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Abstract

We introduce an efficient neural network (NN) architecture for classifying wave func-
tions in terms of their localization. Our approach integrates a versatile quantum phase
space parametrization leading to a custom ”quantum” NN, with the pattern recognition
capabilities of a modified convolutional model. This design accepts wave functions of
any dimension as inputs and makes accurate predictions at an affordable computational
cost. This scalability becomes crucial to explore the localization rate at the semiclassical
limit, a long standing question in the quantum scattering field. Moreover, the physical
meaning built in the model allows for the interpretation of the learning process.

1. Introduction

Determining the localization degree and morphology of resonances in partially open
quantum systems (crucial to the study of resonant cavities and scattering in general) has
been a long awaited objective attacked from many sides [1, 2, 3, 4, 5, 6, 7, 8]. Great
advances of undoubted relevance are contained in these works, but the precise goal has
proven elusive until apparently very recent times, when new promising tools, conjectures
and theories have been developed [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. But these
results need more systematic tests and thorough explorations of large sets of resonances
in the semiclassical limit. This is a formidable task since not only the calculation of
the eigenfunctions is needed, but also the computation of their quantum phase space
representations. Moreover, one needs to compute some suitable localization measure
reasonably invariant on the representation used in order to have an estimation of the
localization degree. The advent of Machine Learning (ML) gives us the opportunity to
overcome this last barrier.

The use of ML techniques has extended to the vast majority of research areas nowa-
days. The physical sciences are no exception [19], and successful applications can be
found in quantum entanglement and complexity [20, 21, 22], a subject closely related
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to this work. On the other hand, NNs (a ML technique) have demonstrated extremely
powerful in image processing, being this a key feature we exploit [23].

In this paper we focus on the localization properties of the resonances associated to
the open quantum tribaker map, which is a paradigmatic model originally proposed in
the quantum chaos area but that has many applications in quantum optics, quantum
computation and scattering processes in general [24, 25, 26]. We use the so called norm
ratio [27, 28] as the localization measure labelling the data in order to train a NN. This
NN is composed of two parts, one dedicated to quantum phase space sensing by a suitable
adaptation of the Husimi distribution, and the other devoted to recognize localization as
an image feature. Thanks to thorough tests of our model, we have found that it would
be possible to extend the estimation of the localization degree to high Hilbert space
dimensions, which in our setting amounts to reaching the semiclassical limit. Moreover,
our ML model unveils localization properties of resonances showing how short periodic
orbits (POs) could be hidden in the set of long lived resonances thanks to specially suited
learning features built in our NN.

The organization of this paper is as follows: in Sec. 2 we describe the (partially) open
tribaker map and the localization measure used. In Sec. 3 we describe the architecture of
our NN. In Sec. 4 we show how we handle the dataset and train our ML model. Finally,
in Sec. 5 we annalyze its performance. Some relevant points are outlined in Sec. 6.

2. System and measure

We here give a brief description of (partially open) maps that are an invaluable
resource in classical and quantum chaos [29, 30, 31]. The main invariant structure in
phase space associated to open maps on the 2-torus is the fractal repeller, which is
defined as the intersection of the forward and backwards trapped sets, which in turn
are constructed by the nonescaping trajectories in the past or future. If the opening is
not complete there is a finite reflectivity (in our example we take a constant function
R ∈ (0 : 1)), the trajectories have a variable intensity, and the now multifractal invariant
extends over all the phase space.

Throughout this paper we consider the tribaker map, which in its closed and classical
version is

B(q, p) =

 (3q, p/3) if 0 ≤ q < 1/3
(3q − 1, (p+ 1)/3) if 1/3 ≤ q < 2/3
(3q − 2, (p+ 2)/3) if 2/3 ≤ q < 1

(1)

We take the one with an opening in the region 1/3 < q < 2/3, i.e. all trajectories passing
through it will modify their intensity following the previously mentioned reflectivity
function.

