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a b s t r a c t

Ostertagia ostertagi is a nematode, predominantly affecting cattle in the Pampean region of Argentina.
A mathematical model parametrized using fuzzy rule-based systems of the Takagi-Sugeno-Kant type
(FTSK) for estimating the development time from egg to infecting larval stage L3 of the gastrointestinal
parasite O. ostertagi is here proposed. The estimation of development time of O. ostertagi is essential for
the generation of appropriate control mechanisms, since this provides information about the time when
parasites are ready to migrate to pastures. For the purpose of reflecting the natural environmental con-
ditions, the mean daily temperature is taken as the main and only regulator of the development time.
Humidity conditions are considered to be sufficient for the normal development of the larvae. Hence the
individual’s daily growth is a function of its length and the mean temperature recorded on the previous
rowth performance day. It is expressed in terms of a difference equation with fuzzy parameters, which are defined using lab-
oratory data. Model outputs are tested against results of field experiments. Simulation results are very
satisfactory, yielding a mean estimation error (MEE) of 0.64 weeks, with variance 0.34, and a determina-
tion coefficient R2 = 0.74. The model clearly exhibits an inverse relationship between development time
and temperature both in controlled and in field conditions. It also exhibits a very sensitive response both
to the order in which the temperature sequence occurs, – reproducing the differences observed between

to th
spring and autumn – and

. Introduction

The gastrointestinal nematode parasite Ostertagia ostertagi is
redominant in the Pampean region (Argentina) (Fiel et al., 1994).
rom the economic point of view, it is considered the most impor-
ant nematode affecting cattle in temperate regions (Steffan et al.,
982; Entrocasso, 1981) and as such, much effort has been devoted
o investigating this parasite species.

The cycle life of O. ostertagi is direct, without an intermediary
ost. There are two distinct stages: the free-living stage (Egg-L1-

2-L3) and the parasitic stage (L4-L5-Adult). The free-living stage
ccurs on the ground, first within the dung-pat and later on the
rass. Larvae in the L1 and L2 stages feed on fungi and bacteria.
he infective larva (L3) is ensheathed and does not feed. Following
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e la Provincia de Buenos Aires, (UNCPBA), Pinto 399, B7000GHG Tandil, Argentina.
el.: +54 2293439695.

E-mail addresses: mchaparr@exa.unicen.edu.ar (M.A.E. Chaparro),
anziani@exa.unicen.edu.ar (G.A. Canziani).

304-3800/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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e amplitude of the temperature range.
© 2010 Elsevier B.V. All rights reserved.

ingestion by cattle, L3 larvae undergo a process of exsheathment in
the rumen before the fourth parasitic stage begins (L4). Afterwards
larvae quickly develop into the adult stage.

The free-living stage has been studied under both controlled
and field conditions (Fiel et al., 2008; Rossanigo and Gruner, 1995;
Gibson, 1981; Young et al., 1980a, 1980b; Pandey, 1972; Rose,
1969). Several studies have revealed that there is a direct nonlinear
relationship between development time and temperature over the
range from 5 ◦C to 35 ◦C (Fiel et al., 2008; Williams, 1983; Catto,
1982; Pandey, 1972).

The estimation of development time is essential for the gen-
eration of appropriate control mechanisms, since this provides
information about the time when parasites are ready to migrate
to pastures. The variability of responses to different environmen-
tal factors makes the use of modelling tools relevant to help
understand the complexity of the dynamics of the life cycle of
the parasite. Development times can vary from 5 days for lar-

vae under ideally warm and controlled conditions (Williams et
al., 1987) to 36 days for larvae at a constant low temperature of
5 ◦C (Young et al., 1980b). Beyond these limits the mortality rate
is high (Levine, 1978). The ideal temperature is within the range
of 20–30 ◦C (Pandey, 1972; Rose, 1969) while the development

dx.doi.org/10.1016/j.ecolmodel.2010.07.007
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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Table 1
Definition of all membership functions used in the parameterization of the model.
Function types are as defined in Appendix B.

