A behavior priority driven approach for resource
reservation scheduling

Leo Ordinez David Donari Rodrigo Santos
lE-DIEC lIE-DIEC HIE-DIEC
UNS-CONICET UNS-CONICET UNS-CONICET

Avda. Alem 1253
(8000) Bahia Blanca, Arg.

lordinez@uns.edu.ar

ABSTRACT

In this paper a behavioral distinction of soft real-time tasks
is introduced. The distinction is based on the behavior of
the previous instance of each task and it is used to propose
a scheduling algorithm. The algorithm, called BIDS, uses
well-known server mechanisms with an extension to handle
two priority queues within each server. The priority of a
server is managed accordingly to the result that its associ-
ated task produce. Along with the formal presentation of
the algorithm and the proofs of its properties some perfor-
mance evaluations based on simulations are included.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems|:
Real-time and embedded systems; D.4.1 [Operating sys-
tems|: Process Management —scheduling

Keywords

real-time, scheduling, behavior, server, importance.

1. INTRODUCTION

Very often, real-time systems are composed by hard and
soft tasks. Hard tasks are subjected to a scheduling that
must not allow any deadline miss. Whereas, soft ones are
allowed to miss a certain amount of their deadlines. How-
ever, a deadline miss from a soft task should not affect the
performance neither of the other soft tasks nor of the hard
ones. In order to reach this goal, the usage of resource reser-
vation mechanisms (servers), is an optimal choice.

Server based approaches are widely used and with dif-
ferent particular objectives. Therefore, they are applied to
the treatment of multimedia applications [1], control appli-
cations [2], real-time communications [9] and some applica-
tions more general like [8]. However, in the server based
approaches cited before every task is treated indistinctly

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyiees prior specific
permission and/or a fee.

SAC'08 March 16-20, 2008, Fortaleza, Ceara, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Avda. Alem 1253
(8000) Bahia Blanca, Arg.

ddonari@uns.edu.ar

315

Avda. Alem 1253
(8000) Bahia Blanca, Arg.

ierms@criba.edu.ar

without taking account of the function it develops or the
results it produces. Furthermore, in many situations this
behavior of a task can be seized at scheduling time. An ex-
ample of such situation can be a task associated to a smart
transducer that varies its importance according to the re-
sult produced on the information processing referred to it.
Another example can be a task that computes the roots of
a polynomial and based on them (i.e. they real parts are
negative or positive) modifies its importance within the sys-
tem.

In this paper, a server-based scheduling method that han-
dles two different task queues is presented. The server that
implements the algorithm is called BIDS (Behavioral Impor-
tance Dual-Priority Server). It is based on the usage of the
IRIS-HR server [8], specially modified to manage internally
two kind of priorities.

The tasks handled by BIDS have a parameter that de-
termines their importance based on their information pro-
cessing behavior. Hence, the main idea of this approach
is to establish a threshold on the function developed by a
task and according to that, establish its next activation and
schedule it with higher or lower priority. The threshold is
used to set dynamically the importance of the task, being:
IMPORTANT, if the value obtained from the information
processing behavior is above the threshold and NOT IM-
PORTANT otherwise. This changing of importance can be
given at run-time (i.e. between two consecutive instances
of a task); consequently each BIDS associated to a task has
two queues: one for IMPORTANT and the other for NOT
IMPORTANT instances of tasks. The algorithm intends to
give a higher priority to IMPORTANT tasks and a lower one
to NOT IMPORTANT ones by means of distinctly manag-
ing the deadlines of the two.

The main contribution of this paper is the concept of be-
havioral priority driven scheduling. Based on a hierarchical
scheduling, tasks embedded in a server entity, define some of
their parameters and their priorities based on the result of
their last computation instance. To the best of the authors
knowledge, no previous work proposed this approach.

The rest of the paper is organized as follows: in Section
2, previous works are revised; in Section 3, the task and
server models are introduced; in Section 4, the description of
BIDS and the demonstrations of its properties are presented;
experimental results based on simulations are discussed in
Section 5. Finally, in Section 6, conclusions are drawn.

2. RELATED WORK

The ideas proposed in this paper cannot be found all to-
gether in any other previous work. This is because BIDS
presents several aspects to be contrasted: server-based mech-
anisms, scheduling of different kind of tasks and dynamically
changing importance of tasks and its corresponding schedul-
ing. Within the server-based approaches, IRIS-HR [8] is an
enhancement of the CBS algorithm [1] through the use of
a hard reservation property that limits the greedy effect of
the CBS giving a more continuous rate operation mode to
the tasks served.

