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1. Introduction

The Gutzwiller trace formula provides a tool for the semi-classical evaluation of the energy

spectrum of a classically chaotic Hamiltonian system in terms of canonical invariants of periodic

orbits (POs). However the number of long periodic orbits required to resolve the spectrum

increases exponentially with the Heisenberg time TH [1]. For this reason, the approach is

limited to eigenenergies close to the ground state [2]. Of course, Gutzwiller’s formula is very

attractive because it is given in terms of canonical invariants, and for this reason a lot of work

has been dedicated to improve this theory [3]. In particular, the paper by Mehlig and Wilkinson

[4], formulates the Guzwiller trace formula using coherent sates. This manifestly canonically

invariant formulation allows to separate the contribution of each PO to the quantum evolution

operator.

The semiclassical theory of short periodic orbits developed by Vergini and co-workers [5]-

[10] is a formalism where the number of used POs increases only linearly with the mean energy

density, allowing to obtain all the quantum information of a chaotic Hamiltonian system in

terms of a very small number of short periodic orbits. The key elements in this theory are wave

functions related to short unstable POs and then, it is crucial the evaluation of matrix elements

between these wave functions.

In this context, these wave functions, named scar function because of its strong connection

with the scarring phenomenon [11], are not restricted to a PO; it additionally includes dynamical

information up to the Ehrenfest time and, as a result, is influenced by pieces of the stable and

unstable manifolds near the PO. These wave functions define an optimal basis in chaotic systems

[5, 12] and then, they have attracted an increasing interest in closed systems [13]. Moreover,

they have been shown to be crucial for the understanding of long living resonances in open

systems [14]-[16].

In recent work, estimates for the asymptotic behavior of off-diagonal matrix elements [9],

and asymptotic expansions for matrix elements in the quantum cat maps [10] were derived.

Also, recently a general semi-classical expression in phase space for the scar functions was

obtained explicitly in terms of the classical invariants that generates the dynamics of the system

[17].

In order to perform further developments to this theory of short periodic orbits, the

semiclassical evaluation of matrix elements in a scar function basis set is an important objective.

With these matrix elements at hand, the energy spectrum can be obtained without requiring an

explicit computation of scar functions. This is the purpose of this paper. For our objective we

use the recently developed semiclassical matrix elements of the quantum propagator between

coherent states [18]. After what, we perform the needed time integrals to obtain the matrix

elements of the propagator between scar functions.

Also, for two degrees of freedom Hamiltonian systems the dynamics is studied entirely

within a surface of section transversal to the periodic orbit. That is, the full dynamics is

studied through a two dimensional section map. With the purpose of showing the validity

of our approximation, we have compared the general expression here founded with numerical

calculations in a "realistic" system, the cat map, i.e. the quantization of linear symplectic

maps on the torus. As was shown by Keating [19] in this case the semiclassical theory is exact,

making this maps an ideal probe for our expression. After the formalism is adapted for a torus
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phase space, we see that the semiclassical expression here deduced coincide exactly with the

numerically computed matrix elements for the cat maps.

Of course, in order to include nonlinear contributions a deeper understanding of the

dynamics up to the Ehrenfest time is required; in this respect, enormous efforts were recently

carried out in such a direction for the diagonal matrix elements [20].

This paper is organized as follows. In section 2 we introduce the definition of scar functions

in terms of coherent states. Hence, we review the construction of the semiclassical matrix

elements of the propagator in the coherent states basis [18]. We then show the utility of

introducing the Weyl representation, and that our approach avoids for any complex trajectory.

Section 3 is devoted to obtain a semi classical expression for the matrix elements of the

propagator in the scar function basis. For that purpose, we need to perform a linearization of

the flux close to periodic orbits and to express the classical evolutions in the stable and unstable

directions. Also, we obtain the expressions for a system with a discrete time evolution.

In Section 4 we study the particular case of the cat map where not only the semi-classical

theory is exact but also the linear approximation is valid throughout the torus. After the semi

classical expressions here deduced are adapted for a torus phase space, we see that they coincide

exactly with the numerically computed matrix elements for the cat maps.