Name of membership
function

Type Parameter values

a b c

Temp10 z(x;a,b) 10 15
Temp15 T(x;a,b,c) 10 15 20
Temp20 T(x;a,b,c) 15 20 25
Temp25 T(x;a,b,c) 20 25 30
Temp30 T(x;a,b,c) 25 30 35
Temp35 s(x;a,b) 30 35
f[10] L(x;a,b) 6 323
f[15] L(x;a,b) −13.8 620
f[20] L(x;a,b) 1.2 320
f[25] L(x;a,b) −4.6 465
f[30] L(x;a,b) −2.4 399
f[35] L(x;a,b) 9
g[10] L(x;a,b) 4 799
g[15] L(x;a,b) 2.8 817
g[20] L(x;a,b) −5.8 989
g[25] L(x;a,b) −3.6 934
g[30] L(x;a,b) −13.8 1240
g[35] L(x;a,b) 21.62
h[10] L(x;a,b) 0.0036
h[15] L(x;a,b) 0.0184 −0.2
h[20] L(x;a,b) 0.0049 0.0696
h[25] L(x;a,b) 0.0136 −0.1485
h[30] L(x;a,b) −0.0031 0.3545
M.A.E. Chaparro, G.A. Canziani / Eco

rocess is difficult to accomplish at temperatures below 5 ◦C and
bove 40 ◦C (Pandey, 1972). Hence, during the warm months devel-
pment takes only a few days while in winter the period increases
o several weeks, especially if the winter is cold and wet (Catto,
982; Durie, 1961).

In the literature, the models used for estimating development
imes are mostly of statistical type, strongly based on data from
rials performed under controlled conditions, yielding a good fit to
he data. Since these models strongly depend on the data, they are
isadvantageous when it becomes necessary to extrapolate.

Here we propose a mathematical model, based on difference
quations and a fuzzy rule-based system (FRBS), for estimating
he development time from egg to L3 of the gastrointestinal para-
ite Ostertagia which adapts very adequately to the environmental
onditions in the Pampean region of Argentina. The model con-
ists of a difference equation and the parameters are functional
orms defined through a FRBS which incorporates both quantita-
ive and qualitative information on the processes involved. These
uzzy parameters allow for the flexibility needed when attempting
o replicate field conditions, which are fundamental for develop-
ng any control strategy. The concept on which this model is based
llows it to respond efficiently to wide temperature ranges.

. Methods

.1. Model description

The length of the larva is taken as an indicator of development,
wing to the parasite’s elongated shape. If the lengths at hatch-
ng and at the time of reaching the infective stage (L3) are known,
hen it is possible to determine how many days an individual larva
eeds to be able to complete its development under a particular
nvironment (characterized by temperature). Larvae increase their
obility as the time of their development to L3 is nearly over and,

herefore their development rate increases as they age.
If Lt(a) is the length of a larva that was born on day t and is now

ged a, then its growth is described by the difference equation:

Lt(a + 1) = Lt(a) + r(T(t+a))Lt(a) =
⌊

1 + rT(t+a)

⌋
Lt(a)

IC Lt(0) = l0(Tt)

here r(T(t+a)) is the development rate, which depends on T(t+a)
he average temperature of the current day t + a, and l0(Tt) is the
atching length. The difference equation is solved using a daily
tep. Clearly all the larvae in same cohort (born the same day) grow
xactly at the same pace.

This equation has two border conditions: an initial condition,
0(Tt), and a final condition, lL3(T), the length of a larva when reach-
ng the L3 stage. It is worth mentioning that these conditions also
ary depending on the environmental temperature.

Once a day t is fixed, the age a at which the larva reaches the L3
tage is such that Lt(a) < lL3(T) ≤ Lt(a + 1). Hence, if �(t) is the devel-
pment time of a larva which was born on day t, then �(t) = a + 1.

The model was implemented using GNU Scilab 4.1. The inputs of
he model are the daily average temperatures, which are loaded as
vector. The program runs the simulation with two output options:

. Creates a graph which shows the time of development for each
cohort hatching each day within the range of the temperature
vector.

. Creates a graph which describes the development of one specific

cohort starting on a selected Julian day; the temperature vector
must start on that day.

The temperature vector should be long enough so that the full
evelopment of the larvae can be attained.
h[35] L(x;a,b) 0.007

Pandey’s data (1972) was used to compute the parameters of each membership
function.

