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a b s t r a c t

We have developed an electroanalytical method to quantify different isomers of tocopherols in edible
vegetable oils. The method uses the square wave voltammetry on a carbon fiber disk ultramicroelectrode
in benzene/ethanolþ0.1 mol L�1H2SO4.

Because the oxidation peaks of these natural antioxidants show an important overlapping, we have
used two chemometric tools to obtain the multivariate calibration model. One method was the
multivariate curve resolution–alternating least square (MCR–ALS), which assumes a linear behavior,
i.e., the total signal is the sum of individual signals of components, and another nonlinear method such as
artificial neuronal networks (ANNs).

From the accuracy and precision analysis between nominal and estimated concentrations by both
methods, we could infer that the ANNs method was a good model to quantify tocopherols in edible oil
samples. Recovery percentages were between 94% and 99%. In addition, we found a difference of 1.4–6.8%
between the total content of tocopherols in edible oil samples and the vitamin E content declared by the
manufacturers.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Vitamin E is the general term used to describe a group of eight
natural isomers, which along with vitamins A, D, and K are the
group of fat soluble vitamins. The eight isomers are divided into
two groups: four tocopherols and four tocotrienols, which differ in
saturation of the side chain. Thus, tocopherols have a saturated
chain and tocotrienols an unsaturated chain with double bonds at
carbons 3, 7, and 11. Within each group, isomers differ in the
number and the position of methyl groups on the aromatic ring,
known as α, β, γ, and δ [1].

The interest in tocopherols has increased in recent years mainly
due to their ability to protect cell membranes, preventing their
oxidation by free radicals, and their roles against age-related
diseases, cardiovascular disorders or Alzheimer's [1].

Tocopherols are essential compounds, i.e., the body cannot
synthesize. Thus, they must be supplied through the diet in small
amounts. Vegetable oils are an important source of tocopherols
[1]. They have a high nutritional value, and also help to prevent
oxidation of lipids, which would result in the formation of
undesirable compounds producing oil deterioration [2].

Different methods related to the analytical determination of
tocopherols in edible oils have been described in literature [3],
most of which require a preliminary stage of extraction combined
with separation techniques, being the most used the HPLC
chromatography [4,5]. In addition, studies have been conducted
in recent years to the development of analytical procedures to
allow the characterization and authentication of oils through the
tocopherol total content analysis, and the differentiation and
determination of their different isomers [1,6,7].

On the other hand, electroanalytical techniques have demon-
strated to be reliable and fast tools to determine synthetic
antioxidants in edible oils [8–10].

In addition, the application of powerful chemometric techni-
ques helps to resolve a mixture of voltammetric signals which
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appear at close potentials, such as occur with tocopherols [11].
The chemometric techniques most used are the multivariate
calibration based on different regression methods, such as multi-
variate curve resolution–alternating least square (MCR–ALS) [12],
multi linear regression (MLR) [13,14], principal component regres-
sion (PCR) [14,15], partial least square regression (PLS) [14,16–18],
and artificial neural networks (ANNs) [14,19–22].

The main advantage of chemometric techniques is their ability
to obtain quantitative information from overlapping signals through
mathematical procedures, without requiring any prior pretreatment
of the sample.

In this work, we study the electrochemical oxidation of three
tocopherol isomers (α, γ, and δ) at a carbon fiber (CF) disk
ultramicroelectrode (UME) in benzene/ethanol (Bz/EtOH, 2:1)þ
0.1 mol L�1 H2SO4 by square wave voltammetry (SWV), whose
anodic voltammetric signals are overlapped. Therefore, we applied
two chemometric methodologies in order to obtain a multivariate
calibration model: one in which the resultant signal is linear
corresponding to the additive sum of the individual components
by applying the MCR–ALS method and another no linear by
applying ANNs.