Davis et al proposed the Dual Priority Scheduling (DPS)
[3] to take advantage of the spare capacity left by hard tasks
to execute soft ones. It uses fixed priorities with three pri-
ority bands. Hard tasks change their priority to improve
the response time of soft ones. With respect to tasks that
change their importance within the system, [6] proposed an
algorithm for dynamically changing tasks sets. This ap-
proach adjusts tasks periods based on an importance pa-
rameter set by the developer off-line. An algorithm based
on a proportional share scheduler, but specially applied to
real-time multimedia applications is the IMAC scheduler,
proposed in [5]. The IMAC adjusts CPU shares based on
the information history and the importance level of a task,
which corresponds to the type of task. Finally, in [10] the
authors make an extensive study of mode change protocols
for fixed priorities. They proposed an algorithm to minimize
the promptness of a mode change.

BIDS differs from all the previous approaches in that it
is scheduled by dynamic priorities and makes the priority
distinction between tasks based on a on-line parameter pro-
vided by the task behavior. The use of EDF as general
policy, provides a more uniformly delay distribution with a
more even impact of the promptness. This last topic spe-
cially related to mode change protocols.

3. SYSTEM MODEL

In the context of this paper, tasks are independent, peri-
odic and preemptive. They may be hard or soft. Hard tasks
would have a classical scheduling approach following tradi-
tional policies like the Earliest Deadline First [7|. Soft ones
will be scheduled in a hierarchical form through the use of
BIDS. Since tasks are periodic, they can be seen as a stream
of jobs or instances J;; where the first subindex refers to the
task and the second one to the instance. Each soft task is
characterized by its mean execution time, Cj, its period, T;
and its relative deadline D;. Tasks also have associated a
parameter u; for establishing the threshold of importance
in its behavior. Its use is explained later. Each job within
the task has an absolute deadline given by d;; = ai; + D;,
a variable §;;, that reflects the importance of the job for
the next period and a release time denoteda;; and defined
by ai; = aij—1) + ~iT;. The value of v; can be either 1
or another natural number and its election is done based
on the value of §;;_1y, which imposes a distinction between
instances of a task. In this sense, d;; can reflect only the
computation result (or some kind of more elaborated predic-
tion mechanism) for the next instance, e.g: the derivative
of the signal it follows. This model can be used for example
with tasks associated to smart transducers [4], that work
with physical signals that vary continuously in time, e.g.:
temperature, pressure, humidity, speed, etc.

The servers have two different queues to hold the jobs
according to their respective importance. Each server is de-

316

scribed by the tuple (Qs, Ps, Ds, as, 7s) for its budget,
period, relative deadline, postponement factor and reactiva-
tion time. A task embedded in a server, runs in a virtual
processor with speed proportional to the relation Qs/Ps,
which is actually its bandwidth Us. The behavior of a task
is reflected in the way the server holding it updates its pa-
rameters. When a job is described as NOT IMPORTANT,
the priority of the server is reduced accordingly to the «;
value. That is, the deadline of the server holding the task is
increased by «; times its period Ps and with that the prior-
ity of it is reduced giving place to more urgent tasks. When
the server budget is exhausted, it has to wait for a budget
replenishment that is made synchronously with its period.
This time value is hold in a parameter rs. In this way, the
server imposes a hard reservation on their resources.

Once the task and server model is presented, in what fol-
lows the concepts of threshold, behavior of tasks and post-
ponement factor will be clarified. The threshold p; is estab-
lished by the system developer at design time. It represents
a threshold to classify the next instance of a task as IM-
PORTANT or NOT IMPORTANT. Once a job finishes, if
d;5 > pi the job is said to be IMPORTANT and it is associ-
ated, in the next instance, to the queue of IM PORTANT
jobs. On the contrary, when the result is below the thresh-
old, &;; < p; the job is NOT IMPORTANT and it will be
queued in the NOT IMPORTANT queue. The as pa-
rameter of the server (which actually corresponds to the
~:; parameter of the task when it is NOT IMPORTANT), is
based on the dynamics of the controlled variable of the task.
As a rule of thumb, the sampling frequency should be be-
tween 5 and 10 times the maximum frequency that has to be
reconstructed. The shorter the sampling period, the more
accurate the digital control will be. Thus, there is a trade
off between the quality of control and the computation de-
mand on the system. If a job finishes its execution as NOT
IMPORTANT, it can be said that in the next instance the
sensor/actuator related to it can be delayed. Consequently,
the selection of the proper as (and its corresponding ~;)
should be based on the dynamics of the system.

