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ABSTRACT. The Ñandú or Rhea americana is an au-
tochthonous species perfectly adapted to the pampas environ-
ment and only distributed in South America. The species
exhibits an unusual breeding system combining polygyny,
polyandry, communal nests and exclusive male parental care,
which seems to contradict the idea of selfish genes. Our aim
has been to construct a mathematical model based on the
short term population dynamics of Rhea, living in the wild
or in semi-captivity, and taking into account environmental
factors that vary from year to year. Due to the characteristics
of its life cycle, it was necessary to develop a model that al-
lows us to differentiate between the survival and fertility rates
of each age group and the distinct behavior during breeding
and non-breeding seasons. Therefore, a quarterly differenti-
ated stage-structured discrete model was needed. Time steps
of different lengths are used for modeling chicks or “charos”
on the one hand, and juveniles and adults on the other. En-
vironmental variables have been incorporated into the model
because they affect the reproductive success of the species.
Different scenarios are given as illustrations of the model use.
Finally, the possibility of harvesting has been introduced in
the model. The model is intended as a first step towards
more refined models and systematic data gathering with the
purpose of leading the way to a computational tool for risk
assessment and decision-making.
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Introduction. Rhea americana is an autochthonous species in South
America. The development of agriculture has caused a decrease in
the wild population densities owing to farmers forcing the individuals
out of the fields, claiming damage to crops and competition with
livestock in pastures. There have been some investigations carried out
and the results show that such competition is insignificant (Vacarezza
et al. [2001], Uhart and Milano, [2002]). This is the reason for
attempting to convince farmers that the ñandú can be considered an
attractive and sustainable management option that could become a
profitable economic resource, while at the same time contributing to
its conservation.

Stage-structured matrix models are used when the individuals of
a population exhibit different fertility and survival rates at different
stages. Hence, it is essential to recognize the distinct roles played by
individuals at different stages of development. A matrix population
model provides a link between the individual and the population, built
around a simple description of the life cycle (Caswell [2001]). In
this particular case, such models seem very appropriate for including
environmental parameters that affect the reproductive success in a
direct and simple manner. Nevertheless, the representation of the
reproductive process requires a careful refinement in the time steps
in order to adequately reflect parental behavior and offspring survival
and, at the same time, take full advantage of the simplicity of a matrix
model.

Rhea americana, its life history. Rhea americana belongs to the
Family Rheidea, Order Rheiformes, Superorder Paleognathae. This
species is perfectly adapted to the pampas environment. It is one of
the oldest and biggest birds of America. The male can measure up
to 150 cm in height and weigh up to 35 kg, while the female reaches
130 cm and 25 kg (Cajal et al. [1993], Fernández [1998]). Historical
references can be found in Azara [1850], Muñiz [1885] and Meyer de
Schaunsee [1966]. In the wild, they can live up to 15 years (Davel
[1911], cited in Fernández [1998]) but it is not known whether they are
able to reproduce at advanced age. When they are kept as pets they
can live up to 40 years (Dani [1993]).

The social structure changes with the time of the year. Rheas are
gregarious and form groups of 2 to 3 animals, and even flocks of over
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50 during the non-breeding season (May August). With the first warm
days when spring approaches, these groups begin to fragment to form
the breeding groups (September December) (Bruning [1974]).

The mating system of the ñandú combines polygyny and polyandry.
The male simultaneously monopolizes various females which mate and
lay eggs sequentially in nests of different males. The size of the nest
depends on the number of females that form the harem, generally 6 to
8. However, harems with 2 up to 15 females can be seen.

The male is the one which carries out the largest part of the reproduc-
tive work as he builds the nest, rolls the eggs into the nest with his bill,
incubates them (for a period of about 40 days) and takes care of the
chicks (“charos”) until they are two to three months old (Bruning and
Dolensek [1986]). The success of the nest, e.g., that some eggs hatch,
depends basically on the fitness of the male incubating them. Some
males begin the breeding activities at the beginning of the breeding
season, while others choose to start them at the end.

The participation of the female is restricted to the setting of eggs
(Bruning and Dolensek [1986]). The quantity of eggs produced is
limited by the energy capacity of each female. When the setting in
one given nest concludes, the females who form that harem join with
another male that has followed them during this period. The male
guides them to his nest and another cycle begins.

