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Simplifications and approximations 
in a single‑gene circuit modeling
Alejandro Barton 1,2, Pablo Sesin 3 & Luis Diambra 1,2*

The absence of detailed knowledge about regulatory interactions makes the use of phenomenological 
assumptions mandatory in cell biology modeling. Furthermore, the challenges associated with the 
analysis of these models compel the implementation of mathematical approximations. However, 
the constraints these methods introduce to biological interpretation are sometimes neglected. 
Consequently, understanding these restrictions is a very important task for systems biology 
modeling. In this article, we examine the impact of such simplifications, taking the case of a single-
gene autoinhibitory circuit; however, our conclusions are not limited solely to this instance. We 
demonstrate that models grounded in the same biological assumptions but described at varying 
levels of detail can lead to different outcomes, that is, different and contradictory phenotypes or 
behaviors. Indeed, incorporating specific molecular processes like translation and elongation into 
the model can introduce instabilities and oscillations not seen when these processes are assumed 
to be instantaneous. Furthermore, incorporating a detailed description of promoter dynamics, 
usually described by a phenomenological regulatory function, can lead to instability, depending on 
the cooperative binding mechanism that is acting. Consequently, although the use of a regulating 
function facilitates model analysis, it may mask relevant aspects of the system’s behavior. In 
particular, we observe that the two cooperative binding mechanisms, both compatible with the same 
sigmoidal function, can lead to different phenotypes, such as transcriptional oscillations with different 
oscillation frequencies.

In recent times, mathematical modeling has emerged as a pivotal instrument in contemporary Biology. In numer-
ous instances, a quantitative approach in Molecular Systems Biology is mandatory to understand the mechanisms 
that drive many of the observed phenomena1,2. In general, systems are constituted of a substantial number of het-
erogeneous elements, and certain simplifications are needed to obtain a more manageable model. Here, simplifi-
cation refers to the elimination of intricacies and details from the model that are perceived to have an insignificant 
impact on the replication of a specific aspect of interest in the system under study. Despite these simplifications, 
some models remain analytically intractable due to the sheer number of variables, parameters, and inherent 
non-linearities that increase the complexity, requiring sophisticated mathematical techniques at times. Further, 
incomplete knowledge of the underlying interaction mechanisms often requires the use of phenomenological 
assumptions, like regulatory functions. Nevertheless, models often require mathematical approximations, such 
as the time scale separation methods, as a means of achieving feasibility. If pertinent assumptions are made, it 
is expected that the abridged version of a model will furnish consistent outcomes with its detailed counterpart; 
and modifications to model components, such as a change in parameters, should mimic modifications to the 
real system. However, the simplifications and approximations discussed above impose limits on the biological 
interpretation of processes and parameters used in the model. In this paper, we examine a single-gene oscillator 
to assess the implications, limitations, and potential misapplications of common assumptions and approxima-
tions in molecular systems biology modeling within a deterministic framework. Modeling single-gene oscillators 
can be more than a propaedeutical way to introduce systems biology modeling; in fact, it is the core circuit that 
drives somitogenesis during vertebrate embryogenesis3. This genetic timekeeper is believed to be driven by the 
self-regulation of her/hes genes, which contain multiple regulatory binding sites for inhibition4. In the last decade, 
this topic has attracted the attention of both theoretical and experimental researchers, and several studies have 
focused on segmentation clock modeling5–9. Thus, models including mechanistic details, as proposed here, could 
be a suitable platform for further studies of vertebrate segmentation clocks.