4. THE ALGORITHM

In this section, the algorithm BIDS will be formally pre-
sented, along with a series of properties that will be stated
and proved. The main idea behind the algorithm is to post-
pone the execution of not important tasks, so that portion
of the bandwidth can be used by other important tasks that
belong to another server.

4.1 Definition and Functioning

In a simplified but general case, a BIDS is used to en-
capsulate a task whose available portion of the processor is
bounded to the bandwidth of its BIDS. In the same line
of reasoning, a system is composed by a certain number of
BIDS, whose access to the processor is given by a higher level
scheduling policy. If the chosen policy is Earliest Deadline
First (EDF) [7], the BIDS with the closest deadline to the
actual time is the one with the highest priority. At this
point is where the newly introduced postponement factor
plays a fundamental role, by differentiating the treatment
of IMPORTANT and NOT IMPORTANT tasks.

On the other side, the imposition of a hard reservation
makes that dynamic bandwidth distribution among the servers
even more fair. In the case of BIDS, the hard reservation

is introduced by means of differential waiting for replen-
ishment of the BIDS’ budget. With this in mind, at each
instant a BIDS can be in one of four states:

ACTIVE: There is at least one job ready to be executed
and ¢gs > 0.

IDLE: There are no pending jobs to be executed.

SHORT _WAIT: The execution budget was exhausted and
there is at least one IMPORTANT job waiting to com-
plete its execution.

LONG _WAIT: Identical to the previous case, but there
are no IMPORTANT pending jobs and there is at least
one NOT IMPORTANT job waiting to execute.

In Figure 4.1 the different possible transitions between states
is shown.

Figure 1: State diagram of a BIDS.

As was mentioned before, BIDS is part of a hierarchical
scheduling architecture. In this sense, there are two levels
of queues: first, the system queues, i.e. one for each state
in which a BIDS can be; and second, the ones internal to
a BIDS, i.e. one for IMPORTANT and one for NOT IM-
PORTANT instances of a task.

BIDS is based on a simple set of rules, which are described
following this convention: AT is for Active Important; AN
is for Active Not Important; SW is for Short Wait; LW is
for Long Wait; SL is for Stop Long Wait; IIN is for Inactive
Important /Not Important and DB is for Decrement Budget.
In this sense, the rules are also numbered to distinguish the
situation in which they are applied; for example, in the case
of rule AI, there are three different moments in which it is
applied keeping in all cases the same spirit. With this in
mind, the rules previously described can be thought like a
family of rules, where, despite the situation, each instance of
the family performs the same task each time and establishes
a transition between states, as shown in Figure 4.1.

To present the different rules in the clearest way possi-
ble we will use two new variables: imp and nimp. These
variables will be used as semaphores to indicate that there
are IMPORTANT or NOT IMPORTANT pending jobs, re-
spectively, and the BIDS is in one of the two waiting states.
Consequently, the BIDS will be in a waiting state if any of
the variables is greater than zero.

Since in what follows we will be talking always about task
T;, the notation can be simplified by eliminating the sub-
scripts. The j-th instantiation of 7; will therefore be denoted
Jj. The same is valid for the different parameters of the job.

317

Al: BIDS has enough budget to execute jobs and there are
IMPORTANT pending ones. A transition to ACTIVE
state is performed in the following conditions:

AL1L: If a job J; € IMPORTANTS arrives at t = aj
and the BIDS is IDLE and (¢ > ds — qs%), then
gs <_Qs;ds <—t+Ps and re «— t

If a job J; € IMPORTANTS arrives at ¢ = a;
and the BIDS is IDLE and (¢ < ds — ¢s5*) and
ds >t and gs # 0, then the job is served with the
current budget and deadline and rs « ¢

Al2:

AL3: If (4mp > 0) and (¢ > rs), then imp «— imp — 1,
qs — Qs, ds — t+ Ps and rs — ¢
AN: BIDS has enough budget to execute jobs and there
are NOT IMPORTANT pending ones, a transition to
ACTIVE state is performed. Special cases:
AN.1: If a job J; ¢ IMPORTANTS arrives at t = a; and
the BIDS is IDLE and (¢t > ds — qsaS&), Then
gs — Qs, ds — t+ asPs and rg «— ¢t

If a job J; ¢ IMPORTANTS arrives at t = a;
and the BIDS is IDLE and (¢ < d, quas&) and
ds >t and gs # 0, then the job is served with the
current budget and deadline and r, « ¢

AN.2:

AN.3 If (nimp > 0) and (¢t > rs), then nimp «— nimp —

1, qs — Qs,ds — t+asPs and rs — t

SW When the BIDS’ budget is exhausted and there are
IMPORTANT pending jobs it waits for at most one
period for its replenishment. A transition to SHORT

WAIT state is performed. Special cases:

SW.1: If a job J; € IMPORTANTS arrives in t = a; and
the BIDS is IDLE and (¢t < ds —gs S:) and ds >t

and ¢s = 0, then imp «— imp+ 1 and rs «— d;

SW.2: If BIDS S; is executing J; € IMPORTANTS and
gs = 0, then imp «— imp + 1 and rs « ds

LW When the BIDS’ budget is exhausted and there are
NOT IMPORTANT pending jobs it waits for a multi-
ple a of its period for replenishment. A transition to
LONG WAIT state is performed. Special cases:

LW.1: If a job J; ¢ IMPORTANTS arrives in ¢t = a;
and the BIDS is IDLE and (¢ < ds — gss 5=) and
ds < t and gs = 0, then nimp «— nimp + 1 and

re — ds + s Py
If BIDS S, is executing, J; ¢ IMPORTANTS and
qs = 0, then nimp «— nimp + 1, rs «— ds + as Ps

SL If a BIDS is in WAIT_LONG state and an IMPOR-
TANT job arrives, it cuts down the waiting to, at
most, one period from the activation time of that job.
A transition to WAIT SHORT state is performed.
There is only one case.

SL: If a job J; € IMPORTANTS arrives in t = a;
and the BIDS is in LONG WAIT, then imp «
imp + 1,rs «— min{a; + Ps,rs}

LW.2:

DB: When a BIDS executes a job for one time unit, it decre-
ments it budget accordingly. There is only one case.

DB.1: If a job J; served by BIDS S, executes for 1 unit
of time,then ¢ «— ¢s — 1

IIN: When a job finishes and there are not pending ones,
the BIDS goes to IDLE state. Otherwise, it remains
ACTIVE. There are three cases.

IIN.1 If ajob J; finishes and there are not pending ones,
then go IDLE

IIN.2 If a job J; finishes and there are important pend-
ing ones, then go to Rule AI.2

IIN.3 If a job J; finishes and there are non-important
pending ones, then go to Rule AN.2

4.2 Properties

Property 4.1 (Compatibility Property). In the absence of
NOT IMPORTANT tasks the algorithm behaves like IRIS-
HR.

Proof. If there are only IMPORTANT tasks, the rules that
can actually be applied are: AIL.1 SW.1, AL.2, DB, SW.2,
AL3 (related to important jobs) and IIN, which correspond
directly to 1., 1.i, 1.ii, 2, 3, 4 and 5 from the IRIS-HR
presented in [8]. |

Theorem 4.1 (Isolation Theorem). A BIDS with parame-
ters (Qs, Ps, as) uses a bandwidth Us of at most, %

Proof. The proof is omitted for space reasons. However it
can be outlined briefly. A BIDS is a special case of an IRIS-
HR [8] that handles two priority queues, but keeping the
hard reservation property. If only IMPORTANT tasks are
served by the BIDS then it behaves like IRIS-HR. Conse-
quently, the bandwidth used by the BIDS is bounded to
%. Instead if only NOT IMPORTANT tasks are served by
the BIDS, then by the hard reservation property, the previ-
ous result and the longer replenishment established to those
tasks (i-e. 7s = ds + aPs), the bandwidth is bounded by
In the general case there will be a mixed of IMPOR-
TANT and NOT IMPORTANT tasks served by the BIDS,
thus applyingg the superposition property, the overall band-
width will be bounded by % Q= The complete proof is made
by induction on the 1nstances of a BIDS when applying the
rules shown in the previous subsection. |

Theorem 4.2 (Schedulability Property). Given a set of
tasks with total wutilization factor Ur and a set of BIDS
servers with total utilization factor Uprps, then the whole
set is schedulable by Earliest Deadline First (EDF) if and
only if

Ur +UBips <1

Proof. The proof follows directly from the isolation theorem.
|

Theorem 4.3 (Hard Schedulability Property). Given a hard
important real-time task T, with parameters C;, d; and T;,
then it is schedulable by a BIDS with parameters Qs and
P;, such that C; < Qs and T; = Ps, if and only if it is
schedulable by EDF.