2. Coherent states matrix elements

Scar function states are the main object of study of the current work. According to [21]-[25],

the scar function
∣∣∣ϕφ

X

〉
of parameter φ constructed on a single periodic point X = (P,Q) is

defined as ∣∣∣ϕφ
X

〉
=

ˆ ∞

−∞
dteiφtfT (t)Û

t |X〉 , (1)

where T = ln ~ is the Ehrenfest time, |X〉 is a coherent state centered in the point X on the

periodic orbit and Û t is the unitary propagator that governs the quantum evolution of the

system. While fT (t) is a decaying function that takes negligible values for |t| > T/2. Without

loss of generality, it will be convenient for our purpose to choose fT (t) = e−(
4t
T )

2

, that is the

scar function is ∣∣∣ϕφ
X

〉
=

ˆ ∞

−∞
dteiφte−(

4t
T )

2

Û t |X〉 . (2)

This wavefunctions have been shown, in the Husimi representation, to live in the neighborhood

of the trajectory, resembling the hyperbolic structure of the phase space in their immediate

vicinity [25], while its Wigner function also shows hyperbolic fringes asymptotic to the stable

and unstable manifolds [17]. Wigner functions with hyperbolic structure have been spotted in

previous works. For instance the pioneer work of Berry [26] shows this phenomenon for the

spectral Wigner function in continuous systems while for maps this has been shown in [27].

While in the paper of Nicacio et al. [28] the hyperbolic fringes are observed for a superposition

of two squeezed states with orthogonal squeezing directions. As is mention by Nicacio et al. [28]

the scar functions are superpositions of Gaussian states with different degrees (and directions)

of squeezing, i.e., they are generalized Gaussian cat states.

The purpose of this work, is to study semiclassically the matrix elements of the the unitary
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propagator in the scar function basis,

〈
ϕφ1

X1

∣∣∣ Û t
∣∣∣ϕφ2

X2

〉
.

From the definition of scar functions (1) we get,

〈
ϕφ1

X1

∣∣∣ Û t
∣∣∣ϕφ2

X2

〉
=

ˆ ∞

−∞

ˆ ∞

−∞
dt1dt2e

i(φ2t2−φ1t1)fT (t1)fT (t2)〈X1|Û (t+t2−t1)|X2〉. (3)

Hence, we need to calculate 〈X1|Û t|X2〉 the matrix elements of the propagator in the coherent

states basis. The semi-classical matrix elements of the propagator in coherent states basis have

been obtained in [18], we will here reproduce the main steps of the procedure.

Let us write the propagator Û t in terms of its, symplectically invariant, center or Weyl

Wigner symbol U t(x) [29],

Û t=
1

(π~)L

ˆ

dxU t(x)R̂x and U t(x) = tr
[
R̂xÛ

t
]
, (4)

where
´

dx is an integral over the whole phase space of L degrees of freedom, while R̂x denotes

the set of reflection operators thought points x = (p, q) in phase space [29, 30] (see Appendix).

Hence the coherent sates matrix elements can be written in terms of reflexions as

〈X1|Û t|X2〉 =
(

1

π~

)L ˆ

〈X1|U t(x)R̂x|X2〉dx. (5)

The coherent states on points X = (P,Q) in phase space are obtained by translating to X the

ground state of the harmonic oscillator, its position representation is

〈q |X〉 =
(mω

π~

) 1
4
exp

[
− ω

2~
(q −Q)2 + i

P

~

(
q − Q

2

)]
. (6)

For simplicity, unit frequency (ω = 1) and mass (m = 1) are chosen for the harmonic oscillator

without loss of generality. The overlap of two coherent states is then

〈X |X ′〉 = exp

[
−(X −X ′)2

4~
− i

2~
X ∧X ′

]
, (7)

with the wedge product

X ∧X ′ = PQ′ −QP ′ = (JX) .X ′.

The second equation also defines the symplectic matrix J , that is

J =

[
0 −1

1 0

]
. (8)

As is shown in the Appendix the action of the reflection operator R̂x on a coherent state |X〉
is the x reflected coherent state

R̂x |X〉 = e
i
~
X∧x |2x−X〉 . (9)
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Inserting (9) and (7) in (5) the propagator in coherent states is obtained from the Weyl

propagator

〈X1|Û t|X2〉 =
1

(π~)L
e

iX1∧X2
2~

ˆ

U t(x)e

[
i
~
x∧ξ0−

(X̄−x)2

~

]

dx, (10)

with ξ0 ≡ (X1 −X2) the chord joining the points X1 and X2, while X̄ = 1/2 (X1 +X2) denotes

their mid point.

