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We investigate the properties of the hadron-quark mixed phase, often termed the pasta phase,
expected to exist in the cores of massive neutron stars. To construct the equations of state (EoS),
we combine an analytical representation based on the APR EoS for hadronic matter with the
MIT bag model featuring vector interactions for quark matter. For modeling the mixed phase, we
utilize the compressible liquid drop model that consistently accounts for finite-size and Coulomb
effects. Unlike most previous analyses that treated surface tension as a constant free parameter
and neglected curvature tension, we employ microphysical calculations using the multiple reflection
expansion formalism to determine these parameters, while also ensuring their self-consistency with
the EoS. We construct an extensive set of mixed hybrid EoSs by varying model parameters, solve the
stellar structure equations to obtain neutron star mass-radius relationships, and select the models
that satisfy current astrophysical constraints. Our findings closely align with calculations using a
constant surface tension in terms of EoS stiffness and resulting stellar structure. However, they
reveal significant differences in the types of geometric structures and their prevalence ranges within
the mixed phase. Specifically, curvature effects enhance the emergence of tubes and bubbles at high
densities despite the large value of surface tension, while suppressing the existence of drops and rods
at low densities.

I. INTRODUCTION

Unveiling the intricate internal structure of neutron
stars (NSs) has persistently remained an unresolved and
challenging problem in astrophysics. While the compre-
hension of the equation of state (EoS) of matter within
the crust and the outer core of NSs has, over time,
reached an appreciable level of understanding, when it
comes to investigating the behavior of matter in the in-
ner core regions, where the density goes beyond twice
the nuclear saturation density, we are faced with signifi-
cant challenges. Guided by the current understanding of
the Quantum Chromodynamics (QCD) phase diagram,
we know that matter deconfines under extremely high-
density conditions, suggesting that NS interiors could be
described by the model of hybrid stars (HS). These astro-
physical entities are envisaged as stellar bodies housing
an inner core composed of quark matter surrounded by
hadronic matter.

The subject of HSs has been investigated for decades.
The extensive study of these objects has indeed led to
an advancement in our grasp of their general properties,
but many issues are still difficult to pinpoint accurately.
Among these challenges are understanding the precise
structure of the quark-hadron interface, defining the ex-
act state of matter under such extreme conditions, and
determining the potential influences of these states on
the macroscopic observable properties of NSs.
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In situations where the quark-hadron phase transition
is assumed to be of the first order, the surface and cur-
vature tensions, denoted by σ and γ respectively, stand
out as crucial parameters. Numerous works (such as [1–
6], among others) converge on the idea that depending
on the value of the surface tension, the hadron-quark
phase transition could be either a sharp discontinuity or
a mixed phase where both phases coexist. It is gener-
ally accepted that if σ falls below a critical value, σcrit,
of the order of tens of MeV/fm2, the energetically pre-
ferred state would be the mixed phase. Otherwise, a
sharp boundary would exist between an inner core com-
posed entirely of quark matter and the outer layers of
pure hadronic matter. Many studies have assumed σ to
be either infinity or zero, leading to what are known as
the Maxwell and Gibbs constructions, respectively. In
both approaches only bulk contributions to the system
energy are considered. In scenarios where σ is smaller
than σcrit, the system’s energy minimization favors global
electrical neutrality over local neutrality. Consequently,
a collection of electrically charged geometrical structures
made of one phase arises within an electrically charged
background of the other phase [7–10]. This outcome
emerges from a finely balanced competition involving
various finite-size factors, including surface, curvature,
and Coulomb energies [11]. The resulting mixed phase
is often referred to as the quark-hadron pasta phase, as
the geometric structures (drops, rods, slabs, tubes, and
bubbles), resemble Italian pasta varieties like gnocchi,
spaghetti, and lasagna immersed in a uniform “sauce”.

Traditional analysis of the pasta phase has primarily
centered on understanding surface and Coulomb effects.
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However, several authors have underscored the potential
significance of curvature energy [12–15]. Guided by these
insights, our current research will encompass not just the
standard surface and Coulomb effects, but will also in-
clude contributions from curvature.

Despite the significance of surface and curvature ten-
sions, their precise values in the dense environment of
neutron stars are yet to reach a consensus. While we
know that for hadronic matter σ is relatively low (be-

low 1 MeV/fm
2
) at the standard densities of a NS’s

crust, its determination at higher densities is reliant on
phenomenological models, resulting in significant uncer-
tainty. In this sense, it is generally posited that the sur-
face tension of quark matter exceeds that of hadronic
matter at such densities, being the decisive factor in the
existence of the quark-hadron pasta phase. Also, part
of existing research has concentrated on the microphys-
ical computation of σ, while the curvature tension has
seen fewer investigations. All in all, the outcomes of
these studies greatly depend on the specific EoS chosen
and the method used to evaluate σ and γ. For exam-
ple, when using the thin-wall formalism, low surface ten-
sion values (σ < 30 MeV/fm2) have been found across
various EoSs, such as the NJL model [16–18], the lin-
ear sigma model [18–20], and the Polyakov-quark-meson
model [21]. Similarly, when the multiple reflection ex-
pansion (MRE) formalism is employed and the system is
treated as a free particle gas, low values of σ are also ob-
tained [22–25]. However, when interactions are incorpo-
rated into the EoS, the MRE formalism tends to produce
considerably higher σ values. This pattern can be seen
in studies using the NJL model [26] and the vector MIT
bag model [27]. In contrast to surface tension, the study
of curvature tension is less extensive. Nonetheless, in the
context of the MRE formalism, light quarks have been
observed to contribute minimally to σ but significantly
to γ. For more massive species, like the s quark, both
surface and curvature effects could be important [27]. In
an effort to sidestep the aforementioned uncertainties and
elaborate a clearer picture of potential mixed phases, nu-
merous studies have opted to treat the surface tension of
quark matter as a constant free parameter.

To provide a more comprehensive description of the
pasta phase, our approach will encompass the considera-
tion of surface, Coulomb, and curvature effects adopting
medium-dependent values for σ and γ, and constructing
the mixed phase within the framework of the compress-
ible liquid-drop model (CLDM). The CLDM, which will
be elaborated upon in subsequent sections, determines
the equilibrium configuration of the mixed phase through
the minimization of total energy density. Widely em-
ployed for investigating the nuclear liquid-gas phase tran-
sition at subnuclear densities [14, 28–30], this method en-
sures thermodynamic consistency by incorporating finite-
size energy contributions alongside bulk contributions
within the minimization process. This stands in con-
trast to the conventional coexisting phase approximation,
which primarily solves for bulk equilibrium within the

mixed phase (i.e., no finite size effects are incorporated
in the mechanical and chemical equilibrium conditions)
and incorporates finite-size effects in the energy density
[31–33]. Additionally, in Ref. [32], the authors explore
not only the coexisting phase approximation but also
the self-consistent Thomas-Fermi approximation. While
some recent studies in the literature have used the CLDM
to model the hadron-quark mixed phase in neutron stars
[34–37], none of these have delved into the role of cur-
vature energy or explored the incorporation of medium-
dependent σ and γ.

In recent years, gravitational wave detections and
multi-messenger astronomy have provided crucial in-
sights into neutron stars. Two important discoveries were
PSR J1614-2230 [38, 39] and PSR J0348+0432 [40], both
observed to have around 2M⊙. Another pulsar with a
similar mass, PSR J0740+6620 [41, 42], was later found.
After these observations, any viable EoS must be capa-
ble of producing stellar configurations with a maximum
mass above 2M⊙. In addition, the NICER telescope, in
collaboration with XMM-Newton, has provided valuable
constraints on the mass and radius for PSR J0740+6620
[43, 44] and PSR J0030+0451 [45, 46]. Finally, gravita-
tional wave detectors have offered another avenue of cru-
cial constraints via neutron star merger events. To date,
the LIGO-Virgo observatory has reported two significant
events: GW170817 [47, 48] and GW190425 [49]. Notably,
GW170817 was also detected in the electromagnetic spec-
trum, evidenced by events dubbed GRB170817A and
AT2017gfo [50, 51]. These gravitational wave occurrences
not only provide insights into the mass and radius but
also shed light on the tidal deformability of these ob-
jects. We will use these findings to constrain the results
of our study.