Proof. Since task 7; is hard, the difference between its job’s
activations is given by its period (or minimum interarrival
time), which is equal to the period of the BIDS. In par-
ticular, ax41 — ar > Ps considering jitter or the case that
the task is sporadic. As a consequence of this and because
7 € IMPORTANTS, the deadline generated by the BIDS
algorithm is dy = ax + Ps; which is, in fact, the same dead-
line of the task (according to [7]). Besides, the restriction
of C; < Qs gives the server enough budget to complete

318

the execution of every job without postponing its deadline.
Moreover, the BIDS will never go to a wait state because
each time a job arrives it is served by rule AI.l. This
can be easily proved arguing that Ps > Q. and consider-
ing dy, = ay, + Ps. Oa

Property 4.2 (Maximum Deadline Value). The highest
value that can be assigned to a BIDS deadline is given by:

dmax = ds—1+2aPs where ds—1 is the previous deadline of
the BIDS.

Proof. This property follows directly from the application
of rules related to NOT IMPORTANT tasks and without
any interruption due to IMPORTANT ones. Particularly,
there are two possible combinations of rules: 1) AN.1, LW.2
and AN.3; 2) LW.1 and AN.3. In both cases, there is a long
wait involved, which takes up to aPs units of time from the
deadline; and then a deadline postponement of the same
amount. Hence, the new deadline is 2aPs units of time
from the previous one. O

5. PERFORMANCE EVALUATIONS

The experimental evaluation was done through simula-
tions. As BIDS is basically an extension of TRIS-HR, both
algorithms are contrasted with identical loads. The com-
parison is not completely fair because IRIS is unable to
distinguish between IMPORTANT and NOT IMPORTANT
tasks. However, the purpose of the simulations is to show
how the use of BIDS enhances the performance of the servers.
The comparison with the other algorithms like Dual Prior-
ity or Mode Change protocols is not possible because these
work with fixed priority while BIDS works with EDF.

The simulation was performed with a mixed set of hard
and soft periodic tasks. The utilization factor of the set was
varied from 0.3 to 0.9 in steps of 0.1. In each step, 30 differ-
ent sets were used. For each utilization factor the hard tasks
represent 70% of the total load. The worst case utilization
factor for soft tasks is 30% of the total. Soft tasks have
variable execution times. In each instance, the execution
time of the job is computed by a uniform random variable
within [1, WCET]. The servers, were defined with the aver-
age bandwidth required by the soft tasks, that is 15% of the
total. The server budget and period for both IRIS and BIDS
were set in the following way: Ps = min P;s.t.7; € SOFTS
and Qs = PsUs. For the BIDS, the as and ~; parameters
were set equal to 2. After each job execution of a soft task,
Jij, 0;;j was randomly set transforming the next instance
in IMPORTANT or NOT IMPORTANT. Each system was
simulated for more than 100000 jobs. The amount of dead-
line misses for IMPORTANT and for NOT IMPORTANT
tasks was measured after each run.

Figure 2 shows the results obtained in the simulation. As
can be seen, in the case of BIDS there are no misssed dead-
lines for IMPORTANT jobs while IRIS-HR misses up to
10% for the different loads. In the case of NOT IMPOR-
TANT jobs, the situation is different, IRIS-HR has a better
performance than the BIDS.