In general, the quantization of maps amounts to taking ⟨q + 1|ψ⟩ = ei2πχq ⟨q|ψ⟩,
and ⟨p+ 1|ψ⟩ = ei2πχp⟨p|ψ⟩, with ⟨q|ψ⟩ and ⟨p|ψ⟩ the wave functions in position and
momentum basis, respectively (χq, χp ∈ [0, 1)). Consequently, the dimension N of the
Hilbert space satisfies N = (2πℏ)−1, and N → ∞ means going to the semiclassical limit.
The evolution operator is a N×N matrix, while the position and momentum eigenstates
are given by |qj⟩ = |(j + χq)/N⟩ and |pj⟩ = |(j + χp)/N⟩ with j ∈ {0, . . . , N − 1}, and
⟨pk|qj⟩ = 1√

N
e−2iπ(j+χq)(k+χp)/N ≡ (G

χq,χp

N ). When the quantum map is (partially)

open the corresponding operator is non-unitary, having N right eigenvectors |ΨR
j ⟩ and N
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left ones ⟨ΨL
j | for each resonance (eigenvalue) zj , with ⟨ΨL

j |ΨR
k ⟩ = δjk and ⟨ΨR

j |ΨR
j ⟩ =

⟨ΨL
j |ΨL

j ⟩ being the norm. The quantum tribaker map (we take antiperiodic boundary
conditions χq = χp = 1/2 in order to preserve its classical symmetries) in position
representation is [32, 33]

UB = G−1
N

 GN/3 0 0
0 GN/3 0
0 0 GN/3

 . (2)

The partially open map is recovered when we apply the projector

P =

 1N/3 0 0

0
√
R 1N/3 0

0 0 1N/3

 , (3)

to the evolution given by Eq. (2).

We define a symmetrical operator ĥj which takes into account both the right |ΨR
j ⟩

and left ⟨ΨL
j | eigenstates [25, 26]

ĥj =
|ΨR

j ⟩⟨ΨL
j |

⟨ΨL
j |ΨR

j ⟩
. (4)

It is worth noticing that adding all these symmetrical operators multiplied by the cor-
responding eigenvalue zj is equivalent to the spectral decomposition of the non-unitary
operator. Since the right (left) eigenstates have support on the backwards (forward)

trapped sets, ĥj are concentrated on the classical repeller. If we take expectation values

on coherent states |q, p⟩, it follows that hj(q, p) = |⟨q, p|ĥj |q, p⟩| ∝
√
HR

j (q, p)HL
j (q, p),

with HR,L
j the Husimi distributions of the R,L eigenstates (which in the closed case coin-

cide and are just the usual Husimi distributions). We call hj(q, p) the LR representation
of the resonances (the modulus is taken since these are complex functions).

The measure of localization that we have selected in order to label the resonances
considers a coherent state as the most localized distribution and by comparing phase
space norms reflects the departure from it. This is the norm ratio µ defined by [27]

µ(h̃i) =

(
∥h̃i∥1/∥h̃i∥2
∥ρc∥1/∥ρc∥2

)2

. (5)

A coherent state at (q, p) provides the normalization factor ρc = |q, p⟩⟨q, p| by means of
the phase space norm

∥h̃i∥γ =

(∫
T 2

h̃i(q, p)
γdqdp

)1/γ

. (6)

The norm ratio does not depend on the h normalization, reaching a minimum of 1 for
a maximally localized distribution (a coherent state) and a maximum of N/2 for the
uniform distribution.
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3. NN architecture

3.1. Custom layer optimized for wave function convolution

Our architecture introduces a streamlined approach to processing quantum wave func-
tions, starting with a custom convolution layer specifically optimized for this task (see
Fig. 1). This layer is designed to convolve the quantum wave function, denoted by
⟨ψ|, with a parametrizable kernel represented by |Ω⟩. The convolution transforms the
quantum mechanical data into a format that is compatible with traditional deep learn-
ing techniques. Regarding the parametrizable kernels we can explicitly define them as
⟨x|Ω(θ)⟩, where x represents the spatial coordinates (i.e. the position basis) and θ denotes
a set of parameters. These kernels are generated dynamically taking into account the
dimension of the wave function, and the specific parameters θ are tailored to optimize
the convolution process. The parametrizable nature of the kernels allows for a flexi-
ble adjustment to the morphology of each wave function, ensuring that the convolution
accurately captures the essential features of the quantum state.