2. Experimental

2.1. Reagents

α, γ, and δ tocopherols were obtained from Sigma Chemical
Company. Benzene (Bz), and acetone (Ac) were Sintorgan, HPLC
grade. Ethanol (EtOH), and H2SO4 were Merck p.a. All reagents
were used as received. Edible oils were purchased from local
supermarkets.

Commercial tocopherols and oils were dissolved in Bz/EtOH (1:2)þ
0.1 mol L�1 H2SO4 for performing their analytical determinations.

2.2. Apparatus and experimental measurements

A two compartment Pyrex cell using a conventional three-
electrode configuration was used to perform SWV experiments,
which was coupled to an AutoLab PGSTAT 12 potentiostat (Eco-
Chemie, The Netherland). The characteristic parameters of SW
voltammograms were: square wave amplitude, ΔESW¼0.050 V, the
staircase step height, ΔEs¼0.005 V, and the frequency, f¼25 Hz.

A carbon fiber disk UME (diameter, Φ¼11 μm, BAS Electroana-
lytical System, USA) was used as the working electrode. It was
pretreated as previously described [10]. The reference electrode
was an aqueous saturated calomel electrode (SCE), and the counter
electrode was a Pt foil of large area (AE2 cm2).

2.3. Software's

The neural network toolbox from the software suite MALAB 7.8
[23] was used for applications of ANNs.

MCR–ALS calculations, initial estimations, and figures of merit
were calculated using an algorithm written in MATLAB, which is
available in the literature [24]. An algorithm also written in
MATLAB was used for generation of the ellipses [25].

2.4. Preparation of standards

2.4.1. Calibration set
The calibration set used in ANNs was obtained from 30 samples,

23 of which were ternary mixtures obtained from a central compo-
site experimental design, rotatable and orthogonal, including nine

Table 1
Values of characteristic voltammetric signal parameters (A, D, Ip, and Erpp,) used as input data, and concentration values of α, γ, and δ tocopherols in Bz/EtOH
(1:2)þ0.1 mol L�1H2SO4 used as output data in the calibration set.

Sample cnα-tocopherol�104 (mol L�1) cnγ-tocopherol�104 (mol L�1) cnδ-tocopherol�104 (mol L�1) A�108 D�1011 Ip�1010 (A) Erpp (V)

1 0.6 1.3 0.675 1.0621 3.2869 3.0851 0.0615
2 0.3 2.0 1.0 1.2945 4.3683 4.0634 0.0615
3 0.6 1.3 0.675 0.8975 2.7490 2.5758 0.0308
4 0.3 0.6 0.35 0.4573 1.5872 1.2697 0.0615
5 0.9 2.0 1.0 1.4116 4.1317 4.1193 0.0462
6 0.6 1.3 0.675 0.9935 3.0743 2.8591 0.0615
7 0.6 1.3 0.675 0.9282 2.8626 2.6698 0.0615
8 0.095 1.3 0.675 0.8210 2.9818 2.6291 0.0615
9 0.6 1.3 0.675 0.9676 2.8071 2.7962 0.0615

10 0.6 1.3 0.675 0.9843 2.7621 2.8472 0.0615
11 0.6 1.3 1.2 1.2103 3.5087 3.4688 0.0923
12 0.6 0.12 0.675 0.4404 1.4438 1.0378 0.2154
13 0.6 2.5 0.675 1.4244 4.9498 4.5363 0.0462
14 1.1 1.3 0.675 1.0883 2.7574 2.8691 0.0462
15 0.9 0.6 0.35 0.6229 1.7011 1.4625 0.0154
16 0.6 1.3 0.675 1.0493 3.1416 3.0361 0.0615
17 0.3 0.6 1.0 0.6987 2.2808 2.0066 0.1385
18 0.9 0.6 1.0 0.7972 2.0222 1.9724 0.1231
19 0.6 1.3 0.675 0.9133 2.7899 2.6267 0.0769
20 0.9 2.0 0.35 1.1933 4.1337 3.6275 0.0308
21 0.3 2.0 0.35 1.1833 4.6026 3.9668 0.0308
22 0.6 1.3 0.13 0.7843 2.8496 2.4186 0.0154
23 0.6 1.3 0.675 0.9122 2.7871 2.6268 0.0615
24 0.5 0.2 0 0.2228 0.9186 0.5460 0.1231
25 0.6 2.0 0 1.0575 4.3003 3.5255 0.0154
26 0 1.0 0.8 0.7405 2.6197 2.3396 0.0923
27 0 1.2 0.2 0.6347 2.8083 2.1949 0.0308
28 0.6 0 0 0.1571 1.1117 0.5292 0.2308
29 0 1.3 0 0.6052 3.0858 2.2127 0.0154
30 0 0 0.6 0.2774 1.5649 0.9736 0.1846