Births begin in early November and continue until late February.
During the first months of life mortality is high, particularly during
the first days after hatching, and an asymptote is reached in about
one month (Fernández [1998]). The mortality of chicks as well as the
abandonment of nests are caused by natural predators and by adverse
environmental conditions.

During the breeding season, the principal predators are lizards,
weasels, foxes and armadillos who prey on the eggs, while the com-
mon predator of chicks are wild birds (caranchos, chimangos) as well
as dogs that intrude when small birds are far from their fathers (Milano,
pers. comm.).

In this species’ population dynamics, the climatic factors have a great
importance during the whole year. During the breeding season, intense
droughts can dehydrate the eggs and abundant rains can flood the nests,
stimulating abandonment in both cases. The rest of the year, the birds
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must obtain the necessary energy to carry out all the activities linked
to their survival and that of their species.

The mathematical model for population dynamics. Due to
the fact that reproductive and survival rates are not the same for all
individuals, a stage-classified matrix model has been built for studying
the population dynamics.

The breeding success depends mostly on the male because he is the
one who takes and incubates the eggs, and then cares for the chicks
during the first months of their life. For this reason only the male
population will be modeled. The relationship female:male has been
considered 1:1 in Rhea americana populations.

The model is discrete in time. The population has been structured
in five stages of different duration, with the purpose of obtaining a
better assessment of the population due to factors that take place
seasonally (quarterly). The model is in fact composed of six matrices:
four transition matrices for juveniles and adults and two for hatching
and chicks. These matrices are combined by means of products and
sums in order to produce the annual matrix. The adult transition
matrices reflect changes in the population every three months, while
the other two, devoted to the reproductive process, have a ten-day
time step and generate the new individuals that enter the population.
The nth ten-day interval will be referred to as nth-decade.

All of these matrices are necessary because the reproduction is not
continuous during the year but takes place in the warm season. Also,
the individuals change stages at different months of the year, depending
on when they are born.

Harvest has been introduced in the model by means of a diagonal
matrix, making it possible to study different harvest scenarios.

Simplified life cycle and model formulation. The population
has been divided in five stages as shown in Table 1. In the model,
chicks are counted for the first time in the population in April or July,
depending on whether they came from eggs that began to be incubated
at the beginning of the breeding season or later in the same season.
Since the chicks must be at least three months old to be considered
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part of the population, all individuals are between 3 to 6 months old
when they are counted for the first time, as they enter the charos stage.

We have observed that the individuals that enter the adult population
model in April grow from one stage to another during the period
January April, while those that enter in July grow from one stage to
another during the period April July. During the other periods, they
remain in the same stage.

The quartile projection matrices that reflect this situation take the
form:

A =

⎡
⎢⎢⎢⎣

a11 0 0 0 0
0 a22 0 0 0
0 0 a33 0 0
0 0 0 a44 0
0 0 0 0 a55

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b11 0 0 0 0
b21 b22 0 0 0
0 b32 b33 0 0
0 0 b43 b44 0
0 0 0 b54 b55

⎤
⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎣

c11 0 0 0 0
c21 b22 0 0 0
0 c32 c33 0 0
0 0 c43 c44 0
0 0 0 c54 c55

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣

d11 0 0 0 0
0 d22 0 0 0
0 0 d33 0 0
0 0 0 d44 0
0 0 0 0 d55

⎤
⎥⎥⎥⎦

where A is the projection matrix from October to January, B from
January to April, C from April to July and D from July to October.
The population that has been projected annually is that of October
because this is the month for reproduction.

Once the quartile projection matrices have been constructed, the an-
nual matrix is obtained as their product. Hence, the annual projection
matrix without breeding is D.C.B.A.

Since the chicks are generated by the October population only,
two matrices need to be built. The matrix P permits counting the
individuals that are added to the population in April and the matrix
Θ those added in July. The only non-zero line of these matrices is the
first, basically because the matrices correspond to the first line in an
ordinary Leslie or stage-structured matrix.

The coefficients of matrices P and Θ have been obtained by working
with the following variables and parameters:

• R =(r1, r2, r3, r4, r5), where the jth component corresponds to
the probability of a male nesting during the jth stage (j = 1, 2, . . . , 5).
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• di is the probability of starting incubation during the ith decade
(i = 1, 2, . . . , 9).