Also, the semi-classical approximation for the propagator in the Weyl representation was

performed in [29] so that

U t(x)SC =
∑

γ

2L exp
{
i~−1St

γ(x) + iπ
2
αt
γ

}

| det(Mt
γ + 1)| 12

. (11)

where the summation is over all the classical orbits γ whose center lies on the point x after

having evolved a time t [29]. Then St
γ(x) is the classical center generating function of the orbit,

from which the chord ξ joining the initial and final point of the orbit is obtained

ξ = −J
∂St

γ(x)

∂x
. (12)

While Mt
γ =

∂2St
γ(x)

∂x2 stand for the monodromy matrix and αt
γ its Morse index.

The metaplectic operators form a "double covering" of the symplectic matrices, since this

property gives contributions to the Morse index [4]. If we follow the evolution of the symplectic

matrix as the trajectory evolves, each time Mt
γ crosses a manifold where det(Mt

γ + 1) = 0

(caustic) the path contribution undergoes a divergence changing the sign from −∞ to ∞. This

change of the sign lets the quantum phase proceed by π
2
. The Morse index αt

γ therefore changes

by ±1 when crossing caustics [26, 31].

For sufficiently short times such that the variational problem has an unique solution there

will have a single chord. Although for longer times, there will be bifurcations producing more

chords. In the case of a single orbit, the corresponding Morse index αt
γ = 0.

The semiclassical approximation for the propagator (11) is inserted in (10) so that

〈X1|Û t
SC|X2〉 =

(
2

π~

)L

e
i
2~

X1∧X2
∑

γ

eiα
t
γ

ˆ

exp−1
~

(
X̄ − x

)2
∣∣det

(
Mt

γ + 1
)∣∣ 12

exp
i

~

[
St
γ(x)− ξ0 ∧ x

]
dx. (13)

In order to perform the phase space integral in (13), it must be noted that classical orbits that

start near X2 and end near X1 will have an important contribution in (13). These orbits have

their center points close to X̄. Hence, let us expand the center action up to quadratic terms

near the mid point X̄, so that,

St
γ(x) = St

γ(X) + ξ ∧ x′ + x′†
Btx

′ +O(x′3) (14)

with x = X + x′ and St
γ(X) is the action of the orbit through the point X for which the chord

ξ is
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ξ = −J
∂St

γ(x)

∂x

∣∣∣∣
x=X

,

while, the symmetric matrix Bt is the Cayley representation of Mt
γ

JBt =
1−Mt

γ

1 +Mt
γ

=
1

2

∂2St
γ(x)

∂x2
. (15)

Let us define the action S̃t
γ(X) = St

γ(X) + ~
π
2
αt
γ in order to include the Morse index in the

action. After the linearization of the flux around the middle point, expression (14) is inserted

in (13) hence we get

〈X1|Û t
SC |X2〉 =

(
2

π~

)L∑

γ

exp i
~

[
S̃t
γ(X)− ξ0 ∧X + 1

2
X1 ∧X2

]

∣∣det
(
Mt

γ + 1
)∣∣ 12

× I, (16)

with

I =

ˆ

exp
1

~

[
−x′†

Cx′ + i
[
x′†

Btx
′ +
(
ξ − ξ0

)
∧ x′]] dx′ (17)

a quadratic integral. The matrixC is the quadratic form that denotes the scalar product,

x′2 = x′.x′ = x′†
Cx′,

where x† denotes the transposed vector. We now perform exactly the quadratic integral, using

I =

ˆ

exp

[
−1

~
x′†Vtx

′ +
1

~
Y.x′

]
dx′ =

(π~)L√
(detVt)

exp

[
1

4~
Y †V−1

t Y

]
. (18)

From equation (16)

Vt = C − iBt (19)

and

Y = iJ
(
ξ − ξ0

)
= 2iJ δt, (20)

where ξ = xf − xi is the chord that joins xf and xi, respectively the final and initial point of

the orbit of center X. This last expression defines the point shift δt, so that

δt =
1

2

(
ξ − ξ0

)
= xf −X1 = X2 − xi, (21)