In exploring genetic oscillator modeling, it is essential to consider fundamental mathematical principles such 
as the Bendixson–Dulac theorem10. This theorem provides the necessary conditions for excluding oscillatory 
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solutions in systems described by two nonlinear ordinary differential equations. Specifically, in the context of 
single-gene models, this theorem grants that oscillations are impossible when considering only two chemical 
species, independent of the non-linearity present in the model. Thus, it highlights the necessity of extending 
models to include detailed mechanisms that can exhibit dynamic behaviors not accounted for by simpler mod-
els. In this sense, Goodwin proposed a model with three variables (processes) and high non-linearity mainly 
embedded in a Hill function11. This model can exhibit oscillatory behavior. However, its soundness as a gene 
oscillator model has been challenged on account of the excessively high value that the Hill exponent must take 
to display sustainable oscillations. The matter has unleashed some controversy about the number of processes 
that must be considered in a reliable oscillatory model to observe oscillatory behavior. Several papers have 
introduced some other mechanisms to reach such oscillations. These mechanisms can consider an increasing 
number of components12–14 or include improvements in the descriptive level of the systems. In this last sense, it 
has been proven that taking into account ingredients such as delayed variables15, involved in synthesis, transport 
or intrinsic stochastic noise16, cis-regulatory sites for TF genes16–18 or protein–protein interaction can lead these 
auto-inhibitory circuits to instability19. Further, it has been proposed the use of cascades of post-translational 
covalent modifications, instead of a transcriptional regulatory function, as a non-linearity source12. However, 
more recently it has been demonstrated that oscillations may arise due to a global physiological response, rather 
than a specific molecular mechanism20.

The implementation of time-lagged variables has emerged as an alternative solution to reliable transcrip-
tional oscillator models15,21,22. The inclusion of delay variables is a pivotal factor in introducing non-linearity 
into models, highlighting the significance of time delays in the modeling of transcriptional oscillators. Often, 
the introduction of this kind of variable is made as a discrete single delay to substitute one or more processes 
(such as transcript elongation, translation, or translocation) with an equivalent characteristic time. However, 
this substitution in not always justified and a distributed delay approximation should be more adequate to rep-
resent such processes. Mathematically, a discrete delay represents an infinite number of processes and carries 
implicitly a high non-linearity. Thus, this approximation can lead to inaccurate results when interpreting the 
parameters of the modeling.

Here, besides considering distributed delays for synthesis and degradation processes, we also introduce a 
detailed description for the cis regulatory system (CRS) in a single-gene oscillatory circuit. Our findings reveal 
that the phenomenological simplification of the regulatory function operating in the system can obscure a range 
of possible scenarios. The outline of the paper is as follows: in “Modeling transcriptional oscillations with instan-
taneous processes”, we introduce a series of models for an autoinhibitory circuit of a single gene, inspired by the 
Lewis segmentation clock model15. These three models capture the dynamics of mRNA and protein synthesis/
degradation with an increasing level of description. In these cases, the autoinhibitory mechanism is modeled by 
a phenomenological Hill function. We demonstrate that different levels of detail can predict divergent phenotype 
behaviors for the regulatory circuit analyzed, ranging from a stable node and stable spiral to sustained oscillations. 
In “Single-gene oscillator models with explicit CRS dynamics”, we disaggregate the binding/unbinding processes 
associated with CRS dynamics and replace the regulatory function with three new differential equations. From 
this model, we explore different delay approximations by implementing various delay kernels that weigh the 
effects of past concentrations on the current state. We find that all these kernels lead to the same fixed point, but 
its stability, and the potential for oscillations, depend on the order of the delay kernel used. Interestingly, the 
detailed description of the CRS reveals differences in amplitude and frequency between phenotype behaviors 
resulting from two different cooperative binding mechanisms proposed in23, even when these mechanisms are 
associated with the same regulatory function. These differences are overlooked when using the instantaneous 
approach for modeling transcriptional regulation. The significance of this finding is discussed in the last section.

Modeling transcriptional oscillations with instantaneous processes
We will consider a generic single-gene model that describes the synthesis and degradation of its associated 
transcript and protein. This hypothetical gene encodes a transcription factor (TF) that regulates negatively its 
own transcript synthesis, thus forming a feedback loop. The ODEs that govern this circuit can be written as:

where m and c represent the concentration of messengers and TF, respectively. The complex processes of tran-
scription and translation are described as instantaneous processes that occur at an average rate of αm and α , 
respectively. Degradation processes are considered linear with an average rate of γm for transcripts and γ for 
proteins. Figure 1A illustrates this simple model. R is the regulatory function, which is monotonically decreasing 
in the case of auto-inhibitory circuits. In Eq. (1), hereafter model I, the regulatory function R can be understood 
as the result of many molecular processes. For the sake of model simplicity, these processes are not described 
explicitly, but through a phenomenological expression. Many times, the regulatory function used in biological 
modeling corresponds to a sigmoidal function, often the Hill function R(c) = 1/(1+ (c/Kd)

nH ) where nH is the 
Hill exponent, and Kd is the apparent dissociation constant. This regulatory function represents the action of 
transcription factors interacting with the CRS of the regulated gene23, and will be discussed further.