• hi is the probability of carrying out a successful hatching during
the ith decade (i = 1, 2, . . . , 9).

• gi is the probability of growing from decade i to decade i + 1,
(i = 1, . . . , 8).

• e(i) is the discrete function that represents the environmental
conditions during each of the nine decades that belong to the hatching
season. This function can take five possible values depending on
whether the decade is very dry, dry, normal, humid or very humid.

• N(t) = (n1,n2,n3,n4,n5) is the population vector of the previ-
ous October, meaning the population at the onset of reproduction.

• m is the average number of eggs per nest.

• The quantity of chicks coming from eggs that began to be incu-
bated in the ith decade of the incubation period is:

bi =
8∏

i=1

gi · hi · di · ei · m · 〈R,N(t)〉

where ei = e(i)·e(i+1)·e(i+2)·e(i+3) corresponds to a hatching period.
The individuals that are counted for the first time in the population
in April are those coming from eggs that began to be incubated in the
first five decades of the season of incubation and that have survived
until April. In other terms, they are (b1 + b2 + b3 + b4 + b5)sa,
where sa is the probability of surviving from age three months until
the month of April, while those coming from eggs that began to be
incubated in the last four decades of the incubation season and that
survive until July will be counted for the first time in July. They are
(b6 + b7 + b8 + b9) · sj where sj is the probability of surviving from age
three months to the month of July. Taking into account the previous
facts, the coefficients of the breeding matrices have been defined as:

ρk = m · rk

8∏
i=1

gi

5∑
i=1

hi · di · ei

�k = m · rk

8∏
i=1

gi

9∑
i=6

hi · di · ei

where k = 1, . . . , 5.
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The individuals recruited in April that will survive until the next
October will be: D · C · P · N0.

The individuals recruited in July that will survive until the next
October will be: D · Θ · N0.

Then, the population of the year t + 1 can be expressed by:

N(t + 1) = D · C · B · A · N(t) + D · C · P · N(t) + D · Θ · N(t)
= D · [C · (B · A + P) + Θ] · N(t).

The annual projection matrix is:

M =

⎡
⎢⎢⎢⎣

d11(c11(a11b11 + ρ11) + θ11) d11(c11ρ12 + θ12)

d22(a11(b11c21 + b21c22) + c21ρ11) d22(a22b22c22 + c21ρ11)

a11b21c32d33 d33a22(b22c32 + b32c33)

0 a22b32c43d44

0 0

d11(c11ρ13 + θ13) d11(c11ρ14 + θ14) d11(c11ρ15 + θ15)

c21d22ρ13 c21d22ρ14 c21d22ρ15

a33b33c33d33 0 0

d44a33(b33c43 + b43c44) a44b44c44d44 0

a33b43c54d55 d55a44(b44c54 + b54c55) a55b55c55d55

⎤
⎥⎥⎥⎦

This matrix is nonnegative and irreducible, therefore it is primitive.

As the annual projection matrix is nonnegative and primitive so, by
the theorem of Perron-Frobenius, there exists a real eigenvalue λ1 > 0
which is a simple root of the characteristic equation. This eigenvalue is
strictly greater than the magnitude of any other eigenvalue, λ1 > |λi|,
for i �= 1.

When the dominant eigenvalue λ is greater than one, the modeled
population grows because this value is the population growth rate
(Caswell [1989]).

Introducing harvest in the model. If the population of ñandú
has a stable distribution, it is possible to determine the proportion
of individuals in each stage that can be harvested while maintaining
the stability of the population. In other words, if the population
is distributed according to the eigenvector νλ corresponding to the
dominant eigenvalue λ, then M · νλ = λνλ. Hence, it is possible
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to harvest the population according to the vector (λ − 1)νλ between
reproduction periods while maintaining its structure and returning to
its initial size. Harvesting does not occur during the breeding period.

With the purpose of including the harvest in the model a diagonal
nonnegative matrix Γ has been built. Its components are the proportion
of individuals in each stage that remain in the population after the
harvest (Beddington and Taylor [1973], Doubleday [1975]).

If the harvest is carried out immediately before the census, then the
remaining population will be: N(t+1) = Γ ·M ·N(t) and the harvested
population will be: C(t + 1) = (I − Γ) · M · N(t).