A is the voltammetric signal area. D is the sum of absolute values of maximum and minimum of the first derivative of the voltammetric signal. Ip is the peak current, and Erpp
is the relative peak potential.
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central points with five concentration levels for each substrate.
Other four samples were binary mixtures, and the other three
corresponded at individual solutions of each substrate (Table 1).

On the other hand, the calibration set used in MCR–ALS calcu-
lations was composed by 26 samples, 23 of which were ternary
mixtures, and the other three corresponded to the individual
substrates.

Concentration ranges were selected on the basis of results of
linear calibration, previously obtained from univariate experiments
performed for each substrate. Therefore, concentration ranges were
from 9.0�10�6 to 1.1�10�4 mol L�1, from 1.2�10�5 to 2.5�
10�4 mol L�1, and from 1.3�10�5 to 1.2�10�4 mol L�1 for α, γ,
and δ tocopherols, respectively. Then, these standard concentrations
were called as nominal concentrations.

2.4.2. Validation set
The validation set used to validate the calibration model deter-

mined by ANNs consisted of 16 solutions obtained from a central
composite experimental design (see Table 2).

In all cases, SW voltammograms were recorded by triplicate
using random concentrations of substrates.

2.5. Chemometric tools

2.5.1. MCR–ALS applications
First, the experimental data matrix was built, called as matrix

D. Each row of this matrix corresponds to SW voltammograms
recorded for different solutions, and each column corresponds to
current values measured at the corresponding potential. Then, the
MCR method was applied to the matrix D for resolving responses
of pure substrates. The MCR method is based on a bilinear model,
which relates concentrations and voltammetric responses of pure
substrates, assuming that individual responses are additive [26].

In matrix algebra, the matrix D is expressed by the following
equation:

D¼ CVT þE ð1Þ
where D(i,j) dimensions are i samples (voltammograms) per j
potentials; C(i,k) is the concentration matrix of different k sub-
strates present in the sample, and VT(k,j) is the transpose matrix,
whose k rows contain voltammograms of pure substrates, and
E(i,j) is the residual matrix. Therefore, the MCR method allows
estimating C and VT matrixes using a classical scheme of the
alternating least squares (ALS) procedure. For starting the ALS
iteration procedure is necessary to have an initial estimation of

voltammograms of each individual substrate. We used an algo-
rithm that relies on the determination of pure variables for the
initial estimation [27].

If the initial estimation is composed by voltammograms of each
substrate, the solution for the concentration profiles are calculated
using the following equation:

C ¼DðVT Þþ ð2Þ
where (VT)þ is the pseudo-inverse of VT.

On the other hand, in the optimization step, which involves
an iterative cycle, we used a series of restrictions for obtaining
solutions with physical meaning [27]. Restrictions were: (a) non-
negativity, which prevents the presence of negative values in
concentration profiles and voltammograms, and (b) unimodality,
which ensures the presence of a single peak in voltammograms.

Finally, values calculated at the optimization step from the
calibration set were correlated with nominal concentrations,
obtaining the corresponding linear regressions and root mean
square errors (rmse) for each substrate (see Section 2.5.3).