Now, we will introduce two models with higher descriptive levels for the transcription and translation pro-
cesses, to show how a common simplification of considering a complex process as instantaneous can lead to 
different scenarios. In the first case, we split the transcription process of the circuit above into two steps, by 
considering the formation of protein–DNA complexes that repress transcription, and the elongation process 
separately. Performing a similar split for protein synthesis, we can write the model II as

(1)
ṁ =αmR(c)− γmm,

ċ =α m− γ c,
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where m0 denotes the open state of DNA, c0 denotes the translation initiation complex. β1 and β2 are the average 
elongation rates for transcription and translation, respectively. m and c represent the free transcripts and peptides. 
A sketch of model II is illustrated in Fig. 1B.

Alternatively, we can increase the description level of the model by adding a step-by-step elongation process 
associated with transcripts and proteins. In this case, we can rewrite the two equations in Eq. (1) in the form

where r1 and r2 are the step elongation rates for transcription and translation, respectively. mi ( ci ) represents 
transcripts (peptides) with i (j) nucleotides (amino acids). This model is schematized in Fig. 1C. At this point, 
we introduce the linear chain trick24,25, for one single transcript elongation step i we have

and two consecutive elongation steps

can be written in terms of the previous one as

Thus, by using the linear chain trick both for mN and pM and by changing variable (t − s) −→ τ we obtain

(2)

ṁ0 =αm R(c)− β1 m0

ṁ =β1m0 − γm m

ċ0 =α m− β2 c0

ċ =β2 c0 − γ c,

(3)

ṁ0 =αm R(c)− r1 m0

ṁi =r1 mi−1 − r1 mi with i = 1, . . . ,N

ṁ =r1 mN − γm m

ċ0 =α m− r2 c0

ċj =r2 cj−1 − r2 cj with j = 1, . . . ,M

ċ =r2 cM − γ c,

ṁi = r1 mi−1 − r1 mi −→ mi(t) =

∫ t

−∞

r1e
−r1(t−s)mi−1(s)ds

ṁi = r1 mi−1 − r1 mi

ṁi+1 = r1 mi − r1 mi+1

mi+1(t) =

∫ t

−∞

r21 (t − s)e−r1(t−s)mi−1(s)ds.

mN (t) =

∫ ∞

0

KN
r1
(τ )m0(t − τ)dτ

cM(t) =

∫ ∞

0

KM
r2
(τ ) c0(t − τ)dτ ,

Figure 1.   The sketches of autorepressive single-gene circuit from the perspective of three description levels. 
In model I the transcription and translation are described as instantaneous processes that occur at an average 
rate of αm and α , respectively (A). Model II includes the open state of DNA ( m0 ), and the translation initiation 
complex ( c0 ) (B). Model III considers the elongation processes associated with mRNA and proteins represented 
by boxes (C). Note that elongation processes can be mathematically described by a dedicated ODE for each 
step (Eq. 3) or by a set of differential equations with delays (Eq. 6). In three cases transcript and proteins are 
degraded following first-order reactions with rates γm and γ , respectively. In all three cases, the transcription is 
regulated following a repressive Hill function.
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where

is the Gamma distribution delay kernel of order n. A delay kernel is a weighting function that indicates how 
much emphasis should be given to the concentrations at earlier times to determine the present effect. Thus, 
Eqs. (3) can be reduced to

plus the integrals for mN and cM . By replacing the integrals for mN and cM into Eq. (5) we would obtain a set of 
distributed delay differential equations. The discrete delay can be recovered as a limit of the Gamma distributed 
delay if the mean delay remains n/r but the variance goes to zero when n −→ ∞ . Thus, if sequences are long 
enough, one can approximate the distributed kernels above by discrete delays with the mean delay τN = N/r1 
and τM = M/r2 . Thus, the model III is given by

Models I, II, and III represent the same system but at different description levels. All models share the same fixed 
point, however, the stability of this point depends on the description level of the model. Figure 2 depicts the 
behavior of models obtained by numerical integration using the same parameter values of the Lewis segmenta-
tion clock15. Whereas the last model exhibits sustainable oscillations (blue line), model II exhibits stable spiral 
behavior (yellow line), and model I has a stable fixed point (black dot).