The work is structured as follows. In Section II, we
present the EoSs that we use to describe hadron and
quark matter. In Section III, we describe in detail the
CLDM that we adopt to construct the mixed phase pay-
ing special attention to the incorporation of medium-
dependent surface and curvature tensions. In Section IV,
we present and analyze the results of our work, focusing
on the microscopic geometric structures that compose the
pasta phase, as well as on the effects on the global prop-
erties of NSs. A summary of the work and a discussion of
the implications of our results are presented in Section V.

II. EQUATION OF STATE AND FINITE SIZE
EFFECTS

A. Hadron matter EoS in bulk

For cold hadronic matter we use an analytic represen-
tation of the EoS of Akmal, Pandharipande and Raven-
hall (APR) with boost corrections and three-body forces,
V18 + δv+ UIX∗ [52]. Hadronic matter is composed by
protons, neutrons and leptons and the total energy per
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nucleon is written as [11]:

E = EN0 + EN + El , (1)

where EN0 is the nucleon rest-mass contribution, EN is
the energy per nucleon (excluding the rest-mass energy),
and El is the lepton contribution. The nucleon rest-mass
contribution, is given by

EN0 =
ϵN0

nB
=
nnmn + npmp

nB
= (1−xp)mn+xpmp , (2)

where ϵN0 is the rest-mass energy density, nB is the
baryon number density, nn (np) is the neutron (proton)
number density,mn (mp) the neutron (proton) mass, and
xp = np/nB is the proton fraction. For EN we will adopt
a simple form consisting of a compressional term and a
symmetry term:

EN =W (u) + S(u) (1− 2xp)
2
, (3)

where u ≡ nB/n0 is the ratio of the baryon number den-
sity to the nuclear saturation density, n0 = 0.16 fm−3,
W (u) is the energy per nucleon in symmetric nuclear
matter, and S(u) is the symmetry energy. The relation-
ship

ϵN = ENnB , (4)

specifies the nucleon energy density used in the EoS.
A simple analytic representation of the compressional

term W (u) was constructed by Heiselberg and Hjorth-
Jensen [1], which reproduces accurately the saturation
density, the binding energy and the compressibility of
the APR EoS:

W (u) = E0u(2 + δ − u)/(1 + δu) . (5)

By construction, W (1) = E0 = −15.8 MeV, in accor-
dance with the experimental value. The free parameter
δ is related to the incompressibility of symmetric nuclear
matter at the saturation point [11],

K0 = 9

(
d2W

du2

)
u=1

=
18 |E0|
1 + δ

. (6)

In the following, we will consider three values for δ,
namely δ = 0.1, 0.15, 0.2. By adopting the value δ = 0.1,
the corresponding nuclear incompressibility constant is
K0 = 258 MeV; when we adopt δ = 0.15, we obtainK0 =
247 MeV; and for δ = 0.2, we obtain K0 = 237 MeV.
All of these values are in agreement with the experimen-
tal results derived from the analysis of isoscalar giant
monopole resonances in heavy nuclei, K0 = 240±20MeV
[53–56].

For the symmetry energy S(u), the APR results can
be fitted with a simple formula [1]:

S(u) = 32uζMeV , (7)

which results in the following expression for the derivative
L of the symmetry energy:

L ≡ 3
dS(u)

du
= 96ζuζ−1MeV . (8)

Using ζ = 0.6 [1] one obtains S0 ≡ S(1) = 32 MeV
and L0 ≡ L(1) = 58 MeV, which are in agreement with
experimental values [57].
Regarding the lepton contribution, we take into ac-

count both electrons and muons, i.e. El = Ee + Eµ.
Each lepton species is incorporated as a free Fermi gas,
with the pressure given by

Pe =
µ4
e

12π2
, (9)

Pµ =
1

12π2

[
µµνµ(µ

2
µ − 5

2m
2
µ)

+ 3
2m

4
µ ln

(
µµ + νµ
mµ

)]
, (10)

and the particle number density by,

ne =
µ3
e

3π2
, (11)

nµ =
ν3µ
3π2

, (12)

where νµ = (µ2
µ−m2

µ)
1/2, µe and µµ are the electron and

muon chemical potential, and mµ = 105.7 MeV is the
muon mass. Due to chemical equilibrium and the free
escape of neutrinos from the system, we have µe = µµ.
The energy density for each lepton l can be obtained
through the Euler relationship,

ϵl = −Pl + µlnl . (13)

Finally, we find that when δ = 0.10 and ζ = 0.6, the
EoS becomes superluminal at densities of the order of
11n0. For the cases of δ = 0.15, 0.2 and ζ = 0.6, the EoSs
remain subluminal even at significantly higher densities.
In summary, our analytic model approximates the

APR EoS [52] considering neutron, protons, electrons
and muons, it aligns with experimental data, and dis-
plays the appropriate causal behavior across the entire
range of densities relevant to NSs. For pure hadronic
matter, the model is supplemented with the conditions
of electric charge neutrality and β-equilibrium.
To conclude, it is worthwhile to add some remarks on

the reliability of the results that will be obtained using
the previously presented EoS. Despite its schematic na-
ture, the EoS aligns with all relevant empirical data at
nuclear saturation density. It is crucial to acknowledge,
however, that any description of hadronic matter at den-
sities exceeding nuclear saturation essentially constitutes
an extrapolation. While various models in the literature
provide more sophisticated approaches to nuclear inter-
actions, they too face substantial uncertainties, arising
from factors such as the selection of parameters and/or

3
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the specific terms included in the Lagrangian for mod-
eling nuclear interactions. In this context, the relative
simplicity of our chosen model does not necessarily de-
tract from the accuracy of the resultant EoS in mirror-
ing the true EoS of actual NSs, compared to other phe-
nomenological models. This is primarily because robust
constraints on the extrapolations made by these mod-
els are currently quite broad and still not very restric-
tive. Such criteria include thermodynamic consistency,
causality, alignment with results from perturbative QCD
at ultra-high densities, and astrophysical constraints. Of
course, it is extremely important that future works ex-
tend the current calculations by incorporating other EoS
to gain a broader understanding of the range of possible
outcomes. A more detailed description of the effects of
the EoS choice on the main results of this work is pro-
vided in the conclusions section.

B. Quark matter EoS in bulk

Quark matter is described by the MIT bag model with
vector interactions, which are introduced by a vector-
isoscalar meson V µ with a universal coupling constant g,
coupled to all three quarks, u, d, and s. The Lagrangian
density of the model reads [58–60]:

L =
∑

q=u,d,s

{
ψ̄q [iγ

µ∂µ −mq]ψq −B
}
Θ
(
ψ̄qψq

)
+

∑
q=u,d,s

g
{
ψ̄qγ

µVµψq

}
Θ
(
ψ̄qψq

)
+ 1

2m
2
V VµV

µ

+
∑
l=e,µ

ψ̄l (iγµ∂
µ −ml)ψl ,

(14)

where q runs over quarks and l over leptons, the bag
constant B represents the extra energy per unit volume
required to create a region of perturbative vacuum [61],
and Θ is the Heaviside step function (Θ = 1 inside the
bag, Θ = 0 outside). The mass of the vector field is taken
to be mV = 780 MeV.
Working in the mean field approximation and defining

GV ≡ (g/mV )
2
, the eigen-energy of the quarks reads

Eq =
√
m2

q + k2 +G
1/2
V mV V0 , (15)

being k the particle’s momentum and mq the quark mass
(mu = 2.16 MeV, md = 4.67 MeV, ms = 93.4 MeV).
The equation for the mean vector field V0 is given by:

mV V0 = G
1/2
V (nu + nd + ns) , (16)

where nq =
〈
ψ̄qγ

0ψq

〉
is the quark number density. The

grand thermodynamic potential per unit volume at zero
temperature is [60]:

Ω =
∑
i=q,l

Ω∗
i +B − 1

2m
2
V V

2
0 , (17)

where for quarks,

Ω∗
q = − gq

6π2

∫ kFq

0

k4dk√
k2 +m2

q

, (18)

being gq = 6 the degeneracy factor. The Fermi momen-
tum, kFq, is given by

kFq = (µ∗2
i −m2

i )
1/2, (19)

where the effective chemical potential for quarks reads

µ∗
q = µq −G

1/2
V mV V0 , (20)

being µq the chemical potential of quarks of flavor q. The
particle number density of each quark species is

nq =
gq
2π2

∫ kFq

0

k2dk , (21)

and the energy density,

ϵq =
gq
2π2

∫ kFq

0

Eqk
2dk . (22)

Within this quark EoS model, the speed of sound (cs)
depends on GV and is not affected by the bag con-
stant. For GV = 0, the speed of sound remains con-
stant at (cs/c)

2 = 1/3. However, when GV > 0, cs
increases with density, asymptotically approaching the
causal limit where cs = c. Furthermore, at a fixed nB ,
a larger GV results in a higher cs. The values of cs aris-
ing in our calculations always fall within the range of
1/3 < (cs/c)

2 < 0.6. This upper limit of (cs/c)
2 ≈ 0.6

occurs when using the maximum GV value of 0.3 fm2 and
the highest density (nB/n0 ∼ 11).

Leptons -electrons and muons- are incorporated as free
Fermi gases, following the formulas specified in Eqs. (9)-
(12). The construction of the pure quark EoS is carried
out under the conditions of electric charge neutrality and
chemical equilibrium under weak interactions.

Finally, it is worth briefly commenting on the impact
of choosing a specific model among all the available phe-
nomenological models to describe quark matter. Clearly,
the use of alternative quark models, such as the Nambu-
Jona-Lasinio model or the linear sigma model, would lead
to different results. These variations would be seen in
the transition pressure, the stiffness of the EoS, and the
quark concentrations at each density. In this respect, our
results are quite dependent on the chosen model, as are
many other outcomes related to NS interiors. However,
as we will discuss more thoroughly in Sec. V, the funda-
mental conclusion of our paper hinges on the qualitative
behavior of the density-dependent surface and curvature
tensions. In this context, we will conclude that, despite
the current uncertainties in EoS, some robust conclusions
can be drawn about the behavior of the mixed phase in
NSs.

4
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III. MIXED PHASE WITHIN THE
COMPRESSIBLE LIQUID DROP MODEL

To investigate the mixed phase of hadrons and quarks,
we employ a technique similar to the compressible liquid-
drop model (CLDM) used for examining nuclear liquid-
gas phase transitions at subnuclear densities [14, 28].
This approach enables a thermodynamically consistent
and systematic analysis of both bulk and finite-size ef-
fects, making it particularly suitable for studying phase
transitions in dense matter. We apply the model within
the framework of the Wigner-Seitz (WS) approximation,
which divides the entire space into independent equiva-
lent cells characterized by their geometric symmetry.

Each WS cell is assumed to be electric charge-neutral.
This is a reasonable assumption since, as with any
plasma, there is no significant charge separation on scales
larger than the Debye screening length λD. For dense
quark matter, λD ∼ few fermis [62], in agreement with
the size of the WS cells resulting from the CLDM calcu-
lations.

As we work under the hypothesis of a first order
hadron-quark phase transition, the coexisting hadronic
and quark phases are assumed to be separated by a sharp
boundary, with uniform particle densities in each phase
for the sake of simplicity. A priori, the assumption that
charged baryons and leptons are uniformly distributed
is a simplification. A more realistic approach would in-
volve solving the Poisson equation for the electrostatic
potential self-consistently, as in Refs. [63, 64]. This
method would more accurately reflect the local variations
in charge distribution and screening effects. Despite this,
our approach remains quite realistic, as can be checked in
Fig. 4 of [63]. First, the distribution of charged baryons
is found to be almost uniform within each phase. On
the other hand, leptons are not as uniformly distributed.
This aspect warrants further refinement in future analy-
ses. However, the approximation used here is still reason-
ably accurate since electrons hold a very small fraction
of the total charge and are smoothly distributed [63].

A. Energy density of the mixed phase

The energy density of the hybrid mixed phase is ex-
pressed as [11]:

ϵMP = ϵH,bulk + ϵQ,bulk + ϵl + ϵsurf + ϵcurv + ϵCoul , (23)

where ϵH,bulk represents the bulk contribution of hadrons
to the energy density, ϵQ,bulk denotes the quark bulk con-
tribution, and ϵl refers to the common lepton background
(described as a free Fermi gas of electrons and muons, as
shown in Eqs. (9)-(12)). Additionally, ϵsurf , ϵcurv, and
ϵCoul correspond to the surface, curvature, and Coulomb
contributions, respectively.

The bulk energy density of hadrons and quarks are,

respectively:

ϵH,bulk = (1− χ)ϵH , (24)

ϵQ,bulk = χϵQ, (25)

where ϵH and ϵQ are the uniform energy densities within
each phase inside the WS cell. The volume fraction is
defined as:

χ =
Vd
VWS

=

(
rd
rWS

)d

(26)

where Vd and rd represent the volume and size of each
geometric structure. Similarly, VWS and rWS correspond
to the volume and size of the WS cell, and d denotes the
dimensionality of the geometric structure (with d = 1 for
slabs, d = 2 for rods and tubes, and d = 3 for drops and
bubbles).
The finite size effects contributions are given by [7, 14]:

ϵsurf =
dσχin

rd
, (27)

ϵcurv = ±d(d− 1)γχin

r2d
, (28)

ϵCoul =
1

2
δq2r2dχinfd(χin) , (29)

where σ and γ represent the surface and curvature ten-
sions, respectively. In the curvature energy term, ϵcurv,
the + sign is assigned to droplets and rods, and the− sign
pertains to tubes and bubbles [12, 14]. Meanwhile, the
slab configuration lacks a curvature contribution (d = 1).
The quantity χin denotes the volume fraction of the inner
portion,

χin =

{
χ , for 0 < χ < 0.5 ,

1− χ , for 0.5 < χ < 1 .
(30)

The electric charge-density difference, δq, between the
two phases inside the cell is calculated as δq = eδnc,
where δnc = nc,H − nc,Q represents the difference in
the number of charged particles between the hadron and
quark phases, being

nc,H = np , (31)

nc,Q = 2
3nu − 1

3nd −
1
3ns . (32)

The elementary charge is denoted by e =
√
4π/137, since

we are operating within the Natural SI unit system. The
function fd in the Coulomb energy depends on the value
of d as follows:

fd(x) =


1

d+ 2

(
2− dx1−2/d

d− 2
+ x

)
, if d = 1, 3 ,

x− 1− ln(x)

d+ 2
, if d = 2 .

(33)

5
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B. Surface and curvature tensions

As mentioned in the Introduction, no widely accepted
consensus exists on the values of σ and γ needed to calcu-
late Eqs. (27) and (28). To address these uncertainties,
the majority of studies take certain simplifications into
account. Firstly, they choose to neglect the role of γ. Sec-
ondly, the surface tension of hadrons is often disregarded,
as it is assumed to be smaller than that of quark matter.
Lastly, quark matter’s surface tension is typically treated
as a constant free parameter, providing flexibility in ex-
ploring various scenarios (see e.g. [35, 36, 63, 65] and
references therein).