2.2. Parametrization of the model

The model has three parameters which are the length of the
newly hatched larva (l0), the length of the L3 larva (lL3) and the
development rate (r), all of which depend on the daily average
temperature. Each of these parameters is modelled using a fuzzy
rule-based system of the Takagi-Sugeno-Kant type (FTSK) (see
Appendix A), with the temperature as the input variable.

The construction of the membership functions depending on
temperature was based on the work of Pandey (1972), who inves-
tigated the effect of temperature (between 4 ◦C and 40 ◦C) on
the development of larvae in the free-living stage. The “tempera-
ture” variable (Temp) is partitioned into six membership functions,
named respectively Temp10, Temp15, Temp20, Temp25, Temp30,
and Temp35 (i.e. Temp15 corresponding to temperatures within
an interval centered at 15 ◦C). In each case, the maximum value
of membership is coincident with that in Pandey’s work. These
parameters are detailed in Table 1.

Data on the length of newly hatched larvae, the length of the
infective larvae and development times were used to build the
consequent function of the FTSK system.

2.2.1. Length of newly hatched larvae l0(Tt)
A wide variation in the size of the newly hatched larvae was

observed at different temperatures, the smallest larvae being
obtained at 35 ◦C and the largest at 15 ◦C (Pandey, 1972). As men-
tioned earlier, l0(Tt) is a FTSK system with “temperature” as the
input variable. The consequent functions are constructed according
to Pandey’s data, which allow the possibility of locally describing
the dynamics of the problem in approximate terms.

This means that, for example, if the lengths of newly hatched lar-
vae given by Pandey are l0(10◦) = 383 at 10 ◦C and l0(15◦) = 413 at

◦
15 C, then for intermediate temperature values a linear functional
relationship is assumed, the function being f[10](x1) = 6x1 + 323.
Then, the fuzzy rule for x1 ∈ Temp10 is:

If x1 is Temp10 ⇒ l0(x1) is f[10](x1) = 6x1 + 323
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Table 2
Summary of the list of rules that link temperature ranges to consequent functions f[*]

(length of larva at hatching given temperature x). The resulting parameter function
l0(T) is displayed in Fig. 1(a).

Temp10 f[10]

Temp15 f[15]

Temp20 f[20]
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IF x is THEN l0(x) is
Temp25 f[25]

Temp30 f[30]

Temp35 f[35]

The same methodology is applied to temperatures in the
ntermediate ranges 15–20 ◦C, 20–25 ◦C, 25–30 ◦C, 30–35 ◦C and
5–40 ◦C, yielding the corresponding consequents and rules. The
unctions, f[10], f[15], f[20], f[25], f[30] and, f[35] and their parameters
re detailed in Table 1 and the complete list of rules is summarized
n Table 2. The resulting parameter function l0(T) is displayed in
ig. 1(a).

.2.2. Length of infective larvae lL3(Tt)
Infective larvae grown at different temperatures also exhibit a

ize variation in the initial L3 length. The infective larva is the largest
hen the development takes place at 20 ◦C. Above or below 20 ◦C,

ts length decreases gradually, the smallest being at 35 ◦C (Pandey,
972).

As before, a linear relationship between different temperatures
s used for the construction of the consequents. For example, given
L3(25◦) = 844 and lL3(30◦) = 826, the linear function for intermedi-
te temperature values x1 is g[25](x1) = −3.6x1 + 934. Then a fuzzy
ule for x1 ∈ Temp25 is:

f x1 is Temp25 ⇒ lL3(x1) is g[25](x1) = −3.6x1 + 934

As before, this methodology is used for all the other functions.
he membership functions and their parameters are detailed in
able 1 and the complete list of rules is summarized in Table 3.
ig. 1(b) shows the parameter function lL3(Tt).

.2.3. Estimation of the daily development rate r(T(t+a))
As mentioned earlier, the length of a larva born at day t now

ged a, depends on its length on the previous day t + a − 1 as well
s on that day’s mean temperature. The model assumes that at age
the larva will grow proportionately to the length attained at age
− 1. This proportion has values in the interval [0, 1] and is also
odelled by a FTSK system.
Under controlled conditions, the temperature is kept constant

nd so is the moisture in the dung-pat which is adequate for devel-
pment. Hatching and infective lengths of larvae were calculated
y Pandey (1972) under these conditions. Hence, it is assumed that
hen the temperature remains constant the larval development

ate will be constant.