The model II can display sustainable oscillations for higher values of the Hill exponent ( nH > 4 ); conse-
quently, if one intends to obtain dynamics that emulate experimentally observed oscillations with this model, 

(4)Kn
r (τ ) =

rnτne−rτ

n!
,

(5)

ṁ0 =αm R(c)− r1 m0

ṁ =r1 mN − γm m

ċ0 =α m− r2 c0

ċ =r2 cM − γ c,

(6)

ṁ0 =αm R(c)− r1 m0

ṁ =r1m0(t − τN )− γm m

ċ0 =α m− r2 c0

ċ =r2 c0(t − τM)− γ c,

Figure 2.   The dynamics of a transcriptional oscillator from the perspective of three description levels. 
Trajectories in the phase plane for three models. The parameter values used in these simulations are the same 
values that were used in15 and are listed in the right panel. Model I has a stable fixed point (black dot), model II 
exhibits stable spiral behavior (yellow line), and model III exhibits sustainable oscillations (blue line). The initial 
conditions used for models I and II are m0(0) = 1.0 and m(0) = c0(0) = c(0) = 0 . The initial conditions for 
delay model III are m0 = 1.0 for −∞ < t ≤ 0 , while m, c0 and c are zero in such interval. The temporal range of 
the plot is from 50 > t > 500 . The effective elongation rates in model II have been written in terms of the single 
elongation step, as β1 = r1/N and β2 = r2/M , where N and M denote the transcript and protein lengths.
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can lead to an overestimation of the Hill exponent. This exercise provides evidence that considering processes 
that involve several steps as a single instantaneous step with an effective parameter can lead to wrong conclu-
sions. Hereafter, we will refer to this simplification as the instantaneous simplification. Note that one can recover 
model I by applying the quasi-steady-state approximation on any of the models II and also from Eq. (3). The 
instantaneous simplification is present in almost all terms in the model I. Of course, simple models are preferred, 
but the simplicity of the model must be balanced against its predictive power, and minor aspects that do not 
affect the predictions can be left out.

The main point of this paper is focused on the term representing the regulation of transcript synthesis, R(c). 
In the next sections, we will see that instantaneous simplifications hide alternative phenotypes linked to two 
cooperative binding mechanisms. Some years ago, the recruitment and stabilization binding mechanisms were 
reported to be associated with the same regulatory function and have associated different levels of noise23. We will 
show that the stability of the fix-point in single-gene systems depends on which of these mechanisms is acting 
and this revelation is exposed only for models with a more detailed description of CRS dynamics.

Single‑gene oscillator models with explicit CRS dynamics
In the previous section, we presented models where the regulation of gene expression is represented by only 
one step. However, we can break down the complex processes involved in transcriptional regulation, usually 
represented by a phenomenological regulatory function. Let’s consider a CRS with three regulatory binding sites. 
TFs can bind or unbind to regulatory sites following the law of mass action for elementary reactions. Further, 
the transcription process occurs only when all regulatory sites are vacant, leading to the formation of a negative 
feedback loop. Mathematically, this model can be written as

where c is the concentration of the TF, ai is the fraction of genes with i bound TFs, and ki,i+1 are the kinetic rates 
for TF binding to DNA, while ki+1,i are the kinetic rates for TF unbinding. We can note that there is a conserved 
quantity, 1 = a0 + a1 + a2 + a3 . We will assume that the amount of c recruited(released) by binding(unbinding) 
to(from) regulatory sites is negligible, and we approximate the last equation in (7) obtaining the model IV:

A representation of this model is depicted in Fig. 4A.
Before considering the stability of this model, let us regard the cooperative interactions between TFs in detail 

following23 and assume for the sake of simplicity that all binding sites are identical. In the case of cooperative 
binding, the kinetic rates ki,j are not independent because the interactions between TFs alter the new binding or 
unbinding processes26. The thermodynamic relationship and the system’s kinetics allow us to write the kinetic 
rates ki,j in terms of only three parameters27: the binding rate p, the unbinding rate q, and the cooperativity 
intensity ǫ = e−