The convolution operation in this custom layer is given by

⟨ψ|Ω⟩ab =
∫
ψ(x) · Ωab(x; θ)dx (7)

where ⟨ψ|Ω⟩ab represents the convolved wave function, capturing the localization features
in the parameter space. We denote ψ for brevity, but stands for both ΨL and ΨR,
the corresponding convolutions are then combined (in the R = 1 case they coincide).
This process effectively translates the quantum information into a set of ”images”, each
bearing the degree of phase space localization of each wave function. The function
Ω(x; θ) is arbitrary but its choice depends on the specific problem at hand, as well as
the information sought from the wave functions. We have taken Ω as coherent states α
(in position representation) with parameters θ given by their positions {p0, q0} in phase
space, which are adjustable during training. Upon convolving Ω with a wave function ψ,
and subsequently applying the modulus operation via the activation function φ(z) = ∥z∥,
the outcome is effectively transformed into the LR representation hj(q, p), allowing to
physically interpret the convolution results.

3.2. Integration with a modified AlexNet

Following the convolution with the custom layer, our architecture employs a modified
version of the AlexNet deep learning model [23] adapted to handle the structure of our
images. The AlexNet model, originally designed for RGB images, is reconfigured to
accept a single-channel input, corresponding to the output of the custom convolution
layer. The modified AlexNet consists of several convolutional layers, pooling layers, and
fully connected layers, structured as follows:

• Convolutional layers extract features from our images, using filters to capture pat-
terns signaling localization in the phase space.

• Pooling layers reduce the dimensionality of the feature maps, enhancing the net-
work’s ability to generalize from the data by focusing on dominant features.

4



Figure 1: Schematic representation of the NN. The input to the network is the bra ⟨ψ|, and it undergoes
a series of convolutions with parametrized functions Ω(θ), each represented by a different color. The
convolution gives a corresponding point in the output ”image” (point colors match Ω(θ) colors). The
image is processed through an activation function, resulting in the final image output.

• Fully connected layers consolidate the extracted features into a form suitable for
classification, ending with a final layer that informs the (non-)localized nature of
the wavefunction.

The entire network (see Fig. 2) operates in a supervised training regime, where the
input wave functions are labeled according to their localization properties in quantum
phase space. The training process aims to minimize a loss function that quantifies the
difference between the predicted and actual labels, employing backpropagation and gra-
dient descent algorithms to adjust the parameters of both the custom convolution layer
and the AlexNet model.

4. Dataset handling and NN training

We construct the dataset in order to train our NN starting with a Hilbert space of
dimension N = 243. For each value of N , we calculate the resonances of the quantum
system, resulting in a total of N left and N right eigenstates, which in the closed system
(R = 1) amounts to just N eigenstates. Following this we compute the norm ratio
µ(ψi) for each one of them, considering just the 20 wave functions with the highest norm
ratios and the 20 ones with the lowest values. These selected wave functions are then
labeled accordingly: a label 0 is assigned to resonances with the lowest norm ratios (non-
localized), and 1 is assigned to those with the highest values (localized). After the initial
iteration, we grow N by 3 and repeat the entire process. This iterative procedure is
conducted 50 times, increasing N up to Nmax = 243+3×50 to give a total of 2×40×50
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Figure 2: NN architecture. The network input,⟨ψ|, undergoes convolution with the parametrized function
|Ω⟩, followed by an activation function. This is fed to a modified single input channel AlexNet, concluding
with a perceptron layer consisting of a single output neuron.

labeled left and right wave functions (again, in the closed case they are just half this
number).

To compound the wave functions into a unified dataset, we construct the matrix Ψµν

(we take the closed case as an example)

Ψµν =



ψ1(x1) · · · ψk(x1) ψ40×50(x1)
...

. . .
...

...
ψ1(xN1

) · · · ψk(xNk
) ψ40×50(xNk

)
0 · · · 0 ψ40×50(xNk+1

)
...

. . .
...

...
0 · · · 0 ψ40×50(xNmax

)
N1 · · · Nk Nmax


,

where the ν-th column corresponds to the ψν(x) wave function, and each row µ represents
the coefficient of the projection of the eigenstate ψν onto the position basis element xµ,
such that ⟨xµ|ψν⟩ = ψν(xµ). To accommodate wave functions of varying dimensions
within the same matrix, we append zeros to the entries beyond the dimension Nν of each
wave function ψν , thereby standardizing the column lengths. The dimension Nν of the
wave function ψν is explicitly recorded in the last row of the matrix.