Given the way in which the model has been built, it is possible to
estimate the harvest in three different seasons of the year, without
including the breeding season, and possible to calculate the population
as well as the harvest in each one of the seasons.

For example, if the population is harvested in the period January April:

• the harvested population is obtained by multiplying the popula-
tion vector of the previous October by the matrix (I − Γ) · B · A;

• the remaining April population is obtained by multiplying the
population vector of the previous October by the matrix Γ · B · A;

• the following October population is obtained by multiplying the
population vector of the previous October by the matrix F = D · C ·
Γ · B · A + D · C · P + D · Θ.

The parameters of the model.

Coefficients of the quartile projection matrices. The annual projection
matrix contains the coefficients Pi, the probability of permanence in
stage i, and Gi, the probability of growing to the next stage after one
year has lapsed. With the purpose of estimating these parameters,
another two which are easier to calculate are introduced: γi, the
probability of growth for surviving individuals, and σi, the probability
of survival.

Then, by simple conditional probability arguments the following
expressions can be obtained:

Gi = σi · γi Pi = σi(1 − γi)
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Supposing that all individuals remain for the same period Ti in the
ith stage, the proportion of individuals in stage i that grows to stage
i + 1 in each step of time depends on the age distribution within the
stage. Hence, parameter γi can be approximated by supposing that the
within-stage distribution is stable, and using the iterative method cited
by Caswell [1989]. Note that the approximated values yield a transition
matrix whose dominant eigenvalue is close to but not necessarily equal
to 1.

Assuming that the ñandú population is stable and λ = 1, the values
of σi and γi can be estimated for this value of λ.

For estimating σi, an auxiliary probability pj has been defined as
the probability of survival from the jth to j + 1th year. The jth year
is defined as the interval of months: (12.(j − 1) + 3, 12.j + 3], where
j = 1, . . . , 15, since the maximum recorded age is 15 years.

Then, the survival probability from one stage to the next is defined
by the kth root of the product of the annual survival probabilities pj ,
corresponding to the years that comprise the stage, where k is the
length of stage in years. Hence, we have:

σ1 = p1

σ2 = p2

σ3 = p3

σ4 = (p4.p5 · · · p9)1/6

σ5 = (p10.p11 · · · p14)1/5

The probabilities pj are computed from

pj =
l(j.12 + 3) + l((j + 1).12 + 3)
l((j − 1).12 + 3) + l(j.12 + 3)

where l(x) is the survival function obtained from the life table (Hutchin-
son [1978], Caswell [1989]). Since in our case the survivorship curve is
known in the middle points of the intervals (12.(j−1)+3, 12.j +3] and
those points are not the ones required to calculate the values of pj , a
linear interpolation has been used.

Consider the survivorship curve in Figure 1. The coefficients of the
annual matrix, which in the theoretical model was obtained as the
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FIGURE 1. Survivorship curve for individuals older than three months.

product of four quarterly matrices, are Pi and Gi. The form of the
quarterly matrices is prescribed beforehand and hence the locations of
the null coefficients are known in each matrix. The others have been
defined in such a way that the product of the four matrices may agree
with the annual matrix.

TABLE 1. Stages considered for the population model.

STAGE Individual’s age (months)
CHAROS (3, 15]

JUVENILE I (15, 27]
JUVENILE II (27, 39]

ADULTS I (39, 123]
ADULTS II (123, 183]

Coefficients of the reproduction matrices Θ and P :

1. Probability of nesting depending on the age. It is known that
not all individuals have the same probability of nesting and that it is
strongly linked to age. As this information could not be found in the
literature and is required by the model, we consulted with people who
have good knowledge of this species. We obtained a range for these
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age-specific probabilities and the middle point of the given range was
taken to be the probability value. Thus the vector obtained:

R = (0, 0, 0.025, 0.3, 0.1).

2. Probability of starting incubation in the ith decade of the breeding
season. These probabilities, shown in Table 2 and Figure 2, have
been obtained in the field from the number of nests found over the
period from October to December. For simplicity, we have excluded the
possibility of a male building two nests during the same reproductive
season.