�GI
RT  , where �GI is the free energy among TFs interaction, R is the gas constant, and T is the 

temperature. These relationships allow the identification of two cooperative binding mechanisms: the recruit-
ment and stabilization mechanisms. The first mechanism corresponds to the case when the already bound 
TFs enhance the ability for new TF recruitment for DNA binding, increasing kinetic rates ki,i+1 . On the other 
hand, the stabilization mechanism acts when TF interaction diminishes the kinetic rates ki+1,i . In this manner, 
following23, we can write:

for the first mechanism, while for the second mechanism we have

When the TF binding or unbinding to the regulatory sites is quick regarding the synthesis and degradation 
processes, one can use the quasi-steady-state (QSS) approximation and obtain an approximated model, as in 
the previous section. The quasi-steady-state solution can be obtained by replacing the left-hand side of the equa-
tions above with 0 and solving the resulting algebraic equations. After some algebraic steps, we obtain that the 
approximated model is given by

where Rqss(c) is the regulatory function obtained from the CRS dynamics in model IV. It is known as the Adair 
equation28 and takes the form of a sigmoidal function, Rqss(c) =

(

1+ cK1 + c2K1K2 + c3K1K2K3

)−1 where 

(7)

ȧ0 =− k01a0c + k10a1

ȧ1 =− k12a1c + k21a2 + k01a0c − k10a1

ȧ2 =− k23a2c + k32a3 + k12a1c − k21a2

ȧ3 =k23a2c − k32a3

ċ =αa0 − γ c + k10a1 + k21a2 + k32a3 − c(k01a0 + k12a1 + k23a2),

(8)

ȧ0 =− k01a0c + k10a1

ȧ1 =− k12a1c + k21a2 + k01a0c − k10a1

ȧ2 =− k23a2c + k32(1− a0 − a1 − a2)+ k12a1c − k21a2

ċ =αa0 − γ c.

(9)
ki,i+1 =ǫi(3− i)p

ki+1,i =(i + 1)q, i = 0, 1, 2,

(10)
ki,i+1 =(3− i)p,

ki+1,i =(i + 1)q/ǫi , i = 0, 1, 2.

(11)ċ = αRqss(c)− γ c,
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K1 = k01/k10, K2 = k12/k21 and K3 = k23/k32 are the equilibrium constants. Note that in QSS approximation, 
the regulatory function depends only on the kinetic parameters through the equilibrium constants Ki but not 
on the kinetic rates ki,j . In the limit of the high interaction energy between TF molecules, where K3 >> K2, K1 , 
the regulatory function resembles thephenomenological Hill function used in the models of the previous sec-
tion. For the sake of comparison, Fig. 3 illustrates both types of regulatory functions: the Hill function (black 
curves) and the Adair regulatory function for three sets of parameter values. Model IV differs from the model 
in Eq. (11) in that the transcriptional regulation process is not an instantaneous one, but both models have the 
same steady state, which is asymptotically stable in all cases (see the stability analysis of model IV in Appendix 
A of Supplementary Material).

In the next step, we build up model V by splitting the gene expression process into the transcription and 
translation steps as follows:

This model is schematized in Fig. 4B. As shown in Appendix B of Supplementary Material, this model is associ-
ated with a five-order characteristic polynomial. An analytical study of this case for the entire parameter space 
is infeasible; however, we have verified its stability over a large region of the parameter space (see Supplementary 
Material). The number of equations in model V can also be reduced by introducing delay variables with the 
linear chain trick. To use the linear chain trick, we introduce the variable change, m′ = α/γ m . Therefore, we 
can rewrite the last two equations in (12) as

Following25, we have c(t) =
∫ t
−∞

γ e−γ (t−s)m′(s)ds , by changing variable (t − s) −→ τ we obtain

where Dγ

[

m′
]

 is the normalized delay operator acting over m′ and Kγ (τ ) is the Gamma distributed delay kernel 
of order 1, also known as weak delay kernel. Therefore, we can rewrite Eq. (12) as

(12)

ȧ0 =− k01a0c + k10a1

ȧ1 =− k12a1c + k21a2 + k01a0c − k10a1

ȧ2 =− k23a2c + k32(1− a0 − a1 − a2)+ k12a1c − k21a2

ṁ =αma0 − γmm

ċ =α m− γ c.