In this work, we adopt a different approach. For
simplicity, we continue neglecting the contributions of
hadrons to σ and γ. However, for quark matter, instead
of assuming constant values or neglecting these factors,
we rely on microscopic calculations based on the MRE
formalism [25–27]. Specifically, we use the results of
Ref. [27], which provide σ and γ for the same MIT bag
model with vector interactions used in this work (see Sec.
II B). This approach allows us to determine σ and γ self-
consistently with the EoS.

The results of Ref. [27] reveal that σ and γ at zero tem-
perature show a slight dependence on the electric charge
and the geometric structure’s size, but exhibit strong de-
pendence on the density. Additionally, the presence of re-
pulsive vector interactions significantly enhances σ and γ.
To simplify the description, we assume that, for a given
value of GV , σ and γ solely depend on the baryon num-
ber density nB . Based on data extracted from Ref. [27],
we construct functions of the form σ = σ(nB , GV ) and
γ = γ(nB , GV ). These functions will be presented subse-
quently along with our computational outcomes.

C. Minimization of the energy

The equilibrium of the system can be determined
by minimizing the total energy density, Eq. (23), with
respect to the independent variables of the system,
while considering baryon number conservation and global
charge neutrality. Initially, for a given value of nB , the
variables are χ, rd, np, nn, nu, nd, ns, and ne but with the
inclusion of these two constraints the number of indepen-
dent variables can be reduced. Baryon number conser-
vation and global charge neutrality can be, respectively,
expressed as:

χ

3
(nu + nd + ns) + (1− χ) (np + nn) = nB , (34)

χnc,Q + (1− χ)nc,H − ne − nµ = 0 . (35)

The latter two equations can be employed to eliminate
the variables ne and nn. Consequently, for a given baryon
number density nB , the energy density ϵMP still depends
on six variables: χ, rd, np, nu, nd, and ns.
Minimization with respect to changes in the size of

the inner phase rd, ∂ϵMP/∂rd = 0, while maintaining

constant values for χ and all densities, determines the
equilibrium size of the cell. The result is the standard
“virial theorem”:

2ϵCoul = ϵsurf + 2ϵcurv . (36)

From the latter expression we derive a quartic equation
by employing Eqs. (27)-(29). This equation is then
solved to ascertain the value of rd. Subsequently, uti-
lizing Eq. (26), we determine the value of rWS.
Minimizing with respect to the volume fraction χ,

∂ϵMP/∂χ = 0, leads to the mechanical equilibrium con-
dition at the interface:

PH =PQ − 2ϵCoul

δq

[ 2
3nu − 1

3nd −
1
3ns

χ
+

np
1− χ

]
∓ ϵsurf + ϵcurv

χin
∓ ϵCoul

χin

(
1 + χin

f ′d
fd

)
,

(37)

where, in the last two terms, the − sign applies for
droplets, rods, and slabs configurations, and the + sign
is used for tubes and bubbles. The total pressure of the
mixed phase, PMP, is obtained by the thermodynamic
relation,

PMP = n2B
∂ (ϵMP/nB)

∂nB
. (38)

Finally, minimization with respect to the particle num-
ber densities np, nu, nd, and ns, ∂ϵMP/∂ni = 0, results
in the following chemical equilibrium conditions:

µp +
2ϵCoul

(1− χ)δq
= µn − µe , (39)

µu − 4ϵCoul

3χδq
= 1

3µn − 2
3µe , (40)

µd +
2ϵCoul

3χδq
= 1

3µn + 1
3µe , (41)

µs +
2ϵCoul

3χδq
= 1

3µn + 1
3µe , (42)

which are the traditional β-equilibrium equations modi-
fied by an extra term, due to the Coulomb energy density
contribution.
The mixed phase, with bulk and finite-size contri-

butions simultaneously and consistently treated, is de-
termined by solving the set of equations consisting of
Eqs. (34)-(42). These equations are resolved for various
fixed values of nB and for each dimensionality d = 1, 2, 3.
For each value of nB , this procedure results in three dis-
tinct solutions, each corresponding to one of the d val-
ues. Additionally, the system is resolved independently
for each of the two pure phases – hadrons and quarks – re-
sulting in a total of five different EoSs. Constructing the
final mixed EoS involves comparing these five EoSs. For
every nB value, the EoS that exhibits the lowest energy
density is considered the prevailing one. An alternative
methodology, to be discussed in Sec. IVA, entails com-
puting all the aforementioned phases at a given pressure
P . At each pressure point P , the phase that minimizes
the Gibbs free energy per baryon, G, is identified as the
prevailing one.
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FIG. 1. Pressure-energy density relationship for the selected EoS sets in the absence (upper row) and presence (lower row) of
curvature effects. Each panel shows a different EoS set, with the mixed EoS displayed in green, the Maxwell’s construction
EoS shown in purple and the pure hadron and quark phases represented by the dashed blue and red curves, respectively. Zoom
boxes provide a closer look at the mixed region, highlighting the distinct geometrical structures with different colors. The
orange region in the bottom-left corner represents the constraint given by chiral effective field theory up to 1.1n0 [66, 67],
which is satisfied by our hadronic EoS. In the cases without curvature effects, tubes and bubbles either do not form or are only
marginally present. Conversely, when curvature effects are taken into account, the formation of tubes and bubbles is enhanced.
At the same time, there is a reduction of the density extension of drops and rods, while the prevalence of slabs increases.

IV. RESULTS

In this section, we provide a thorough analysis of the
quark-hadron mixed phase. This analysis is built upon
the EoSs detailed in Sec. II, and it employs the theo-
retical framework outlined in Sec. III. Subsection IVA
is dedicated to exploring the mixed-phase while taking
into account medium-dependent surface and curvature
tensions. Our focus extends beyond merely assessing the
stiffness of the EoS; we also delve into the intricate prop-
erties of the microscopic geometric structures intrinsic
to the pasta phase. Additionally, we undertake an ex-
amination of the mass-radius relationship for the result-
ing NSs. Subsection IVB is devoted to the constant σ
scenario. This subsection aims to draw comparisons be-
tween results obtained from this widely used approxima-
tion and our comprehensive study, which incorporates
density-dependent σ and γ.

A. Analysis of the mixed phase incorporating
medium-dependent surface and curvature tensions

The EoS for the mixed phase contains four free param-
eters, two from the hadron sector, δ and ζ, and two from
the quark sector, GV and B. For our calculations, we

Set δ GV [fm2] B [MeV/fm3]

1 0.10 0.2 90
2 0.10 0.2 120
3 0.10 0.3 90
4 0.10 0.3 120
5 0.15 0.3 90
6 0.15 0.3 120

TABLE I. Parameter values of the filtered EoS sets; for all
the sets we take ζ = 0.6. These sets are selected in order
to satisfy the current astrophysical constraints, see text for
details.

adopt the following parameter values:

δ = 0.1, 0.15, 0.2 , (43)

ζ = 0.6 , (44)

GV = 0.1, 0.2, 0.3 fm2 , (45)

B = 90, 120 MeV/fm
3
. (46)

These values are aligned with previous works that de-
velop and/or adopt the EoSs we use, and are chosen in
order to cover a wide and representative range in the pa-
rameter space [27, 59, 60]. Using the 18 possible combina-
tions of these values, we calculate the mixed phase EoSs,
with an option to include or exclude the curvature ef-
fect. Additionally, for comparison purposes, we compute
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FIG. 2. Schematic representation of the mixed phase con-
struction process. The green curve represents the EoS of a
nonspecific geometric structure of the pasta phase, while the
dashed blue and dashed red curves correspond to the pure
hadron and pure quark EoSs, respectively. The ∆G magni-
tude is defined in Eq. (48). For clarity, the plot presents the
curve for only a single geometric structure. In practice, the
value of ∆G is calculated for all geometric structures, and
the one with the largest modulus, |∆G|, is energetically pre-
ferred. The start and end of the mixed phase are indicated by
∆G = 0. To illustrate the determination of this magnitude,
different values of ∆G are displayed at various pressures.

a hybrid EoS with a sharp density discontinuity using
the Maxwell’s construction. We integrate the Tolman-
Oppenheimer-Volkoff (TOV) equations for all these 18
EoSs and filter them in order to retain only those that
meet the existing astrophysical constraints. Based on
the outcomes from these models, we find that the most
stringent constraint is the one requiring a maximum mass
of 2M⊙ [42]. Therefore, any EoS failing to achieve this
value is excluded. Details regarding these filtered EoSs
are displayed in Table I. Out of the filtered EoSs de-
tailed in Table I, we only present figures for the first four
sets. These sets are qualitatively representative of our re-
sults, aiding in the elucidation of the key aspects of our
research. Also, for sets 1 and 2, we present in Subsec-
tion IVB, a detailed study of the widely used constant
σ scenario, in order to compare with the results of our
study featuring a medium-dependent surface tension.