3. Probability of successful hatching in the ith decade, i = 1, 2, . . . , 9,
of the breeding season. The data for estimating these probabilities were
obtained from the same fieldwork as the previous probability. The
results are shown in Table 3 and Figure 3.

4. Survival of chicks. To obtain the probability of survival of chicks
from birth to their third month, data from nests that were visited
several times during this period have been analyzed. The survivorship
curve that allows calculation of the quantity of chicks of the initial
cohort that survive until day x, l(x), was obtained from fitting the
values for the observed nests with an exponential function:

l(x) = 54.123 + 43.611 e(−x/14.734)

By means of this function the probabilities of survival from the ith
decade to the i+1th were calculated as shown in Table 4 and Figure 4.

5. The probabilities of survival from the third month until the time
when individuals are counted for the first time. These probabilities are
assumed to be high, and hence they have been set to 0.95 (Milano,
pers. comm.).

6. The environmental conditions. The function that reflects the
environmental conditions has been defined as a discrete function. For
each decade, this function can take one of five different values, between
0 and 1, depending on whether the decade is very dry, dry, normal,
humid or very humid. Somewhat arbitrarily, the values were assigned
as shown in Table 5. A better definition will be possible when more
field data on this item will be available.
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FIGURE 2. Probability of starting incubation during each of the decades of
the breeding season, computed from field data.

TABLE 2. Probability of starting incubation during each of the decades of

the breeding season (data from Fernández [1998] and Fernández [pers. comm.]).

Number 1 2 3 4 5 6 7 8 9

of decades

Prob. of 0.03 0.05 0.07 0.123 0.158 0.175 0.168 0.138 0.089

starting

incubation
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FIGURE 3. Probability of successful hatching during each of the decades of
the breeding season, computed from field data.
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 FIGURE 4. Probability of survival of chicks from birth to age three months,

empirical.

TABLE 3. Probability of successful hatching for each of the decades of the

breeding season (data from Fernández [1998] and Fernández [pers. comm.]).

Number 1 2 3 4 5 6 7 8 9

of decades

Probability of 0.25 0.179 0.286 0.317 0.327 0.314 0.408 0.48 0.529

success

TABLE 4. Probability of survival of chicks from birth to

age three months (Milano [pers. comm.]).

Decade Probability of survival
from the ith decade to i + 1th

(gi)
1 0.81384
2 0.88396
3 0.93341
4 0.96381
5 0.98095
6 0.99015
7 0.99495
8 0.99743
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TABLE 5. Function that reflects the environmental conditions.

Characteristic Very Dry Dry Normal Humid Very Humid
of Decade

Value assigned 0.25 0.75 1 0.8 0.1

The analysis of cases. By these means, and using available data
(Fernández and Milano, pers. comm.) the quarterly matrices were
calculated as:

A =

⎡
⎢⎢⎢⎣

0.988 0 0 0 0
0 0.996 0 0 0
0 0 0.999 0 0
0 0 0 0.947 0
0 0 0 0 0.882

⎤
⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎣

0.82 0 0 0
0.17 0.786 0 0 0
0 0.2 0.75 0 0
0 0 0.23 0.944 0
0 0 0 0.05 0.882

⎤
⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎣

0.15 0 0 0 0
0.835 0.245 0 0 0

0 0.73 0.2 0 0
0 0 0.77 0.944 0
0 0 0 0.056 0.882

⎤
⎥⎥⎥⎦

D =

⎡
⎢⎢⎢⎣

0.9 0 0 0 0
0 0.99 0 0 0
0 0 0.988 0 0
0 0 0 0.947 0
0 0 0 0 0.882

⎤
⎥⎥⎥⎦

As environmental conditions are considered to affect the reproduc-
tion, different reproduction matrices Θ and P have been obtained
by taking into account different environmental conditions during the
breeding season.
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When the environmental conditions during the breeding season are
normal, the annual projection matrix is the following:

M =

⎡
⎢⎢⎢⎣

0.109 0 0.043 0.512 0.171
0.710 0.19 0.019 0.234 0.078
0.121 0.604 0.148 0 0

0 0.145 0.752 0.799 0
0 0 0.011 0.081 0.605

⎤
⎥⎥⎥⎦ .