The results show that the introduction of a behavior pa-
rameter to determine the priority of a task has an important
impact on the schedulability of the soft tasks. BIDS sched-
ules all IMPORTANT tasks and misses some deadlines of the
NOT IMPORTANT ones. IRIS, on the other hand, sched-
ules all tasks, wether IMPORTANT or not, in the same way,

Lo~

9% Deadiines met

01 015 03 0.35

02 025
Utilization Factor

(a) IMPORTANT JOBS. x IRIS, o BIDS

'es met

] e

9% Deadlin

2 0.25 03
utilization Factor

(b) NOT IMPORTANT JOBS. x IRIS, o
BIDS

01 0.15 035

Figure 2: BIDS and IRIS-HR % Deadlines met

and because of this, the amount of deadlines missed in both
kind of tasks is equivalent.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a behavior priority hierarchical scheduling
has been presented. After finishing each instance, the task
marks the next job as IMPORTANT or NOT IMPORTANT
according to a previously defined threshold. As a conse-
quence, the task and server periods are adjusted following
a set of rules. Thus, the bandwidth required by this kind
of tasks is variable in time, providing more room to other
kind of tasks, for example non real-time ones. It is impor-
tant to notice that the guarantees on hard real-time tasks
is preserved because the servers provide temporal isolation
between the soft tasks allocated to them and the rest of the
tasks.

The algorithm has no candidate to contrast as it is the
only one that works with servers under dynamic priorities.
However, some simulations were done to compare the perfor-
mance of BIDS against the more traditional IRIS-HR algo-
rithm. Although not completely fair, the comparison shows
how the introduction of a “flag” based on the result of the
job can improve the utilization of the system for different
things. While IRIS-HR has no way to distinguish between
important and not important tasks, BIDS has. In the case
of IRIS, all tasks are scheduled and the amount of deadlines
misses of IMPORTANT and NOT IMPORTANT tasks is
equivalent. Instead the BIDS approach preserves the execu-
tion of IMPORTANT ones and looses more deadlines of the

319

NOT IMPORTANT ones.

This scheduling method can be used in systems with hard,
soft and non real-time tasks. The introduction of the IM-
PORTANCE parameter in the scheduling of the soft tasks,
allows a more accurate asignment of bandwidth that can give
place to an improvement in the response time of non real-
time tasks or a reduction in the energy consumed by slowing
down the processor. Future work includes a complete eval-
uation of the mechanism on a real operating system.

7. ADDITIONAL AUTHORS

Additional authors: Javier Orozco, IIIE - DIEC, UNS
- CONICET, Avda. Alem 1253, 8000, Bahia Blanca, Ar-
gentina, email: jorozcoQuns.edu.ar.

8. REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia
applications in hard real-time systems. In Proceedings
of the 19th IEEE RTSS, Madrid, Spain, 1998. IEEE
Computer Society.

A. Cervin and J. Eker. The control server: A
computational model for real-time control tasks. In
Proceedings of the 15th Euromicro Conference on
Real-Time Systems (ECRTS’03), page 113, Los
Alamitos, CA, USA, 2003. IEEE Computer Society.
R. Davis and A. J. Wellings. Dual priority scheduling.
In In Proceedings of the 16th IEEE RTSS, Pisa, Italy,
1995. IEEE Computer Society.
Institute of Electrical and Electronics Engineers.
IEEFE P1451.2 D2.01 IEEE Draft Standard for A
Smart Transducer Interface for Sensors and Actuators
- Transducer to Microprocessor Communication
Protocols and Transducer Electronic Data Sheet
(TEDS) Formats, august 1996.
H. Jin, Q. Hu, X. Liao, H. Chen, and D. Deng. Imac:
an importance-level based adaptive cpu scheduling
scheme for multimedia and non-real time applications.
In Proceedings of the 2005 ACS / IEEE International
Conference on Computer Systems and Applications
(AICCSA 2005). IEEE Computer Society, January
2005.
N. Kosugi, A. Mitsuzawa, and M. Tokoro.
Importance-based scheduling for predictable real-time
systems using mart. In Proceedings of the 4th
International Workshop on Parallel and Distributed
Real-Time Systems, pages 95-100, Washington, DC,
USA, April 1996. IEEE Computer Society.
C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46-61, 1973.
L. Marzario, G. Lipari, P. Balbastre, and A. Crespo.
Tris: A new reclaiming algorithm for server-based
real-time systems. In Proceedings of the 10th IEEE
RTAS, Toronto, Canada, 2004. IEEE Computer
Society.
T. Nolte, M. Nolin, and H. Hansson. Real-time
server-based communication with can. IEEE
Transactions on Industrial Informatics, 1(3):192 201,
august 2005.
J. Real and A. Crespo. Mode change protocols for
real-time systems: A survey and a new proposal.
Real-Time Systems, 26(2):161 197, 2004.

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