The values that r(T(t+a)) take at different temperatures are then

alculated. For these estimations, it is assumed that the develop-
ent rate and temperature are kept constant over the appropriate

ime interval so that the development of a larva can be described

able 3
ummary of the list of rules that link temperature ranges to consequent functions
[*] (length of larva when stage L3 is reached given temperature x). The resulting
arameter function lL3(Tt) is displayed in Fig. 1(b).

IF x is

Temp10

THEN lL3(x) is

g[10]

Temp15 g[15]

Temp20 g[20]

Temp25 g[25]

Temp30 g[30]

Temp35 g[35]

Fig. 1. Parameter functions resulting from the application of a fuzzy rule-based

system of the Takagi-Sugeno-Kant type (FTSK) with the temperature as the input
variable: (a) l0(Tt) length of larva at hatching given temperature Tt; (b) lL3(Tt) length
of larva when stage L3 is reached given temperature Tt; (c) r(Tt) development rate
given temperature Tt .

by the equation

Lt(a + 1) =
⌊

1 + r(T(t+a))
⌋

Lt(a)
Observe that if temperature is kept constant equal to T, then
time t is irrelevant. So that for r(T(t+a)) = r(T) we obtain.

L(a + 1) = [1 + r(T)] L(a)
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Table 4
Summary of the list of rules that link temperature ranges to consequent functions
h[10] (development rate given temperature x). The resulting parameter function r(Tt)
is displayed in Fig. 1(c).

Temp10 h[10]

Temp15 h[15]

a
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IF x is THEN r(x) is
Temp20 h[20]

Temp25 h[25]

Temp30 h[30]

Temp35 h[35]

nd we can express

(a + 1) = [1 + r(T)]1+�L(0)

Also note that L(0) = l0(T), L(� + 1) = lL3(T), and � are obtained from
andey’s data. Then, the solutions of a very simple equation yield
he values of r(T) for each temperature value T so that these values
an be used for the construction of the consequent. The functions
or the FTSK system are built similarly to those corresponding to
he functions above.

For example, a fuzzy rule for this FTSK system is:

f x1 ∈ Temp15 ⇒ r(x1) is h[15](x1) = 0.02x1 − 0.19

The membership functions and their parameters are detailed in
able 1 and the complete list of rules is summarized in Table 4.
ig. 1(c) shows the parameter function r(Tt).

.3. Model validation using field data

In order to validate the model, two indicators were used:

. Mean estimation error (MEE) between the observed Ti and the
estimated T̂i times which is defined by MEE = (1/n)

∑n
i=1(Ti −

T̂i).

. Coefficient of determination R2, which is defined by R2 = 1 −(∑n

i=1(T̂i − Ti)
2
/
∑n

i=1(Ti − T̄)
2
)

,

where T̄ is the average observed development time. As the
value of R2 is closer to 1, it indicates a better fit.

ig. 2. Estimated monthly average development times from July 1994 till June 1998 are
erformed by Fiel et al. (2008). Model outputs (daily) were averaged in order to facilitate
l Modelling 221 (2010) 2582–2589 2585

Model outputs were obtained through various simulations that
included conditions similar to those present from July 1994 to June
1998, when field data was retrieved, particularly the corresponding
daily mean temperatures. Using the output data on the develop-
ment time for each daily cohort, the monthly average development
times were calculated for all months. This was done because the
temporal resolution of the field experiments (weekly) was low
compared to the daily output of the model.

The field data used to compare to the output of our model were
provided by Fiel et al. (2008). As mentioned above, field experi-
ments were carried out from July 1994 till June 1998 on a 0.96 ha.
paddock located on the University Campus (UNCPBA) at Tandil
(37◦19′08′′S 59◦08′05′′W). The climate in the region is temperate
and humid, with an annual average temperature of 13.7 ◦C (Source:
National Meteorological Service, 1911–1991).