ṁ′ =
αmα

γ
a0 − γmm

′

ċ =γm′
− γ c

(13)c(t) =

∫ ∞

0

γ e−γ τm′(t − τ)dτ =

∫ ∞

0

Kγ (τ )m
′(t − τ)dτ = Dγ

[

m′
]

Figure 3.   Transcriptional regulatory functions for a repressor. The Hill function used in Fig. 2 ( Kd = 40 and 
nH = 2 , black curve). Three Adair regulatory functions with different parameter values: q = 31.3 , ǫ = 5.5 
(blue curve), q = 43 , ǫ = 8.5 (yellow curve), and q = 6.26 , ǫ = 5.5 (green curve) and p = 0.1 for all cases. 
The associated phenomenological parameters are Kd = 40 nH = 1.96 , Kd = 40.1 nH = 2.21 and Kd = 8 , 
nH = 1.96 , respectively (A). The same regulatory functions, but in the Hill plot style, where the vertical axis is 
the transformed receptor occupancy, i.e., Log[ R

1−R ] . This plot better demonstrates the difference between Hill 
and Adair’s regulatory functions. While the slope of a Hill function is constant and equal to the Hill coefficient 
nH , this slope varies in the case of the Adair function (B).
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These equations resemble model IV but with a distributed delay kernel, as schematized in Fig. 4C. The model in 
Eq. (14) is also asymptotically stable, and its associated characteristic polynomial has the same order as the model 
V (see Appendix C of Supplementary Material). This is expected because the result of the linear chain trick can 
be understood as a reduction to integro-differential equations rather than an approximation.

A delay kernel is a weighting function that, in this case, indicates how much emphasis should be given to the 
protein concentration at earlier times to determine the present effect on CRS. In the case above, the weak delay 
kernel is a direct consequence of assuming that translation is a process occurring at a given rate. Nevertheless, as 
we saw in the previous section, the order of the delay kernel is associated with the number of processes replaced. 
To illustrate the effect of the inclusion of further processes in the model, we will include unspecific processes by 
considering a Gamma-distributed delay kernel of order 2 (known as the strong delay kernel) and also a model 
with an infinite-order kernel (discrete delay). In the strong delay case, n = 2 , we have a sixth-order characteristic 
polynomial, while in the case of discrete delay, the characteristic equation becomes a transcendental equation. 
As shown in Fig. 5A,B the steady state is the same in the three cases, as expected; however, systems with dif-
ferent cooperative binding mechanisms display different transients. Further, the fix-point can lose its stability 
depending on the order of the delay kernel. In particular, Fig. 5C shows that the model with a discrete kernel 
presents sustained oscillations and that the frequency of these oscillations depends on the cooperative binding 
mechanism that is acting. The different behavior between the cooperative mechanisms is bypassed when using the 
Hill function as a phenomenological regulatory function. In addition, the use of a phenomenological regulatory 
function (i.e., an instantaneous regulatory response) also neglects the interplay among the characteristic times 
involved in synthesis/degradation processes and the dynamics of the CRS.

We also explore how the CRS dynamics affect the instability of the single-gene circuit governed by Eq. (14) 
with discrete delay by varying the kinetic rates p and q, but keeping Kd and the rates that control the synthesis 
and degradation processes fixed. This is possible because the resulting Adair regulatory function depends only 
on the kinetic rates through the quotient kij/kji . To this purpose, the parameter values for these processes are 
similar to Fig. 2: αm = 33 molec/min, γm = 0.23 molec/min, α = 4.5 molec/(molec.min), τ = 3.5 min. While the 
parameters associated with CRS dynamics are set to ǫ = 8.5 , p = f × 0.1 min−1 and q = f × 43 min−1 where f 
is a variable factor that decreases (or increases) the kinetic rates without affecting the regulatory function. With 
the values above for CRS dynamics, the parameters associated with the regulatory function yield Kd = 40.1 
molec and nH = 2.21 (yellow curve in Fig. 3), while the FT residence time ( q−1 ) ranges between 15.5 and 46.5 s.