2.5.2. Applications of ANNs
The objective of this study was to predict tocopherol concen-

trations in oil samples according to SW voltammograms recorded.
The network used in the simulation of concentrations was the
multilayer perceptrom network with the backpropagation super-
vised learning method. These networks are suitable for solving
problems like ours, given its ability to generalize, and no mathe-
matical knowledge is required on the function relating the input
patterns with output patterns [28–30].

Different architectures were compared to build and validate the
predictive model of network, which consisted of an input layer,
one hidden and one output. The number of neurons of the input
layer was equal to the number of independent variables entered
into the model, in this case the four parameters obtained from
voltammetric responses (see Section 2.5.2.1), and the number of
neurons in the output layer corresponded to the number of model
output variables, i.e., concentrations of α, γ and δ tocopherols.

On the other hand, the number of neurons in the hidden layer
was obtained from the best architecture of ANNs through the
following procedure: (1) An ANNs with a number N of neurons in
the hidden layer were created. (2) The type of training and the
transfer function were defined. (3) The network was trained with
the calibration data set, considering a 70% of learning, a 15% for
monitoring, and another 15% to test the network. (4) The net-
work was validated using the validation data set (independent of

Table 2
Concentrations of α, γ, and δ tocopherols in Bz/EtOH (1:2)þ0.1 mol L�1 H2SO4 used in the validation step. Normal and bold concentration values are nominal and estimated
concentrations, respectively.

Sample number cnα-tocopherol�104

(mol L�1)
Percentage
relative errors

cnγ-tocopherol�104

(mol L�1)
Percentage
relative errors

cnδ-tocopherol�104

(mol L�1)
Percentage
relative errors

1 0.5 0.48 2.3 2.2 2.32 5.4 0.5 0.52 5.8
2 1.2 1.24 3.6 0.8 0.87 9.3 1.1 0.99 10
3 0.5 0.51 3.0 0.8 0.78 1.9 0.5 0.43 14.5
4 1.2 1.18 1.3 2.2 1.98 10 0.5 0.54 8.0
5 1.2 1.21 1.0 2.2 1.95 11.0 1.1 0.94 14.3
6 1.2 1.24 3.3 0.8 0.83 3.3 0.5 0.46 8.0
7 0.5 0.51 2.0 0.8 0.84 4.8 1.1 1.0 9.1
8 0.85 0.86 1.5 1.5 1.44 4.14 0.80 0.72 9.8
9 0.5 0.47 6 2.2 2.14 2.72 1.1 1.23 11.8

10 1.5 1.49 0.91 1.5 1.52 0.93 0.8 0.72 10.3
11 0.85 0.93 9.2 1.5 1.54 3.05 1.3 1.34 2.9
12 0.85 0.84 1.2 2.7 2.49 7.6 0.8 0.84 5
13 0.85 0.80 5.4 1.5 1.38 7.5 0.8 0.83 4.5
14 0.23 0.25 8.6 1.5 1.57 5.2 0.8 0.69 12.9
15 0.85 0.86 2 1.5 1.53 0.5 0.27 0.25 7.4
16 0.85 0.86 1.65 0.26 0.243 6.5 0.8 0.81 1.3
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calibration data set), and (5) rmse values were obtained from
points three and four.

The above procedure was made by combining different types
of training and transfer functions. After obtaining the errors of
different architectures, the best amount of the hidden layer
neurons, the transfer function, and of the training type based on
the least mean squared normalized error (mse), the relative errors
(re), and rmse for three substrates, avoiding the overfitting (Section
2.5.3) were selected.

2.5.2.1. Variables involved in ANNs. For training the network is
necessary to have input and output (target) data. Therefore,
instead of using the full square wave voltammogram, we used
only four characteristic parameters of the signal in order to reduce
the dimensionality of the system based on a method proposed in
the literature [31], minimizing the risk of over fit and increased
robustness of the network during the learning process (Table 1).
Thus, input data were the voltammetric signal area (A), the sum of
absolute values of maximum and minimum of the first derivate
of voltammetric signal (D), the peak current (Ip), and the peak
potential (Ep) of each square wave voltammogram recorded in the
potential region between 0.3 and 0.95 V. Output data were α, γ and
δ tocopherol concentrations.