In Fig. 1, we depict the pressure-energy density rela-
tionship for the chosen EoS sets in two scenarios: one
without curvature effects (upper row) and the other with
curvature effects (lower row). In addition to the mixed
phase curve featuring several geometric structures, we
show, for comparison, the pure hadronic and quark EoSs,
as well as the EoS obtained through the Maxwell’s con-
struction method. The zoom boxes provide a detailed
view of the presence and extension of each pasta struc-
ture. Sets 1 and 2, both with GV = 0.2 fm2, exhibit
broad mixed phases. Set 1, in particular, has a notably
wide mixed phase, beginning at a low pressure around
P ∼ 10 MeV/fm3 and extending up to approximately
P ∼ 500 MeV/fm3. This characteristic implies a sig-
nificant softening of the mixed EoS when compared to

the scenarios involving the Maxwell’s construction or the
pure hadronic EoS. For sets 3 and 4, the higher GV val-
ues shift the transition to higher densities and results in
a less extended mixed phase, approaching the behavior
of the Maxwell’s construction EoS.
Upon comparing both rows of Fig. 1, it becomes ev-

ident that the inclusion of curvature effects leads to a
higher prevalence of slabs over drops and rods, while also
favoring the appearance of tubes and bubbles. This is due
to the curvature effects, which reduce the energy associ-
ated with these specific structures (cf. the sign switching
in Eq. (28)). While without curvature effects only set 1
manages to form bubbles, when including the curvature
energy all sets exhibit bubble appearance. The impact
of curvature on the range of the whole mixed phase is
relatively minor: it increases the energy for drops and
reduces it for bubbles, producing a subtle effect on the
start and end of the mixed phase, shifting it towards
slightly higher values of pressure and energy density.
These changes, however, are not readily discernible in
the figures.
Fig. 2 provides a schematic representation of the con-

struction method for the pasta phase. This method en-
tails generating both the pure hadronic and quark EoSs,
in addition to the EoSs for the five distinct geometric
structures. The prevailing phase at a given pressure is
the one with the lower Gibbs free energy per baryon, de-
fined as

G =
ϵ+ p

nB
. (47)

An alternative approach is to introduce the quantity ∆G,
which represents the Gibbs free energy difference between
the mixed EoS associated with each geometric structure
and the unique Maxwell’s construction EoS:

∆Gi ≡ GMixed,i −GMaxwell , (48)

where the index i runs over drops, rods, slabs, tubes and
bubbles. Since the Maxwell’s construction EoS remains
fixed, the prevailing mixed phase at a given pressure is
the one with larger absolute value of ∆G (see Fig. 2).
The ∆G magnitude proves useful for analyzing and dis-
tinguishing small energy differences among the various
pasta phase structures.
The results for the magnitude of ∆G are presented in

Fig. 3 for the scenarios without (upper row) and with cur-
vature effects (lower row). As in Fig. 1, the dark green
envelope curve indicates the whole hybrid mixed EoS and
the overlapping colors indicate the prevailing finite-size
structure. The energy gain resulting from the formation
of geometric structures, in comparison to the Maxwell’s
construction, falls within the range of a few MeV (specifi-
cally, |∆G| < 16 MeV as seen in Fig. 3). These values can
be deemed astrophysically significant, as they are com-
parable in magnitude to the binding energy of nuclear
matter or the binding energy of iron. While drops, rods,
tubes, and bubbles are influenced by curvature contribu-
tions, slabs remain unaffected by them (cf. Eq. (28) with
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FIG. 3. ∆G as a function of pressure in the absence (upper row) and presence (lower row) of curvature effects for the same EoS
sets of Fig. 1. The horizontal lines represent the pure hadron and quark phases (hadrons on the left and quarks on the right).
As emphasized in Fig. 1, the absence of curvature favors the formation of drops and rods, while it suppresses the presence of
tubes and bubbles. When considering curvature, the Gibbs free energy increases for drops and rods, decreases for tubes and
bubbles, and remains unaffected for slabs. As a result, in the lower row there are wider regions featuring tubes and bubbles,
while slabs become more prevalent in areas where drops and rods are observed in the upper row.

d = 1). Consequently, as the absolute minimum value
of the ∆G curves consistently corresponds to slabs, this
minimum value remains unaffected when considering the
influence of curvature. This figure provides a clearer vi-
sualization of the dominant presence of drops, rods and
slabs when the curvature effect is not considered. It also
exhibits the shift towards a prevalence of slabs and tubes,
along with the emergence of bubbles, when curvature is
taken into account. Additionally, since the pressure axis
in this figure is not logarithmic as in Fig. 1, the shift
of the mixed phase range towards higher pressures when
altering the EoS set becomes more pronounced and ap-
parent.

In Fig. 4, the size of the WS cells and the geometric
structures are shown as a function of the baryon num-
ber density, for the cases without (upper row) and with
(lower row) curvature effects. As previously mentioned in
the discussion of Fig. 1, the inclusion of curvature shifts
the range of prevalence of the mixed phase towards higher
density values. It also alters the density interval in which
each geometric structure is energetically favored. Addi-
tionally, Fig. 4 reveals a slight increase in the sizes of the
WS cells, as well as the sizes of drops, rods, tubes, and
bubbles for a given baryon density when accounting for
curvature effects.

In the bottom row of Fig. 4, we also show the surface
and curvature tensions as functions of the baryon number
density nB . As mentioned in Sec. III B, these curves were
obtained from the calculations of Ref. [27]. These curves
are visually represented in gray and are quantified on
the right vertical axis of the corresponding panels. The

value of GV used in the computation of σ and γ aligns
with that utilized for obtaining the quark EOS. Specifi-
cally, we employed GV = 0.2 fm2 for sets 1 and 2, and
GV = 0.3 fm2 for sets 3 and 4. Due to this factor, the
curves featured in panels (e) and (f) are different to the
curves displayed in panels (g) and (h). The simultaneous
display of rd, σ and γ enables the identification of the
prevailing tension values within each geometric configu-
ration. This presentation also facilitates the estimation
of curvature and surface energy densities, as outlined in
Eqs. (27) and (28). Notice that the fact that σ is an in-
creasing function of density means that the energy cost
of forming tubes and bubbles is significantly higher than
for forming drops and rods. Therefore, in the top row of
Fig. 4, tubes and bubbles scarcely appear, while drops
and rods form easily. The situation changes qualitatively
when curvature effects are included. The sign change ob-
served in ϵcurv in Eq. (28) partially counteracts the sur-
face energy cost of tubes and bubbles, while significantly
increasing that of drops and rods. For this reason, drops
and rods become less prevalent, and tubes and bubbles
emerge more readily, even with higher σ and γ. It is also
observed that tubes and bubbles form with significantly
larger radii than drops and rods, aiming to reduce the
surface and curvature energy.