In this case the dominant eigenvalue of the annual projection matrix
is λ = 1.197. Then, the population under normal environmental
conditions has an annual growth rate of about 19%, which agrees with
field observations. Note that the computation of the coefficients of the
quartile matrices based on the iterative method proposed by Caswell
[1989] does not take into account the breeding matrices, and hence λ
should not be expected to be equal to 1.

The right eigenvector corresponding to the dominant eigenvalue is:

νλ = ( 0.378 0.452 0.304 0.749 0.107 )′ .

Then, the stable distribution of a population of 100 individuals is given
by:

N0 = ( 19.407 22.826 15.343 37.379 5.405 )′ .

Since the environmental conditions during the breeding season change
every year, there will be a different annual projection matrix for each
year.

Different scenarios have been considered and a stable initial pop-
ulation of 100 individuals has been projected as shown in Table 6.
Comparing the final population given by the different scenarios with
the permanently “normal” situation, we can see that in all cases the
population decreases as expected. The largest decrease is when the
conditions are dry for all years, in which case we may say that the
younger stages show a very poor recruitment while the fourth is re-
duced to about 50% of the individuals of the same stage under normal
conditions. In the second case, the last stage is the one that shows
less difference (25%) relative to the population under normal condi-
tions. In the third case, the stages which exhibit the largest difference
(60%) when compared to the population under normal conditions are
the second and the third stages.
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The harvest was analyzed in the first case, that is, under normal
climatic conditions. The vector c = (λ − 1)νλ, which represents the
proportion of individuals of each stage that can be removed is

c = ( 0.074, 0.089, 0.06, 0.146, 0.021 )′

Then, the harvesting matrix Γ is:

Γ =

⎡
⎢⎢⎢⎣

0.926 0 0 0 0
0 0.911 0 0 0
0 0 0.940 0 0
0 0 0 0.854 0
0 0 0 0 0.979

⎤
⎥⎥⎥⎦ .

It is possible to harvest once a year, choosing to do this in any one
season of the year. One option is to calculate how the maximum
quantity of harvested individuals change as the harvest occurs in
different months under the assumption of sustainable yield. It is easily
seen that the month in which the harvest is carried out affects only very
slightly the quantity of individuals that remain in the population as well
as the quantity that is harvested. This is because harvesting occurs only
during the non-breeding period. Although there are individuals that
grow from one stage to another, their proportion within the stage is
relatively small, hence the outcome is not significantly different.

These few examples show that this model can adapt to various
situations. Once the model is well calibrated, it could be used as
a basis for building a computational tool useful to a producer or
landowner interested either in the conservation of the resource ñandú or
in sustainably exploiting it. The model can be used for the projection
of possible scenarios and for determining possible risks and beneficial
actions.

Results and conclusions. The purpose of this work was to
formulate a mathematical model that reflects the population dynamics
of Rhea in the short term in response to environmental variations and
conditions of sustainable harvest. The model has been built with
the purpose of obtaining a matrix that would be suitable for annual
projections, but given the characteristics of the species it was necessary
to follow the population with different time steps depending on the
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stage. This is why four matrices for seasonal projections and two
matrices for representing reproduction under climatic constraints have
been built. The model projects the population abundance throughout
time, and at the same time provides information on characteristics of
the population. This information the mid-term growth rate of the
population, the stable stage distribution, and the reproductive value
of each class can be calculated from the parameters of the transition
matrix.

A diagonal matrix was introduced to represent the harvest. Its
elements represent the proportion of individuals in each stage that
remain in the population after the harvest. The model was built in such
a way that the harvest can be performed in different seasons of the year
and hence different strategies can be simulated. The simulations make
it possible to project the population growth over several years and to
evaluate the effect of different sequences of weather conditions on the
abundance of Rheas. They provide a landowner with an estimate to
help him decide the best time and right amount to harvest to ensure a
sustainable yield and the conservation of this species.

The construction of a population model that includes a harvest factor
is also a good tool for the systematization of data. Although some
rates are not known with precision, contacts with researchers and
people familiar with the species helped propose reasonable, biologically
consistent values for the construction of the model. In spite of the
lack of rigorous data, the output can be considered a satisfactory
first approximation. Feedback to field researchers will help them
in collecting new data to compute rates more accurately, with the
possibility of improving the model.

Hence, this approach can be regarded as a first step towards a
more precise model that would include other aspects of interest to a
conservationist or a manager.
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