Note that, the point shift δt is zero if there is a classical orbit starting in the point X2 and

ending in X1. Inserting (18) in (16), we get for the propagator in coherent states,

〈X1|Û t
SC|X2〉 = 2L

∑

γ

exp i
~

[
S̃t
γ(X)− 1

2
X1 ∧X2

]

[
detVt

∣∣det
(
Mt

γ + 1
)∣∣] 1

2

× exp

[−1

~
δ†t Ṽδt

]
, (22)

with the complex matrix Vt and the point shift δt defined respectively in (19) and (21) while

Ṽ = J †V−1
t J .

In order to separate amplitude and phase terms in (22) , it is useful to write
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Ṽ = J †V−1
t J = J † 1

C − iBt
J = Ct − iBt, (23)

with the real matrices

Ct = ℜ(Ṽ) and Bt = −ℑ(Ṽ).

Also,

detVt =

∣∣∣∣detVt

∣∣∣∣e
iε, (24)

with

∣∣∣∣detVt

∣∣∣∣ denoting the modulus and ε the argument.

Hence inserting (23) and (24) in the matrix elements of the coherent state propagator (22)

we obtain

〈X1|Û t
SC |X2〉 = 2L

∑

γ

1
[
|detVt|

∣∣det
(
Mt

γ + 1
)∣∣] 1

2

exp

[
−δ†tCtδt

~

]

× exp
i

~

[
S̃t
γ(X)− 1

2
X1 ∧X2 + δ†tBtδt + ~

ε

2

]
. (25)

This last expression of the semiclassical matrix elements between two coherent states of the

quantum propagator is entirely expressed in terms of real classical objects, namely the action

St
γ(X̄) of the classical real orbit whose mid point is X̄, the point shift δt, the monodromy

matrix Mγ and its Cayley representation Bt and C , the scalar product form. We must note

that the phase term in the second line of the expression is clearly separated from the amplitude

ones, in the first line. In this way it is important to remark the Gaussian term that dampens

the amplitude for large values of the point shift δt, that is for orbits centered on X that start

far from the point X2 (then end far from X1). So as, the main contribution in the sum over

classical orbits in (25) will come from the particular orbit γ, centered in X , whose initial point

xi lies the closest to X2. Other orbits contributions will be highly damped by the exponential

term involving the point shift δt. Then, only this particular orbit will be taken into account in

the next sections in order to calculate the matrix elements for scar functions.

It must be mentioned here that, extensive work has been previously performed for the

coherent states matrix elements of the propagator. In particular, a complete semiclassical

derivation was performed by Baranger et al. [32], while dos Santos and de Aguiar performed a

Weyl ordering treatment in [33]. Although mathematically correct, both constructions involve

an analytic continuation to complex trajectories, while expression (25), derived originally in

[18], has the peculiarity to avoid complex trajectories, only the real canonical variables of the

classical system are needed.

Also, note that, if t = 0, the quantum propagator is just the identity operator in Hilbert

space, the classical symplectic matrix is the identity, the center action is null, and so are the
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symmetric matrix (Bt=0 = 0) and the chord ξ = 2δt −X2 +X1 = 0 . Hence

〈X1|Û0
SC|X2〉 = 〈X1|X2〉 = 2L

exp i
~

[
−1

2
X1 ∧X2

]

|det (2)|
1
2

× exp

[
− 1

4~
(X2 −X1)

2

]

= exp

[
−(X2 −X1)

2

4~
− i

2~
X1 ∧X2

]
,

and we recover the result (7) for the overlap of coherent sates. As we have seen in [18] expression

(25) is exact for the case of linear systems.