Figure 6 illustrates the effect of the CRS dynamics on the instability of the transcriptional oscillator with 
discrete delay. As regulatory function and steady-state depend on the ratio p/q, the parameter f only alters the 
relations between the dynamics of CRS and the rates of synthesis and degradation processes. We found that at 

(14)

ȧ0 =− k01a0Dγ

[

m′
]

+ k10a1

ȧ1 =− k12a1Dγ

[

m′
]

+ k21a2 + k01a0Dγ

[

m′
]

− k10a1

ȧ2 =− k23a2Dγ

[

m′
]

+ k32(1− a0 − a1 − a2)+ k12a1Dγ

[

m′
]

− k21a2

ṁ′ =
αmα

γ
a0 − γmm

′.

Figure 4.   Three autorepressive single-gene circuit models with explicit CRS dynamics. Model IV considers a 
CRS with three identical regulatory sites for FT that inhibit gene expression. The gene can only be expressed 
when the CRS has no bound TF. The TF expression occurs at an average rate of α , and it is degraded at rate γ . 
(A). Model V is similar to the previous one, but the gene expression process is split into the transcription and 
translation steps as follows from Eq. (12) (B). Model III considers that the number of TFs regulating CRS is 
lagged due to the finite time consumed during processes such as translation, elongation, or translocation (C). In 
all three cases, the architecture of CRS is the same.
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Figure 5.   Temporal evolution of the single-gene circuit model corresponding to Eq. (14) with weak delay 
kernel for recruitment (blue line) and stabilization (magenta line) cooperative binding mechanisms, the weak 
distributed kernel function is depicted in the inset (A). Temporal evolution of Eq. (14), but with a strong delay 
kernel, the strong distributed kernel function is depicted in the inset (B). Temporal evolution of Eq. (14), but 
with a discrete delay, the inset depicts the trajectories in the phase plane (C). Parameter values: p = 0.246 , 
q = 30 , ǫ = 10 , αm = 33 , γm = 0.23 , α = 4.5 , γ = 4.6.

Figure 6.   The effects of CRS dynamics on system stability. Time course and trajectories in the phase plane of 
a single-gene circuit model corresponding to Eq. (14) with a discrete delay kernel with different kinetic-factor 
values: f = 0.03 (A), f = 0.06 (B), and f = 0.09 (C). The simulations are both for the recruitment (RM blue 
line) and stabilization (SM yellow line) cooperative binding mechanisms.
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slow CRS kinetics, the stability of the system depends on which cooperative binding mechanism is acting. Thus, 
Fig. 6A,B shows that while the system with SM presents a stable spiral behavior (yellow trajectory), the RM is 
associated with sustainable oscillations (blue trajectory). By increasing the binding and unbinding rates p and 
q through increasing factor f, we observe that systems with SM can also become unstable. We also observe that 
the frequency of the oscillations increases with f. On the other hand, Fig. 6C shows that when both systems 
reach the regime of sustainable oscillation, there is an evident difference in the frequencies of the oscillations 
associated with each cooperative binding mechanism. It is worth noting that the mechanism RM is the one 
associated with the fastest oscillations. These examples show that the fix-point can lose its stability depending on 
the details of the cooperative binding mechanism. Further, the amplitude and frequency of the oscillations also 
depend on the cooperative binding mechanism and kinetic rates of CRS. Consequently, important features of 
observed phenotypes can be misinterpreted when using the instantaneous regulatory function approximation. 
The results obtained for the model operating under the SM are consistent with the requirements for the occur-
rence of oscillations observed for Hes7 variants of different half-lives29. However, this is not the case for the RM, 
where sustained oscillations are maintained in the range of parameter values studied. This result suggests that 
cooperativity operating in the CRS of these genes would be of the SM type.

Another important question to address is about the validity of the instantaneous approximation. It is expected 
that instantaneous approximation works fine when the synthesis/degradation processes (or other parameters 
related to the delay variables) are slow in comparison with CRS dynamics. Figure 7 shows that the observed 
difference among cooperative mechanisms decreases when the rates associated with the CRS dynamics increase 
regarding the rates of synthesis and degradation processes (Fig. 7A). Further, as expected, when the parameter 
associated with lag increases in systems with discrete delay, we also observe that the difference in the frequencies 
of the oscillations associated with each cooperative binding mechanism vanishes (Fig. 7B).