Summarizing, the dataset for our study is constructed from a series of quantum wave
functions, each encapsulated within a tensor, denoted as Ψµν . The labels associated with
each wave function are binary, determined by a calculated norm ratio, with a value of
1 indicating a non-localized state and 0 denoting a localized one. Formally, the dataset
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D comprises a collection of tuples, where each tuple (Ψµν , y) contains the tensor repre-
sentation of a wave function and its associated binary label y. This structure ensures
that each wave function is suitably prepared for processing by the NN, adhering to the
required input specifications.

To ensure a robust training and validation process, the dataset D is systematically
divided into training (Dtrain) and validation (Dval) subsets. This division is executed
randomly to maintain a representative distribution of wave functions across both subsets,
thereby facilitating a comprehensive training regime and an unbiased validation process.
Typically, 80% of the dataset is designated for training, with the remaining 20% allocated
for validation purposes. Additionally, the training and validation data are organized into
batches, with a standard batch size of 32, to enhance the efficiency and effectiveness of
the training phase.

Our ML model, designed to classify quantum wave functions based on their local-
ization features, has an initialization which sets weights and biases to values that are
optimized for learning, focusing on compatibility with ReLU activation functions. The
optimization of the NN parameters is conducted using the Adam optimization algorithm,
targeting the minimization of cross-entropy loss between the model predictions and the
actual binary labels.

The training protocol encompasses multiple epochs, each representing a full iteration
through the Dtrain subset. Within each epoch, the model performs forward propagation
to compute predictions, evaluates the loss to determine the accuracy of these predictions
against the actual labels, and does backpropagation to adjust its parameters based on
the gradient of the loss. To warrant the generalization capability of our model and
mitigate overfitting, its performance is regularly evaluated on the Dval subset, allowing
for iterative refinement of the training strategy based on empirical validation results.

5. Results and performance of the ML model

The first thing to notice regarding the performance of our NN is that within a range of
up to 5 training epochs (each epoch represents a complete iteration through the dataset)
an accurate classification of 100% of the wave functions has been obtained. This indicates
rapid convergence towards an optimal solution, demonstrating the effectiveness of the
network architecture and the adequacy of the dataset for the proposed classification task.
Also, the NN demonstrates scalability for wave functions of varying dimension N , being
capable of classifying both higher and lower dimensional wave functions. And finally,
the NN learns with significantly reduced datasets, becoming applicable in scenarios with
limited data. In order to better grasp the performance of our model, in Fig. 3 we show
the rate of success over the validation dataset as a function of the number k of subsets
of different N used in the traning process. Here, k = 1 corresponds to the first 40 wave
functions used for training, k = 2 to 80 (we use both the sets for N = 243 and N = 246)
and so on up to k = 30. It can be clearly seen that the partially open situation is even
more amenable to the localization exploration of our NN than the already very good
closed scenario, since it reaches an almost perfect rate at just k = 6, compared to k = 16
in the latter case. When we fully train our model using k = 50 and 5 epochs, with the
dataset being traversed in each epoch, we find the behavior of the loss function shown
in Fig. 4. It becomes clear that the learning process completely stabilizes at around the
50th step (a step refers to an iteration within the training algorithm) in the partially
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Figure 3: (Color online) Success rate as a function of k. The partially open system (R = 0.07) is
represented in blue (black), while the closed system in green (gray).

open case, while in the closed one there are still fluctuations (though small), up to the
very end. This is another way to see the suitability of our model for exploring localization
in partially open systems.

Now we go deeper into the interpretation of the results we have obtained. For the
closed case, Fig. 5 shows the Husimi distributions (as R = 1 the LR representations
reduce to them) of 9 randomly selected eigenfunctions from the validation dataset, all of
which have been correctly classified. It is observable that the localization patterns differ
across each wave function, as do the non-localization features. Despite these striking dif-
ferences, the network has successfully classified them. Then, how does this classification
work?

To classify wave functions, any given input will activate certain layers and neurons
within the NN to finally provide with a binary outcome, 0 or 1. In particular, we integrate
a modified AlexNet where these layers are convolutional filters that progressively trans-
form the image generated in our ”quantum” NN to arrive at this binary classification.
Although the NNs learning process is not directly interpretable in general, examining
how kernels deform the input can offer an approximate understanding of it. For that
purpose we have selected two wave functions from those shown in Fig. 5, the localized
3rd one (from left to right and top to bottom) and the non-localized 6th one (see Fig. 6
for clarity).