In order to estimate the development time under field con-
ditions, weekly samples of 5 cm2 of dung were taken from the
paddock. Whenever the sample contained at least 25% of larvae in
the L3 stage, the period from deposition until the moment of sam-
pling was taken to be the development time (Fiel et al., 2008). From
these samples, development times were estimated to be within the
ranges of 1–2 weeks in summer, 3–5 weeks in autumn, 4–6 weeks
in winter, and 1–4 weeks in spring, depending on meteorological
conditions. The estimated monthly average development times in
the field from July 1994 to June 1998 are summarized in Fig. 2.

2.4. Model’s response to variation in temperature sequences

One interesting observation on the results of field trials is that,
even if spring and autumn mean temperatures are very similar,
development times in spring are shorter that in autumn (Fiel et
al., 2008). We used the model to assess to what degree does the
temperature time series affect the development times.

Two questions arise:
1. How important is the order in which daily average temperatures
occur? In other words, if we take any given temperature vec-
tor and rearrange its components, is the development time the
same?

shown: obtained from model outputs (line) and from field experiments (circles)
the comparison with field data.
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. If we take two vectors with mean temperature �, is there a signif-
icant difference between the outputs of the model if the ranges
of temperature are different? In other words, if the components
of the temperature vector are within the interval [� − �, � + �] or
the interval [� – 2�, � + 2�], is there any significant difference?

In order to find an answer to these questions the mean � was
elected to be 5 ◦C 10 ◦C, 15 ◦C, and 20 ◦C, while the standard devi-
tion � = 5 ◦C was kept unchanged. For each �, two vectors were
enerated randomly with uniform distribution, one over the inter-
al [� – �, � + �] called T�� and the other over the interval [� – 2�,
+ 2�] called T�2�. Each one of the eight vectors thus generated

nderwent a process of rearrangement, without replacement, of its
omponents 10,000 times, and therefore 80,000 different vectors
ere obtained. Each group of 10,000 vectors generated by rear-

angement of T�� was called vector pool PV�� associated to mean
emperature � and standard deviation � (i.e. PV20� corresponding
o T20�). These vectors were used as inputs for the simulations and
he corresponding output sets were statistically analyzed.

Descriptive statistics were used in order to analyze and describe
he effect of the order of temperatures. The Kolmogorov–Smirnov
est (K–S) (Rohatgi, 1984) was chosen to compare the result
f simulations with same mean and different variance. The
olmogorov–Smirnov test is a nonparametric test used to compare

wo samples. It has the advantage of making no assumptions about
he data distribution. The Shapiro test was used to check the nor-

ality of the samples and the Levene test was used to assess the
quality of variance in different samples.

. Results

.1. Model simulations and field data
The development times estimated by the model and daily aver-
ge temperatures are displayed in Fig. 3. The Pearson coefficient of
orrelation (r2) was calculated, and its value was 0.78 (p < 0.01). The
alue shows that there is an inverse linear relationship between
emperature and development time. It is worth mentioning that

ig. 3. The development times estimated by the model (line) and daily average tempera
evelopment times and mean daily temperatures is clearly seen.
l Modelling 221 (2010) 2582–2589

this relationship has been observed in the literature as relevant
(Fiel et al., 2008; Williams, 1983; Catto, 1982).

Development times (expressed in terms of weeks) estimated by
the model were compared to field data and satisfactory results were
obtained. The experimental field data and the model outputs are
displayed in Fig. 2. As mentioned earlier, the model outputs were
averaged in order to facilitate the comparison with data reported
by Fiel (2008). The MEE value was 0.64 weeks with a variance of
0.34 weeks and the corresponding determination coefficient was
R2 = 0.744 (p < 0.05). These values indicate a very good performance
of the model, as compared to the weekly sampling process, given
that the MEE is smaller than the sampling error, which is possibly
greater than 1 week due to the particular experimental design.

3.2. Model’s response to variations in the temperature sequence

3.2.1. Effects of the order in the temperature sequence
The set of results of the simulations for each input set PV�� is

being called SPV��. The statistics for each SPV�� are detailed in
Table 5.