In Fig. 5, we depict the electric charge per baryon
nc/nB of the mixed phase for the hadron and quark
components as a function of nB . The upper row rep-
resents cases without curvature effects, while the lower
row shows results that account for curvature. Across all
panels, the curve with positive charge corresponds to the
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FIG. 4. Size of the WS cells (rWS, circle dots) and geometric structures (rd, cross dots) versus nB/n0, in the absence (upper
row) and presence (lower row) of curvature effects. The EoS sets and color coding are consistent with the previous figure. In the
lower row, we also show the dependence of σ and γ with nB/n0 (see scale on the right vertical axis of each panel). Specifically,
according to the GV value of each set, panels (e) and (f) display σ and γ for GV = 0.2 fm2, while panels (g) and (h) show the
corresponding values for GV = 0.3 fm2.
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FIG. 5. Electric charge per baryon nc/nB of the hadronic and quark components in the mixed phase, plotted against nB/n0.
The upper row depicts the results in the absence of curvature effects, while the lower row takes into account curvature. The EoS
sets and color coding are consistent with previous figures. Positively charged curves represent the hadron phase, and negatively
charged curves represent the quark phase.

hadron component, whereas the negatively charged curve
represents the quark component. Notice that as χ grows
and 1 − χ decreases, the absolute value of the hadron
phase electric charge consistently rises, while that of the
quark phase reduces. This behavior ensures mutual com-
pensation to uphold global electric charge neutrality as
expressed by Eq. (35).

Finally, we integrated the TOV equations for all the

EoSs shown in previous figures. In Fig. 6, we show the
resulting mass-radius relationships providing a compari-
son between the mixed EoSs with and without curvature
effects, as well as the Maxwell’s construction hybrid EoS.
On the mixed phase curves, two types of markers are used
to demarcate transitions: a circular dot symbolizes the
emergence of the mixed phase, and a square dot points
to the end of the mixed phase and the start of the pure
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FIG. 6. Mass-radius relationship for the mixed EoSs with and without curvature effects (solid red and orange dashed curves,
respectively), and the Maxwell’s construction EoS (dashed violet curve). Each panel corresponds to a different EoS set. The
dots over each mixed EoS curve indicate the onset (circle dots) and the end (square dots) of the mixed phase in the stellar core.
Circle dots over the Maxwell EoS curves represent the onset of the pure quark core. All EoS sets satisfy current astrophysical
constraints (shown by the colored regions). In the zoom box, we provide a detailed view of the maximum mass region. It is
noteworthy that although curvature effects modify the variety of geometrical structures within the mixed phase, they do not
significantly impact the mass-radius curves. Furthermore, curves of sets 1 and 2 deviate from Maxwell’s construction, with the
former shifting to smaller radii due to the onset of the mixed phase at very low masses, and the latter showing a slight shift
towards smaller radii and a moderate decrease in the maximum mass due to the onset of the mixed phase at a larger mass. In
contrast, for sets 3 and 4, the mixed phase emerges above 2 M⊙, resulting in larger maximum masses with negligible differences
between the mixed and Maxwell’s construction curves.

quark phase. In contrast, for the Maxwell EoS curves, a
single circular dot is used, marking the phase transition
and the onset of the pure quark core. Within the zoom
boxes, we provide a detailed view of the maximum mass
region. Additionally, color-coded clouds and bars repre-
sent the current astrophysical constraints. As previously
mentioned, only the results corresponding to EoSs that
satisfy these astrophysical constraints are displayed.

Set 1 shows the most significant differences between
its three curves. The early onset of the mixed phase (in-
dicated by red and orange circle dots) causes the mixed
EoSs curves to deviate from the pure hadronic branch of
the Maxwell EoS in the low mass regime. For set 1, there
are some minimal differences in the EoSs with and with-
out curvature effects for low mass configurations. How-
ever, in other mass ranges and for all configurations of the
other sets, there is essentially no difference at all between
the two scenarios in the mass-radius plane. Notice that
only set 1 in the case without curvature effects displays

a very short segment of stable configurations featuring a
pure quark-matter core, as indicated by the presence of
a square dot on its curve. This case is an exception. All
other stable stellar configurations consist of either only
hadronic matter or exhibit a mixed phase core. Addi-
tionally, in all cases, the inclusion of curvature energy
leads to a delayed appearance of the mixed phase.

For all EoS sets, the incorporation of the pasta phase
leads to a softening of the EoS. In sets 1 and 2, this
softening notably influences the mass-radius relationship
because of the early onset of the mixed phase. The re-
sulting hybrid stars support considerably less mass for a
given radius than stars of the Maxwell curve. In contrast,
for sets 3 and 4, the late appearance of the mixed phase,
at very high densities and pressures, produces almost no
differences among the three curves of each panel. This
can be seen by the presence of the circle dot at very high
masses (or even the absence of the dot, for the red curve
of set 4). For these two sets, almost all of the configura-
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FIG. 7. Stellar profiles for maximum mass configurations (mr versus r) shown in the absence (upper row) and presence
(lower row) of curvature effects. Each panel represents a different EoS set. The black curve indicates the crust and the purely
hadronic outer core, while the colored curves represent the dominant finite-size structures in the mixed phase. Curvature effects
favor the appearance of slabs, tubes, and bubbles, and reduce the radial extent of the mixed phase within the star. Only the
stellar configuration of Set 1 displays the entire variety of the pasta phase in its core. No set, for stable objects, reaches a
central energy density sufficient to support pure quark matter in its core.

tions in the stable branch for each curve correspond to
pure hadronic stars, or have only a tiny mixed phase inner
core. The very small differences among the curves that
arise in the zoom box for set 3, compared to set 4, which
shows no differences at all, can also be explained by ana-
lyzing the position of the dots over the curves. For set 3,
the mixed phase appears late, but before the maximum
mass configurations. For set 4, the mixed phase appears
in the core of the stellar configurations once they become
unstable. Therefore, before the maximum mass, they are
all purely hadronic.

In Fig. 7, we present profiles of selected stellar config-
urations. We depict the mr versus r relationship, where
r represents the radial coordinate of the star, and mr de-
notes the gravitational mass of the star integrated up to
r. Within each panel of the figure, we display the pro-
file of the maximum mass configuration for the respective
set, both without (upper row) and with (lower row) cur-
vature effects taken into account. The black curves rep-
resent the outer layers, including the crust and the purely
hadronic outer core, while the colored curves indicate the
prevailing finite-size structures within the mixed-phase
core. Firstly, we can observe a correspondence among
the EoS results, the M -R relationships, and the figure
presented here. Set 1, for instance, exhibits the earliest
appearance of the mixed phase. Consequently, for the
maximum star configuration of Set 1, we observe a larger
radial extension. Conversely, Set 4 represents the ex-
treme opposite scenario, where the mixed phase appears
only at the very center of the maximum mass configura-
tion, resulting in no mixed phase within the radial range

of this star. Note that, since configurations become un-
stable beyond the maximum mass point, the profiles we
present showcase the maximum diversity and extent of
pasta phase structures attainable within the stable con-
figuration cores for each set. The inclusion of curvature
effects, as we have demonstrated, leads to an increased
variety of geometrical structures, favoring the prevalence
of slabs, tubes, and bubbles. However, it also reduces
the radial extent of the mixed phase. It is noteworthy to
mention the significant proportion occupied by the mixed
hadron-quark phase, both in terms of radius and mass,
in Sets 1 and 2. As previously noted, all sets of stellar
configurations become unstable before reaching a central
energy density high enough to support pure quark matter
in their cores.

B. Comparative analysis: medium-dependent
versus constant surface tension scenarios

In this subsection, we compare our results, which ac-
count for medium-dependent σ and γ, with the widely
studied scenario that assumes a constant value for sur-
face tension and neglects curvature effects. To facilitate
this comparison, we select three values for the surface
tension:

σ = 10, 70, 120 MeV/fm2, (49)

and compute results for sets 1 and 2, neglecting curvature
effects.
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FIG. 8. Same as in Fig. 3, but in the constant surface tension scenario (without curvature effects). Panels (a), (b), and (c)
show the results for set 1 with σ = 10, 70, and 120 MeV/fm2, respectively, while panels (d), (e), and (f) display the results for
set 2 with the same σ values. The color coding of the geometric structures remains consistent with Fig. 3, and the horizontal
lines indicate the pure phases (hadrons on the left and quarks on the right). The mixed EoSs tend to approach the Maxwell’s
construction EOS as σ increases, resulting in ∆G values that approach zero. Furthermore, as σ increases, the variety of
geometric structures diminishes: tubes and bubbles shrink, while slab structures become increasingly preferred.