2.5.3. Results validation
To evaluate the quality of the results obtained using the MCR–

ALS method and to compare how well experimental data of matrix
D are explained, the percentage of lack-of-fit (ALS lof) was
calculated through the following equation [26]:

lof ð%Þ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ijðdij�d̂ijÞ2

∑ijd
2
ij

vuut ð3Þ

where dij are elements of the experimental matrix D, i.e., current
values measured for sample i to potential j, and d̂ij are the
corresponding elements calculated by ALS.

In addition, to evaluate the quality of the quantitative predic-
tions of concentrations obtained from the different methods, the
rmse between nominal and estimated concentrations for each
substrate, and the percentage relative error (re%) were calculated
by applying the Eqs. (4) and (5), respectively

rmse¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1ðĉi�ciÞ2
n

s
ð4Þ

reð%Þ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1ðĉi�ciÞ2
∑n

i ¼ 1c
2
i

s
ð5Þ

where ĉi and ci are estimated and nominal concentrations,
respectively.

In addition, a procedure to verify if the point (1,0) is contained
in the confidence elliptical region of the slope and the intercept of
the fitted curve between nominal and estimated concentrations
was used to evaluate if those concentrations differ or nor statis-
tically [32,33].

2.5.4. Determination of tocopherols in oils
Sunflower, corn, soybean, and two alternative varieties such as

canola and grape seeds edible oils were studied. In these oils is
common to find different isomers of vitamin E, such as α, γ and δ
tocopherols.

For electroanalytical determinations, 1.5 mL of oil was dissolved
in 15 mL of Bz/EtOH (1:2)þ0.1 mol L�1H2SO4. Then, 10 mL of the
solution was carried out to the electrochemical cell, and the
corresponding square wave voltammograms were recorded [10].

3. Results and discussion

A drawback that may occur in the application of electroanaly-
tical techniques is their lack of selectivity.

Square wave voltammograms obtained for the electrochemical
oxidation of α, γ, and δ tocopherols at a CF disk UME in Bz/EtOH
(1:2)þ0.1 mol L�1 H2SO4 are shown in Fig. 1a. As can be observed,
electrochemical signals of tocopherols appear at potential regions
next to each other, showing a marked overlapping. In addition, the
sum of the signals of the individual tocopherols was not equal to
the signal obtained from the voltammogram recorded for mixtures
of tocopherols, exhibiting variable differences as a function of
concentration levels. Thus, two models of multivariate calibration,
MCR–ALS and ANNs, were implemented to solve overlapped SW
voltammograms and quantify tocopherols in oil samples.

MCR–ALS corresponds to a linear behavior, while ANNs corre-
spond to a nonlinear behavior between electrochemical responses
and concentrations. Finally, to determine whether the experimen-
tal behavior justifies the use of a non-linear calibration model,

Fig. 1. (a) Square wave voltammograms recorded for: (1) the blank solution;
(2) α, (3) γ, and (4) δ tocopherols at a CF disk UME (Φ¼11 μm) in Bz/EtOH (1:2)þ
0.1 mol L�1 H2SO4. Tocopherol concentrations: 1.2�10�4 mol L�1. δESW¼0.050 V,
δEs¼0.005 V, f¼25 Hz. (b) Square wave voltammograms recorded for some
mixtures of tocopherol of different concentrations used in calibration sets:
(1) blank, (2) sample 5, (3) sample 11, (4) sample 14, (5) sample 23, (6) sample
18, and (7) sample 24 (see Table 1). Other experimental conditions are the same
that those of Fig. 1a.
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studies were conducted to estimate the accuracy and the precision
between nominal concentrations and those estimated by both
models.