For SPV20�, the set of outputs for sequences with mean tem-
perature 20 ◦C and standard deviation �, the resulting developing
times had a mean of 7.6 days with a standard deviation (SD) of 0.55
and a variation coefficient (CV) of 7.13%. The central fifty percent
of simulations fell between 7 and 8 days, and this upper limit was
coincident with the median. The minimum value obtained was 6
days, and the maximum value was 9 days. The Pearson’s skewness
index (PS) was −1.7, therefore the output data was skewed to the
left.

For SPV15�, the set of outputs for sequences with mean temper-
ature 15 ◦C, the mean and median were very similar, 11.2 and 11
days respectively, while the SD was 1.32 days and the CV was 11.8%.
The range of values of simulations varied from 8 to 16 and the cen-

tral fifty percent of simulations fell between 10 and 12 days. The PS
index suggested that it was a symmetric population (PS = 0.44).

In simulations for SPV10� (mean temperature 10 ◦C) the mean
time was 23.2 days with a SD of 1.66 days and a CV of 7.17%. The
range of values varied from 18 to 28 days and the central fifty

tures (dots) recorded from July 1994 till June 1998. Inverse relationship between
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Table 5
Statistics of the set of simulation outputs for each input set PV�� where � is the mean of the temperature sequence and � is its standard deviation. Each input set or vector
pool PV�� consists of 10,000 temperature sequences. Mean, minimum, median, maximum, Q1, Q3, and standard deviation refer to development times in days.

� = 20 ◦C � = 15 ◦C � = 10 ◦C � = 5 ◦C

(� = 5) (� = 10) (� = 5) (� = 10) (� = 5) (� = 10) (� = 5) (� = 10)

Mean 7.69 7.72 11.20 11.26 23.20 18.02 48.81 48.10
Minimum 6 6 8 7 18 8 37 32
Q1 7 7 10 10 22 16 47 46
Median 8 8 11 11 23 18 49 48
Q3 8 8 12 12 24 20 51 51
Maximum 9 11 16 16 28 28 59 61
Standard deviation 0.55 0.96 1.32 1.39 1.66 2.89 3.08 4.10
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Pearson’s index of skewness −1.70 −0.86 0.45
Coefficient of variation 7.13% 12.43% 11.79%
K–S test (p-value) 1 (<0.01) 1 (<0.01

ercent of the populations fell between 22 and 24. The PS index
uggested that this was a symmetric population (PS = 0.019).

For SPV5� (mean temperature 5 ◦C) the mean time was 48.8 days
ith a SD of 3.8 days and a CV of 6.32%. The range of development

imes was very wide, since it varied from 37 to 59 days, however
he central fifty percent fell between 46 and 51 days. The PS index
uggested that it was a symmetric population (PS = −0.1844).

.2.2. Effects of the amplitude of the range
The K–S test was performed on the output of “populations”

ith the same mean value T�� and T�2�. The null hypothesis was
hat SPV�� and SPV�2� had the same distribution; the alterna-
ive hypothesis is that they had different distributions. In all cases
he null hypothesis was rejected with p-value significant at the 5%
evel. This means that the model is indeed sensitive to the ampli-
ude of the range on mean temperatures recorded during the larval
evelopment.

. Discussion

The model presented here estimates the average development
ime for every cohort. It is a good tool for estimating when the L3
arvae are ready to migrate to pastures. The estimation of develop-

ent times depending on the weather is a very important topic for
nitiating the setup of new strategies for gastrointestinal parasite
ontrol in Argentina.

It is worth mentioning that not only developing times are impor-
ant, but also the behavior of dung-pats as L3 reservoirs which
nsure the availability of larvae to pastures. Dung-pats are natural
eservoirs hosting cohorts during their full development, from egg
o L3 larvae, anywhere between a few weeks and 9 months, depend-
ng on the time of the year of their deposition and the weather.
trong precipitations can degrade dung very rapidly (C. Fiel, pers.
omm.).