In Fig. 8, we present the relationships between ∆G
and pressure for the chosen values of σ. As expected, as
σ increases, the pressure range where the mixed phase
exists decreases for both sets. Additionally, the onset of
the mixed phase shifts to higher energy densities. The
variation of σ also impacts the variety of geometrical
structures, with a tendency for diminishing diversity as
σ increases. At high σ values, slabs become the preva-
lent structure, while in some cases, drops and rods may
still coexist. For sufficiently large σ, the mixed EoS van-
ishes, transitioning into a sharp quark-hadron discontinu-
ity represented by the Maxwell’s construction. Notably,
for set 2, the mixed phase converts into a sharp transition
for a larger σ value compared to set 1.

The results for set 1 with medium-dependent σ and no
curvature effects, as shown in Fig. 3, exhibit some simi-
larities to the case with a fixed σ = 10 MeV/fm2 in Fig. 8.
Both cases present a wide mixed phase with all geomet-
ric structures present within similar pressure ranges, al-
though the energy gain ∆G with respect to the Maxwell’s
construction is smaller in Fig. 3. This similarity can be
understood by observing the top row of Fig. 4 and identi-
fying the σ values corresponding to each geometric struc-
ture in the bottom row. Drops and rods arise at ∼ 2−3n0
with a surface tension around σ ∼ 10 − 20 MeV/fm2,
slabs are not affected by surface tension, and the pres-
ence of tubes and bubbles is minimal. Therefore, it is
unsurprising that the results with density-dependent σ
are more similar to the case with σ = 10 MeV/fm2 than
to the other cases of Eq. (49). Similarly, the results for
set 2 shown in Fig. 3 resemble the scenario with a fixed

σ = 70 MeV/fm2 in Fig. 8, with comparable geomet-
ric structures emerging in similar pressure ranges, but
an even larger difference in ∆G between both scenarios.
In the case of set 2, Fig. 4 shows that the surface ten-
sion across geometric structures varies within the range
of 20−60 MeV/fm2. This explains the tendency for these
results to bear a closer resemblance to the constant σ sce-
nario where σ ∼ 70 MeV/fm2. Finally, when comparing
the constant σ model with the complete scenario that in-
cludes curvature effects (shown in Fig. 3), there are fewer
similarities between the two cases, primarily because the
pressure range covered by the mixed phase is narrower,
and the curvature energy favors the emergence of tubes
and bubbles in Fig. 3.

In Fig. 9, we show the mass-radius relationship for var-
ious scenarios, including the three constant σ cases and
our previous results with medium-dependent σ (with and
without curvature effects) as well as the Maxwell’s con-
struction case. In line with our previous figure, the curves
exhibiting medium-dependent σ are positioned between
the cases of σ = 10 and σ = 70 MeV/fm2. Set 1 shows
a stronger resemblance to the σ = 10 MeV/fm2 case,
while set 2 is more akin to the σ = 70 MeV/fm2 case.
The σ = 120 MeV/fm2 scenario closely resembles the
Maxwell’s construction case. In the constant σ approx-
imation, the increasing of σ stiffens the EoS and shifts
the onset of the mixed core to higher densities while the
pure quark core emerges at lower densities (as indicated
by the phase transition marker points). For set 1, the
circle and square dots tend to converge as σ increases,
eventually collapsing into a single dot at the Maxwell’s
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FIG. 9. Mass-radius relationship for the EoS sets 1 and 2 in the constant surface tension scenario without curvature effects. For
comparison, we include the curves from panels (a) and (b) of Fig. 6, which were obtained with medium-dependent σ. The circle
and square dots have the same meanings as in Fig. 6. As σ increases, both sets tend to approach the Maxwell’s construction
curve. For sets 1 and 2, the mixed EoS curves with medium-dependent σ resemble the curves with σ = 10 MeV/fm2 and
σ = 70 MeV/fm2, respectively.

construction limit. On the other hand, for set 2, the
transition from mixed to pure quark matter occurs in dy-
namically unstable branches, beyond the maximum mass
configurations. Consequently, the curves for set 2 grad-
ually modify their maximum mass configurations with
varying σ, while set 1 maintains almost the same max-
imum mass in all scenarios. This difference arises from
the fact that the appearance of the mixed phase for set 1
occurs for lower mass configurations, making the curves
more sensitive to the mixed EoS’s softening. Moreover,
the softer quark EoS of set 1 (with B = 90 MeV/fm3)
amplifies this effect compared to the stiffer quark EoS of
set 2 (with B = 120 MeV/fm3). Finally, for set 2, the
mixed phase emerges at higher masses, and the stiffness
of the hadronic sector leads to higher maximum mass val-
ues. As an extreme case, the Maxwell EoS exhibits the
largest maximum mass because the first hybrid object is
only possible at the maximum mass configuration.

V. SUMMARY AND DISCUSSION

In this work, we focused on investigating the quark-
hadron pasta phase in NSs. Unlike most previous anal-
yses that considered the surface tension σ as a constant
free parameter and neglected the curvature tension γ,
we employed microphysical calculations using the MRE
formalism to determine these parameters [27]. This ap-
proach enabled us to account for the density dependence
of both σ and γ throughout the neutron star, provid-
ing a more comprehensive and accurate analysis of the
pasta phase. To construct the EoSs, we combined an an-
alytic representation based on the APR EoS for hadronic
matter with the MIT bag model featuring vector inter-
actions for quark matter. For modeling the mixed phase,
we employed the compressible liquid drop model, which

accounts for finite-size and Coulomb effects in a consis-
tent manner. We constructed an extensive set of mixed
hybrid EoSs by varying model parameters and solved the
TOV equations to obtain neutron star mass-radius rela-
tionships. Only 6 out of 18 initial EoS models met the
current astrophysical constraints, with 4 representative
EoSs chosen for detailed analysis.

By construction, the formation of the mixed phase al-
ways softens the EoS relative to that derived from the
Maxwell’s construction. However, the degree of this soft-
ening is strongly influenced by the model parameters. For
example, when the mixed phase begins at very low pres-
sures, it spans a broad range of densities, leading to pro-
nounced softening in the mixed EoS. Conversely, when
the mixed phase occurs at higher densities, its range is
more limited, causing its stiffness to approximate that
of the Maxwell’s construction. Importantly, when con-
sidering curvature effects, the EoS’s stiffness is largely
unaffected. As for the energy gain of the mixed phase
over the Maxwell’s construction, it largely depends on
the type of geometric structure. Nonetheless, the energy
difference consistently remains within a few MeV (specif-
ically, |∆G| < 16 MeV as seen in Fig. 3).

On the other hand, our calculations reveal that the
geometric composition of the mixed phase is highly sen-
sitive to the behavior of the parameters σ and γ. Mi-
croscopic calculations using the MRE formalism suggest
that both σ and γ increase with the rising of the baryon
number density. Drops, rods, and slabs form at lower
densities, resulting in a lower surface cost compared to
tubes and bubbles, which form at much higher densities.
Consequently, in the absence of curvature effects, drops,
rods, and slabs dominate the mixed phase, while tubes
and bubbles are scarcely observed.

The incorporation of curvature introduces significant
changes in the geometric composition of the mixed phase.
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While slabs remain unaffected by curvature, the sign
change of ϵcurv in Eq. (28) means that surface and cur-
vature effects partially counteract for tubes and bubbles,
favoring their existence even at elevated densities and,
consequently, higher σ and γ values. In contrast, for
drops and rods, surface and curvature effects combine,
making these configurations less predominant. We also
find that tubes and bubbles typically form with consid-
erably larger dimensions compared to drops and rods,
aiming to minimize both surface and curvature energies.