Some of SW voltammograms recorded for 30 samples after
subtracting background currents are shown in Fig. 1b. These
samples correspond to different calibration sets used.

Table 1 shows the concentrations of solutions used in the
calibration set, and parameters obtained after processing each
voltammogram. For the MCR–ALS calibration model was used
voltammograms and their respective concentrations, while for the
ANNs model was used voltammogram parameters as input data
and concentrations as output data (see Section 3.2).

3.1. Calibration model from MCR–ALS

To obtain the calibration model from this methodology we used
the calibration set described in Section 2.4.1.

After optimization, concentration profiles (Fig. 2a) and normal-
ized square wave voltammograms (Fig. 2b) were obtained.

The difference between the input matrix D and that produced
by the product CVT using the algorithm MCR–ALS was of 1.1% (see
Section 2.5.3). A plot of estimated vs. nominal concentrations for
each substrate is shown in Fig. 3. Parameters of corresponding
linear regressions and respective rmse errors are shown in Table 3.
As can be observed, good slopes and correlation coefficients for α

and γ tocopherols (close to one) were found, while those corre-
sponding to δ tocopherol showed a slightly greater deviation from
the ideal slope.

3.2. Calibration model from ANNs

First, we applied the methodology explained in Section 2.5.2 to
find the most suitable network architecture for the resolution of
measured signals.

Therefore, the best network model was obtained using a 4–4–3
architecture, i.e., four neurons in the input layer, four in the hidden
layer, and three in the output layer. We used Tansig sigmoid
transfer function in the hidden layer, and the Purelin linear
function for the output layer. The most appropriate algorithm in
the training stage was that of Levenberg–Marquardt [23].

As it was previously described, parameters obtained from each
SW voltammogramwere used as input data to the network, and as
output data the nominal concentrations, both from the calibration
set (see Section 2.4.1).

A plot of the estimated concentrations obtained by the ANNs
method and nominal concentrations is shown in Fig. 4. Table 4
shows the linear regression parameters and associated errors.

Moreover, the network was validated by a set of independent
solutions used in the training stage (see Section 2.5.2).

Some responses of SW voltammograms obtained for solutions
of the validation set, after subtracting the corresponding blank
currents, are shown in Fig. 5. In addition, nominal concentrations
as well as estimated concentrations using enhanced network are
shown in Table 2, with relative errors for each concentration level
of tocopherols.

After obtaining values for each substrate concentration, we
calculated errors% re and rmse (see Section 2.5.3). They are shown
in Table 5, and as can be observed, the relative errors were in the
range from 1% to 2.5%.

Fig. 2. (a) Optimized concentration profiles by MCR–ALS for α (solid line), γ (dash
line), and δ (dash dot dot line) tocopherols. (b) Optimized square wave voltammo-
grams by MCR–ALS for: (1) α, (2) γ, and (3) δ tocopherols.

Fig. 3. Dependence between nominal and MCR–ALS calculated concentrations for
each substrate. (■) α, (●) γ, and (▲) δ tocopherols.

Table 3
Linear regression parameters obtained from the dependence between estimated by
MCR–ALS and nominal concentrations.

Tocopherols Intercept (mol L�1) Slope rn rmse (mol L�1)

α (�1.671.5)�10�8 (0.9470.03) 0.9813 7.7�10�6

γ (0.670.2)�10�8 (0.9770.03) 0.9855 13.8�10�6

δ (1.271.8)�10�8 (0.8270.03) 0.9744 6.4�10�6

n r is the linear correlation coefficient.
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3.3. Accuracy and precision analysis

To determine whether the concentrations estimated by meth-
ods MCR–ALS and ANNs differ or not statistically from the nominal
concentrations, we examined whether the point (1,0) was
included in the elliptical region of the joint confidence of slope
and intercept of plots showed in Figs. 3 and 4. Therefore, plots of
ellipses obtained by both methods are shown in Fig. 6 for each
substrate.