Discussion and conclusion
Systems biology focuses on understanding the emergent properties of biological networks through mathematical 
modeling. In the case of a single-gene oscillatory circuit, most models are based on a phenomenological regula-
tory function, characterized by the dissociation constant Kd and Hill exponent nH , which summarize all interac-
tions among TFs and CRS. These simplifications can be useful for exploring complex circuit topologies; however, 
even in the realm of low-dimension models, like the somite segmentation clock30–32, the information about the 
interaction between elements within these networks, as included in the models, is reduced to minimal. Conse-
quently, simple models might overlook important aspects related to the intrinsic dynamics of the CRS. In this 
context, we have presented a single-gene circuit that represses its own transcription, and we show that, according 
to the levels of detail incorporated, it exhibits different behaviors. For instance, Model I, which represents the 
synthesis and degradation processes instantaneously, yields a stable fixed-point solution. However, Model II, 
which splits the expression process into transcription and translation, presents a stable spiral. Further, Model 
III exhibits sustained oscillations. This example concludes that oversimplifying multi-step processes through 
instantaneous representations can yield misleading outcomes. Thus, for a more precise characterization of gene 
circuits, the underlying interactions between elements must be quantitatively characterized. While estimating 

Figure 7.   Time course and trajectories in the phase plane of single-gene circuit model corresponding to 
Eq. (14) with a discrete delay kernel with different kinetic-factor values: f = 1.5 and τ = 3.5 (A), same f but 
τ = 5.5 (B). The simulations are both for the recruitment (blue line) and stabilization (yellow line) cooperative 
binding mechanisms.
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parameters Kd and nH from dose-response curves is relatively straightforward, accurately measuring binding 
parameters presents a more complex challenge. Recently, new techniques to determine binding parameters have 
been developed. These studies have revealed that both binding and unbinding rates can vary significantly, by 
several orders of magnitude33,34. In particular, single-molecule tracking approaches report that TFs have average 
residence times at specific regulatory sites on the order of 2–100 s34, while for transient interactions with non-
specific DNA binding sites is less than 1 s35. These measurements indicate a wide range of variation for parameter 
q, leading to a door open to precise discussion about the results obtained with the instantaneous approach of the 
CRS in the context of transcriptional oscillation modeling.

A critical aspect of transcriptional oscillator models is the relationship between the half-lives of mRNA and 
proteins and the kinetics associated with the processes of TF binding/unbinding to DNA36. For example, the 
model of Lewis15 generates oscillations when the lifetimes of the mRNA and protein are very short compared with 
the rate constants for RNA and protein synthesis37. While the role of the degradation rate in these oscillations is 
beginning to be elucidated29, less is known about the role of the multiple binding sites regulating her/hes genes. 
Although theoretical studies with multiple regulatory sites show a decreased oscillatory frequency38. This effect 
could be a consequence of a combination of greater ultrasensitivity for the repression of the CRS and a greater 
effective delay in the explicit dynamics of the CRS. In this context, in “Single-gene oscillator models with explicit 
CRS dynamics”, we have studied the behavior of the system governed by Eq. (14) with discrete delay by varying 
the kinetic rates p and q but keeping Kd fixed. Our detailed model shows that, at slow CRS kinetics, the presence 
or not of oscillations depends on the assumed cooperativity mechanism, an aspect that would be ignored with a 
phenomenological simplification. Furthermore, in the oscillatory regime, the frequency and amplitude achieved 
depend on the proposed mechanism. Finally, it is not surprising that instantaneous approximation works when 
parameters related to lagged variables are high (slow processes) concerning CRS dynamics. However, the analysis 
of our detailed model with a discrete delay shows that the frequencies of oscillations can depend on the binding 
mechanism considered when the time lag is small.

In summary, our analysis of an autoinhibitory single-gene circuit by models with different detail levels shows 
that a model built under the same hypotheses, but with different levels of detail considered, leads to different 
results. On the one hand, describing the elongation processes as step-to-step processes can introduce instabilities 
and oscillations not seen in an instantaneous simplification. Furthermore, incorporating a detailed description of 
the CRS dynamics, usually modeled by a phenomenological regulatory function, can lead to instability, depend-
ing on the cooperative binding mechanism that is acting.

Data availibility
All data generated or analysed during this study are included in this published article and its supplementary 
information files. Python notebooks to study our models are available on GitHub (https://​github.​com/​ldiam​bra/​
lesso​nsfro​msing​legene).
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