It is believed that the larvae that develop closer to the dung-
at surface have higher oxygen availability and thus would need
shorter development time than those found deeper in the pat
here oxygen levels could be lower. In such a case, one cohort
ould be developing in a sequential form, depending not only on

he mean temperature but also on the distance of the larvae from
he surface. In other words, the same cohort would exhibit different

aturation times under the same weather conditions. A model that
ould consider a sequential development of a cohort could put
ore realism into the simulation. However, there is no field data
vailable at this time which may allow its construction.
The model presented here is consistent with the experiments

hat have been performed both in the field and in the laboratory,
nd can be considered a first step towards the generation of control
trategies through padlock management.
0.57 0.36 0.02 −0.18 0.07
12.31% 7.17% 16.03% 6.32% 8.53%

1 (<0.01) 1 (<0.01)

It is also pertinent to take a look at the methodology used for
the construction of this model. The sensitivity of the model was
analyzed taking into account different real situations, looking at
the model’s response to different environments, permutations in
the temperature data sequences, and changes in the amplitude of
the temperature ranges.

It could be argued that the choice of the membership functions
may condition the results. Indeed, this is plausible because, just
as in any model, the choices of functional relationships affect the
response. What could be interesting in this case is to analyze the
results obtained with different partitions of the discursive universe
or, in other words, by changing the number and type of member-
ship functions used. It would be useful to analyze how the degree of
precision used in the construction of the parameter functions can
be considered adequate by identifying statistically significant dif-
ferences in the models’ outputs and linking them to different levels
of information. However, an analysis of the response of any model
to changes in the type and number of membership functions used
in its parameterization seems to be of a more theoretical nature and
out of the scope of this work. It certainly is an attractive subject for
continuing our research in this direction.

5. Conclusions

The model is strongly based on the observation of the biolog-
ical processes involved in the development of O. ostertagi larvae
from egg through the larval stages up to L3 with a minimal
requirement of experimental data. Laboratory data from Pandey
(1972) were used in the construction of the functional relationship
between environmental temperature and development times used
to parametrize the model. Input to the model are local tempera-
ture time series obtained from The National Meteorological Service.
Totally independent field data from Fiel et al. (2008) was used for
comparison to the output of the simulations thus corroborating the
model.

The model is simple, expressed in terms of one difference equa-
tion and three FTSK systems, one for each parameter: the initial
larval length at hatching (l0), the larval length at the beginning of
stage L3 (lL3), and the larval development rate (r), all depending on
the daily mean temperature.

In spite of its simplicity, the model describes very adequately
the complexities of the problem. The goodness of the representa-
tion obtained through the model is reflected in the accuracy of the
output relative to data reported by Fiel et al. (2008). The average
estimation error between experimental field data and the output

of this model is less than 1 week (0.64 week).

The model exhibits a high sensitivity to the daily variation
in temperature and the amplitude of the range of temperatures
along a given development period. This is reflected in the out-
come of the Kolmogorov–Smirnov analysis and the variability in
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he development times obtained from simulations using each set
f temperature vectors PV��. Because of their particular experi-
ental design, it is not possible to find this variability in the field

rials that may allow corroborating this interesting feature. How-
ver, this is consistent with the differences observed in the field
mong development times estimated from samples retrieved in
pring and in autumn, when the same mean temperatures yield
ifferences in development times.

The advantageous characteristics of the model result from the
se of FTSK systems for its parameterization. This introduces the
ossibility of describing in a simple way the dynamics of each com-
onent that has an effect on individual growth and permits to focus
n the biological aspects instead of trying to fit the model to par-
icular data. The description of each factor can be formulated as

composition of simple piecewise linear functions. Then, these
ombine to convey into the parameter functions the expert’s non-
uantifiable knowledge on O. ostertagi that otherwise could not be

ntroduced, for instance through the use of classic ODE methods.
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ppendix A. Concepts and definitions about fuzzy
ule-based systems (FRBS)