As can be observed, results obtained by MCR–ALS for α and δ
tocopherols have more precision than those produced by ANNs
but they do not include the point (1,0), so they are less accurate

(away from the ideal point, (1,0)). However, results obtained by the
ANNs method include the ideal point, exhibiting a greater accu-
racy and a minor precision (Fig. 6a and c). It was also found that
both methods had a comparable accuracy and precision for the
γ-tocopherol (Fig. 6b). Thus, the method ANNs was chosen as the
best for obtaining the calibration model.

3.4. Recovery percentages

Recovery percentages were determined with corresponding
standard deviations after choosing the calibration model (Table 6).
The percentage recovery was calculated from six replicated mea-
surements (six nominal, and six estimated), which were obtained
from the validation set (Table 2). Thus, the samples used were 8, 11,
12, 13, 15, and 16 for the α tocopherol; 8, 10, 11, 13, 14, and 15
for γ tocopherol, and 8, 10, 12, 13, 14 and 16 for the δ tocopherol.
These samples were chosen because a greater number of replicated
measurements were performed for these concentration levels (0.85,
1.5 and 0.80�10�4 mol L�1 for α, γ and δ, respectively, see Table 2).

3.5. Real samples

Finally, we determined the concentration of different toco-
pherol isomers as well as the total content of tocopherols in
different edible oil samples.

Square wave voltammograms recorded at a CF disk UME in
Bz/EtOH (1:2)þ0.1 mol L�1 H2SO4 for the different oil samples are
shown in Fig. 7.

After running the algorithm, containing the optimized network
using four parameters of square wave voltammograms of different
oil samples, we determined the concentrations of different toco-
pherol isomers (Table 7). Therefore, differences between the
calculated values for total content of tocopherols and those
reported by the manufacturers were 2.2%, 6.8%, 1.9%, 1.4%, and
1.6% for canola, sunflower, corn, soybean, and grape seeds oils,
respectively.

These results demonstrate that the application of SWV at ultra-
microelectrodes combined with ANNs is a useful analytical tool for
the determination of tocopherols in edible oils.

4. Conclusions

In spite of we used more samples in the methodology of artificial
neural networks than in model of the multivariate calibration curves
to build the calibration model, the methodology of artificial neural
networks was the most appropriated to describe those responses that
exhibit a deviation from linearity, as shown from analysis of the
elliptical regions of confidence.

Moreover, we found that the recovery percentage in the analysis of
validation samples was between 94% and 99%. In addition, we found a
difference of 1.4–6.8% between the total content of tocopherols and
vitamin E content declared by the manufacturers. Based on these
results, we conclude that the artificial neural network trained for the

Fig. 4. Dependence between nominal and ANNs calculated concentrations for each
substrate. (■) α, (●) δ, and (▲) γ tocopherols.

Table 4
Linear regression parameters obtained from the dependence between estimated by
ANNs and nominal concentrations.

Tocopherols Intercept (mol L�1) Slope rn rmse (mol L�1)

α (1.271.6)�10�8 (0.9770.03) 0.9761 4.4�10�6

γ (1.672.9)�10�8 (0.9870.03) 0.9856 7.3�10�6

δ (2.272.4)�10�8 (0.9670.02) 0.9593 6.4�10�6

n r is the linear correlation coefficient.

Fig. 5. Square wave voltammograms recorded for some mixtures of tocopherol
of different concentrations used in the validation set: (1) blank, (2) sample 7,
(3) sample 16, (4) sample 6, (5) sample 14, and (6) sample 4 (see Table 2). Other
experimental conditions are the same that those of Fig. 1a.

Table 5
Percentual relative errors (re%), and root mean square errors (rmse) obtained for
each tocopherol.

Tocopherols re (%) rmse (mol L�1)

α 0.89 3.0�10�6

γ 1.89 0.1�10�6

δ 2.5 8.0�10�6
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calibration set is a good model for the determination of tocopherols in
commercial samples of oils.
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