Our stellar structure calculations suggest that the exis-
tence of deconfined quark matter within NSs occurs pre-
dominantly within the mixed phase, and, on rare occa-
sions, in a pure quark matter core. The onset of the
mixed phase depends upon the specific EoS adopted, re-
sulting in different NS mass values at which this transi-
tion starts. In cases where the onset of the mixed phase
occurs at very low masses, theM−R curves that incorpo-
rate the mixed phase deviate significantly from the pro-
files of hybrid stars characterized by sharp quark-hadron
interfaces (see curves for sets 1 and 2 in Fig. 6). Con-
sequently, stars with mixed phases can support consid-
erably less mass for a given radius compared to their
counterparts featuring sharp interfaces. These dispari-
ties gradually fade as the onset of the mixed phase shifts
to higher masses (cf. sets 3 and 4 in Fig. 6). Remarkably,
we observe that the curvature has a minimal impact on
the mass-radius relationship, except in scenarios where
an extremely low-density onset of the mixed phase is in-
volved, leading to mild effects in those cases.

We compared our results obtained with density-
dependent surface tension to those from the more con-
ventional constant surface tension scenario. As expected,
our findings revealed a correlation where larger values
of σ led to stiffer EoSs, culminating in the Maxwell’s
construction representing the limit of utmost stiffness.
Neglecting curvature, the results stemming from the
density-dependent surface tension framework could be
reasonably approximated by the constant σ scenario,
with σ ranging within 10 − 70 MeV/fm2, depending on
the EoS parametrizations. This similarity extended to
the EoS stiffness, the mixed phase’s geometrical compo-
sition, and the mass-radius relation. However, the in-
clusion of curvature effects makes it impossible to repro-
duce the types of geometric structures and their preva-
lence ranges through a calculation using constant σ. The
primary reason lies in the curvature contribution to the
energy density, which is positive for drops and rods but
negative for tubes and bubbles. Consequently, there is
a counterbalance of finite size energy favoring the for-
mation of tubes and bubbles, while drops and rods tend
to be suppressed. This peculiarity defies emulation by a
model featuring constant surface tension.

In many prior investigations, the concept of critical
surface tension has been explored. Within the frame-
work of a constant σ, a critical surface tension value,
denoted σcrit, emerges [2]. This threshold value indicates
the point at which the energy cost of forming the pasta

structures becomes prohibitive, as depicted in Fig. 8. If
the (constant) surface tension exceeds σcrit, an abrupt in-
terface between hadrons and quarks is favored. However,
our findings indicate that the concept of σcrit should be
employed with caution. As shown in Fig. 4, the surface
tension in drops and rods is notably lower than in tubes
and bubbles. Moreover, as previously discussed, curva-
ture effects favor the formation of tubes and bubbles,
even when their associated surface tension is markedly
high.

As discussed in Sec. II, employing different quark and
hadron EoSs than those chosen for this work would result
in variations in the stiffness of the EoS, the quark-hadron
transition pressure, and other related factors. However,
it is reasonable to anticipate that the fundamental con-
clusion of our paper would not be qualitatively altered
by using a different set of EoSs. As stressed before, the
central conclusion of this work is that the inclusion of
density-dependent surface tension and curvature tension
does not significantly alter the global properties of com-
pact objects but does substantially modify the diversity
of geometric structures present in the mixed phase. Our
analysis indicates a suppression of drops and rods at low
densities and an enhancement of tubes and bubbles at
high densities. A change in the EoSs is unlikely to bring
major modifications to this trend. For instance, we ex-
pect that this general behavior would also be maintained
in the context of the Nambu-Jona-Lasinio model with
vector interactions, since in this case, both σ and γ are
also increasing functions of density [68]. However, it is
important to acknowledge that this density-dependent
behavior might not necessarily be retained in calculations
of σ and γ using techniques different from the Multiple
Reflection Expansion (MRE) formalism [23–27].

Another potentially important aspect is that in our
modeling of surface and curvature tensions, we have ne-
glected the contribution from hadronic matter. Gen-
erally, it is assumed that quark matter, rather than
hadronic matter, provides the dominant contributions
to σ and γ, essentially because σH would be around
1 MeV/fm2 around nuclear saturation density, as sug-
gested by results using semi-empirical mass formulas fit-
ted to observed nuclear masses. However, detailed calcu-
lations estimating the surface and curvature tensions of
hadronic matter at densities above nuclear saturation are
absent in the literature. Despite these uncertainties, it
is conceivable that significant σ and γ in hadronic mat-
ter could alter the structure of the mixed phase. This
stems from the fact that the surface tensions from both
phases are additive, and the curvatures are subtractive:
σ = σH + σQ and γ = γH − γQ [69]. If σH and γH are
sufficiently large, they could substantially increase the
effective surface tension and decrease the effective cur-
vature tension. As our results show, both the extent of
the mixed phase and the diversity of pasta structures are
heavily influenced by these quantities.

In comparison with recent works that also employ
the compressible liquid drop model for constructing hy-

15



M. Mariani and G. Lugones Quark-hadron pasta phase in neutron stars ...

brid stars with a pasta phase [35–37], it is noteworthy
that none of these studies account for curvature effects.
While they do not consider curvature, certain qualita-
tive aspects of these investigations align with our find-
ings. Specifically, there is agreement on the charac-
teristic density range of the mixed phase, the typical
sizes of geometric structures, and the expected values
of hadron and quark electric charges. However, a key
difference emerges: these studies readily produce all geo-
metric structures (drops, rods, slabs, tubes, and bubbles)
within their EoSs, even without considering curvature ef-
fects. This contrast can be attributed to their consistent
use of relatively low values for σ, which stand in con-
trast to the predictions derived from the MRE calcula-
tion of surface tension. Among the previously mentioned
works, only one takes into account a density-dependent
σ [37]. Nonetheless, their determination of σ using the
MRE formalism diverges significantly from our approach.
Specifically, they omit the inclusion of an infrared cut-
off in their integrals, which is essential to prevent the
MRE density of states from becoming negative within a
finite volume (as discussed in Refs. [23–27]). Further-
more, their σ computation is conducted within the con-
ventional MIT bag model, which implies that their result
is the same as for a free Fermi gas of quarks. As a result
of this choice, the authors attain markedly low values
for σ across the entire density range of the mixed phase,
specifically σ < 50 MeV/fm2. In contrast, our calcula-
tion incorporates both an infrared cutoff and repulsive
vector interactions, leading to a quite different behavior
of the surface tension. Additionally, it is worth noting
that many EoS models adopted in the aforementioned
studies only marginally meet the current astrophysical
constraints. In certain cases, the softening effect of the
mixed phase in the EoS prevents their models from reach-

ing the 2M⊙ constraint. On the other hand, some studies
employ hadronic models that do not agree with the ra-
dius ranges implied by the observations from GW170817
[48].
To conclude, our study presents a comprehensive and

consistent analysis of the mixed phase in hybrid stars,
incorporating a detailed microphysical characterization
of two key parameters that influence the properties of
the pasta phase: surface tension and curvature tension.
While our results are consistent with calculations using
a constant σ in terms of EoS stiffness and the resulting
stellar structure, they reveal significant differences in the
diversity and range of existence of the geometric config-
urations. The minor effects on stellar structure due to
the density-dependent surface tension and the inclusion
of curvature effects should not preclude potential astro-
physical implications. For instance, when a hybrid star
is dynamically perturbed, the boundary between pasta
structures and the background might undergo phase con-
version reactions. Depending on the variety and extent of
these structures, both the effective surface and the con-
ditions facilitating these reactions can vary significantly.
The importance of these features cannot be understated,
especially considering their potential to affect the damp-
ing of r-modes [70] and the dynamic stability of hybrid
stars [71, 72].
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