Lately, several authors have used the fuzzy set theory in different
odelling problems (Krivan and Colombo, 1998; Chen et al., 2000;

arros et al., 2003; Jafelice et al., 2002, 2004; Ortega et al., 2003).
n every case the results seem appropriate and the models mimic
ccurately the situations being analyzed. Kosko (1993) showed that
uzzy logic systems are universal approximators to general nonlin-
ar functional relationships, to any desired degree of accuracy. This
akes fuzzy logic modelling a powerful tool for exploring complex,

onlinear biological problems.
A fuzzy logic model is also known as a fuzzy inference system or

fuzzy rule-based system. The essence of fuzzy logic rests on the
ruism that all things admit degrees of vagueness. Black and white
ases are the exception in a world of gray (Mackinson et al., 1999).
or example, the distinction between a normal rain and a drizzle is
ague. The categories overlap and may also shift in different con-
exts. When we learn that rainfall is 10 mm/h, then the truth or,

ore appropriately, the compatibility of ‘10’ with “normal rain” or
pouring rain” is a matter of definition. It depends on our under-
tanding of the concepts “normal or pouring”. In set theory, each of
hese linguistic values is a set of the fuzzy variable rainfall. There is
o one point where we can say some rainfall is normal or not nor-
al, it is a matter of degree. We perceive the precise in a fuzzy way

nd it is this ability to summarize information into classes (fuzzy
ets) that separates human intelligence from machine intelligence
Zadeh, 1965).
In very formal terms a fuzzy set A defined in a discursive uni-
erse X is a set of pairs (x, �A(x)) where x belongs to X and �A(x)
s a number in the interval [0, 1] representing the degree of mem-
ership of x in A. Expert knowledge is represented by a set of fuzzy
ules, they are of the form “IF this THEN that”. Rules made associa-
l Modelling 221 (2010) 2582–2589

tions between input and output fuzzy sets. They relate one event or
process to another event or process, for example: “IF Temperature
is high THEN Size is small”

Basically, any fuzzy logical model is formed by four parts: (a)
the input processor, which translates nonquantifiable or quantifi-
able input into fuzzy sets of their respective universes; (b) the
fuzzy rule base, consisting of a collection of fuzzy IF-THEN rules
aggregated by the disjunction or the conjunction, which is a key
knowledge-encoding component of fuzzy rule-based systems; (c)
the fuzzy inference engine, performing approximate reasoning by
using the compositional rule of inference, so that a fuzzy set answer
or global conclusion will be calculated by aggregation of the partial
solutions contributed by each rule; (d) the defuzzifier, which assigns
a real number that is representative of the corresponding fuzzy set
answer. This last process is called defuzzification.

In this work, the fuzzy logic models are of the Takagi-Sugeno-
Kant type (Nguyen and Walker, 1997) (FTKS). This approach is
essentially based on the possibility of describing the local dynamics
of a problem in approximate terms. This is the case, for example,
when for each member of a fuzzy partition of the input space of
X, the difference equation of the problem is linear to some degree.
This suggests forming rules as follows

Rj : “IF x1 is A1
j and x2 is A2

j ... and xN is AN
j THEN y

= fj(x1, x2, ..., xN)”, j = 1, 2, . . . , r

where xi are the actual observed values of input variables, and fj (.)
is some specific linear function, such as

fj(x1, x2, . . . , xN) =
N∑

i=1

˛i,jxi

For FTSK systems, the consequent in each Rj is expressed by a
constant value. The rule Rj will produce a crisp output given by:

yj = �jfj(x1, x2, . . . , xN)

where �j is the degree of applicability or weight of the rule Rj. Then
the overall output value is taken to be a weighted average:

y(x1, x2, . . . , xN) =
∑r

j=1
�j fj(x1,x2,...,xN )∑r

j=1
�j

Appendix B. Frequent membership functions

Membership function forms used in this work are of the follow-
ing types:

Z-function

z(x; a; b) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ≤ a

1 − 2
(

x−a
b−a

)2
if a ≤ x ≤ a+b

2

2
(

b−x
b−a

)2
if a+b

2 ≤ x ≤ b

0 if x ≥ b

⎫⎪⎪⎬
⎪⎪⎭

S-function

s(x; a; b) = 1 − z(x; a; b) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ a

2
(

x−a
b−a

)2
if a ≤ x ≤ a+b

2

1 − 2
(

b−x
b−a

)2
if a+b

2 ≤ x ≤ b

1 if x ≥ b

⎫⎪⎪⎬
⎪⎪⎭

Triangular function
( ( ) )
T(x; a, b, c) = max min x−a
b−a , c−x

c−b , 0

Linear function

L(x; a, b) = ax + b
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