In Fig. 7 we display the input images after passing through the top 9 activating
convolutional filters in the first layer of kernels for the cases shown in Fig. 6. We observe
that the image suffers a minimal deformation for the few first filters, although it is evident
that they progressively make the distributions more uniform. This effect is stronger for
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Figure 4: (Color online) Loss function versus training steps using the entire dataset (k = 50). The
partially open system is represented in blue (black) while the closed one in green (gray).

the non-localized state, where the filters almost completely wipe out any feature at the
end of the process. This can be seen with the help of Fig. 8 where we show the last (5th)
layer. In the localized case we observe that from the first to the last layer, all filters focus
on a short PO of period 1 that strongly scars the eigenfunction. In the non-localized
example the filtered distribution ends up being uniformly extended over the whole phase
space.

The same behaviour has been found for the partially open map, which we explain in
the following. In Fig. 9 we show the LR representations corresponding to 9 randomly
selected wave functions. We have picked the 7th and 9th resonances (see Fig. 10) as
examples of non-localization and localization, respectively. In the last layer, the action
of the filters wipes out the features of the non-localized resonance inside the principal
area supporting the repeller, strikingly hinting where the main opening is located (its
first iteration). In the localized example the same behavior as in the closed case is found
(see Figs. 11 and 12). In fact, a short PO of period 4 is singled out at all levels of the
layers.

6. Conclusions

We have defined a simple network architecture consisting of a custom ”quantum” NN
first part, integrated with a modified AlexNet. This allowed us to efficiently classify reso-
nances of the paradigmatic open quantum tribaker map into localized and non-localized.
This was achieved with independence of the system size, a fact that demonstrates the
scalability of our model in this effective proof of principle.
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Figure 5: Husimi distributions (closed case) of 9 randomly selected wave functions from the validation
dataset, together with their classification in terms of localization.

When analyzing the way in which the NN learns to distinguish localized from non-
localized resonances, we have found that the process is able to detect POs scarring and
the main features of the repellers. The physical meaning of the custom ”quantum” NN
in the first part of our model design is crucial not only for allowing this interpretations
of the learning process, but also for making the ML affordable in terms of computational
cost. The coherent states adapt to the most efficient distribution in order to classify the
resonances in terms of their localization.

The detailed performance analysis has shown that our model not only works very well
in the closed scenario, perhaps it is even more suitable for the partially open case. But
this tells us more than just that; indeed, we have a hint towards a better understanding
of localization in partially open systems thanks to ML. The ML performance measures
seem to be almost localization morphology indicators by themselves, suggesting a sharper
separation between localized and non-localized resonances which actually helps the NN
to learn faster and better.

Through our ML integrated model we were able to reach an affordable method for
systematically classifying the morphology of generic wave functions. This affordability is
essential for the ultimate goal of exploring the localization rate going deep into the semi-

10



Figure 6: Husimi distributions selected to illustrate the convolutional filters action. On the left we find
the non-localized case, while on the right the localized one.

classical limit. This is a way to overcome the last barrier into answering a long standing
question in the quantum scattering field: is there more, the same, or less localization in
(partially) open systems than in closed ones? [6]. We are now pursuing that objective
by means of extensive calculations.
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Figure 8: Effect of the top 9 activating convolutional filters in the last layer for the cases of Fig. 6. In
the right panels (localized example), the short PO scar identified by our NN is marked by means of blue
empty circles.

Figure 9: LR representations (partially open case, R = 0.07) of 9 randomly selected wave functions from
the validation dataset, together with their classification in terms of localization.

13



Figure 10: LR representations selected to illustrate the convolutional filters action. On the left we find
the non-localized case, while on the right the localized one.

Figure 11: Effect of the top 9 activating convolutional filters in the first layer for the cases of Fig. 10.
In the right panels (localized example), the short PO scar identified by our NN is marked by means of
blue empty circles.
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Figure 12: Effect of the top 9 activating convolutional filters in the last layer for the cases of Fig. 10.
In the right panels (localized example), the short PO scar identified by our NN is marked by means of
blue empty circles.
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