Hankel function� and Ein�rn� is the total
incoming field on a given cylinder obtained self-consistently
from the solution of

Ein�rn� = Einc�rn� + k2�zz �
m�n

Ein�rm�G0�rn,rm� . �2�

In the small particle limit, the polarizability �zz is given
by19,20

�zz � �R2�� − 1��1 − i
�

4
�kR�2�� − 1�	−1

. �3�

The frequency dependence of the dielectric constant ���� for
Si is taken into account.21

Figure 2 displays the ratio of transmitted to the incident
power for a given incident angle for a finite slab of a square
lattice of �4	60� Si rods without PCW �i.e., W=0� in a map
of transversal momentum of the incoming radiation versus
frequency. Even for a finite slab with only four rows, the
transmission map shows a full band gap �0.4
a /�
0.5� in
full agreement with the gap obtained from band structure
calculations.

The conductance of the PCW is related to the scattering
properties of the system through,22 G=Trace
tt†�, where t is
the transmission matrix of the system. G is usually written as
G=�iTi, Ti being the total transmission for a given incident
channel i and the sum runs over all possible incoming chan-
nels. For ideal waveguide contacts, adiabatically coupled to
reservoirs, Ti is either one or zero and the conductance is
simply a measure of the number of propagating modes inside
the waveguide. In general, G depends on the mechanisms by
which light is coupled into and guided through the wave-
guide. When the incident waves are not confined, i.e., in the
continuous limit, the conductance of a two-dimensional
waveguide can be written as,

G = Trace
tt†� =
k

2�
�

−1

+1

��k,�0�d�sin �0� , �4�

where ��k ,�0� is the ratio of transmitted power to incident
flux, i.e., the transmission cross section. ��k ,�0� can be eas-
ily calculated for our finite system provided W�W0�Ma,
i.e., when the incoming flux of the focused Gaussian beam is
uniform over the entrance of the PCW and the illuminated
length is smaller than the lateral size of the finite PC. In
practice, the calculated cross section is independent of the
width of the beam for W0 /�
3a /�. In our system, the quan-
tized nature of the optical conductance manifests itself in the
behavior of G as a function of the PCW width at fixed fre-
quency. This is illustrated in Fig. 3, where the conductance
presents sharp steps at the onset of every propagating mode,
reflecting the universal nature of CQ. The conductance be-
havior is strikingly similar to the one obtained for abrupt
wide-narrow-wide electronic constrictions.23 While the low-
est propagating mode opens at W=Wmin�0.22�, higher
modes appear when W−Wmin is an integer multiple of � /2.

FIG. 1. �Color online� Zoom out of the waveguide region including the
definition of relevant parameters. Calculations correspond to Si nanorods in
air with a=0.6 �m, R /a=0.16, �=1.33 �m, and �0=45°. In this particular
case W=2a. Inset: scheme of the structure of a photonic crystal waveguide
of variable width illuminated by a Gaussian beam. The intensity map cor-
responds to actual calculations of the electric field intensity �with the electric
field perpendicular to the plane of the figure�.

FIG. 2. �Color online� Ratio of transmitted to the incident power for a finite
slab of a square lattice �4	60� of Si rods in a map of frequency �a /�� vs
transversal momentum of the incoming radiation �a /��sin �0.
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This is exactly the expected behavior for a waveguide with
perfectly reflected walls.

To summarize, we have introduced the concept of optical
conductance in order to characterize the transport properties
of waveguides built into photonic crystals. The optical con-
ductance of a waveguide can be obtained experimentally by
integrating the transmission cross section as a function of the
incoming angle. The measurement of the conductance would
provide a direct measure of the number of guided modes
supported by the system.
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FIG. 3. �Color online� Conductance G vs PCW width W /� at fixed �
=1.33 �m for two different PCs �with N=60 and M =4 and 8�. The results
for M =8 are shifted horizontally for clarity.
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