3. Matrix elements for Scar functions

For the study of the matrix elements of the quantum propagator in the scar function basis, we

must insert the expression for the matrix elements of the propagator in coherent sates basis

(25) in the scar function matrix elements expression (3). In that way we get,

〈
ϕφ1

X1

∣∣∣ Û t
SC

∣∣∣ϕφ2

X2

〉
= 2L exp

i

~

[
−1

2
X1 ∧X2

]
ˆ ∞

−∞

ˆ ∞

−∞
dt1dt2e

i(φ2t2−φ1t1)fT (t1)fT (t2)

×
exp i

~

[
S̃tR
γ (X) + δ†tRBtRδtR + ~

ε
2

]

[
|detVtR|

∣∣det
(
MtR

γ + 1
)∣∣] 1

2

× exp

[
−δ†tRCtRδtR

~

]
, (26)

where tR = t + t2 − t1. Note that, in (26) only the contribution of a unique orbit is taken into

account. As we have already mentioned the contributions of orbits with longer point shifts

were neglected. With the choice for fT (t) made in (2) and performing the change of variables

ts = t2 + t1 and tr = t1 − t2 it is possible to separate part of the time integrals so that,

〈
ϕφ1

X1

∣∣∣ Û t
SC

∣∣∣ϕφ2

X2

〉
= exp

i

~

[
−1

2
X1 ∧X2

]
ˆ ∞

−∞
dtse

i
2
(φ2−φ1)tse−2t2s/T

2

ˆ ∞

−∞
dtre

−2t2r/T
2

e−
i
2
(φ2+φ1)tr

×
exp i

~

[
S̃t−tr
γ (X) + δ†t−trBt−trδt−tr + ~

ε
2

]

[
|detVt−tr |

∣∣det
(
Mt−tr

γ + 1
)∣∣] 1

2

× exp

[
−δ†t−trCt−trδt−tr

~

]
.

(27)

Performing the first time integral, defining A = T
√

π
2
e−

T2(φ2−φ1)
2

32 , and changing the variables

to t′ = t− tr we get:

〈
ϕφ1

X1

∣∣∣ Û t
SC

∣∣∣ϕφ2

X2

〉
= A exp

i

~

[
−1

2
X1 ∧X2

]
ˆ ∞

−∞
dt′e−2(t−t′)2/T 2

e−
i
2
(φ2+φ1)(t−t′)

×
exp i

~

[
S̃t′

γ (X) + δ†t′Bt′δt′ + ~
ε
2

]

[
|detVt′ |

∣∣det
(
Mt′

γ + 1
)∣∣] 1

2

× exp

[
−δ†t′Ct′δt′

~

]
. (28)

Equation (28) expresses the semicalssical approximation of the matrix elements of the

quantum propagator in the scar function basis uniquely in terms of classical objects. However,
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at this point expression (28) has the inconvenient that we need the evaluation of each one of

this classical objects, for all the times of integration involved. In what follows, we will obtain

explicit expression for the classical objects involved in (28).

For that purpose, we will first perform the study on a surface of section that is transversal

to the flux and passing through X. In analogy with classical Poincaré surfaces of section. The

flux restricted to this section is now a map on the section, for this map the time is discrete and

time integrals must be replaced by summations.

The study of autonomous fluxes through a map on surface of section is a standard

procedure, in the case of billiards this is done through the well known Birkhoff coordinates.

Also, quantum surface of section methods are shown to be exact [34] for general Hamiltonian

systems.

For this procedure, we can choose coordinates near the periodic orbit of period τ where X2

belongs, such that one coordinate is the energy E and the conjugate coordinate is the time along

the orbit. With this choice of coordinates, a point x = (x̃, t, E) with now x̃ a (2L − 2) vector

on the so called central surface of section [29]. In order to perform our study on this surface of

section near the fixed point X2 we have linearized the flux in the the neighborhood of the orbit

through X2. That is, for the orbit γ that starts in xi and end in xf : xf = Lt
γ(xi) ≈ Mt

γxi.

Where Mt
γ is the symplectic matrix denoting this linearized time evolution. As was shown in

[29], in the transformation xf = Mt
γxi for times t that are integer multiples of τ , t = nτ , the

points xf = (x̃f , tf , Ef) and xi = (x̃i, ti, Ei) on the surface of section have the same energy

(Ef = Ei) and time along the orbit (tf = ti) so we can write ,

Mt
γ =




mt
γ 0

0 10

01


 (29)

with

det[1 +Mt1
γ ] = 4 det[1 +mt1

γ ] , (30)

where mt1
γ is now the (2L− 2)× (2L− 2) symplectic matrix for the center map determined by

the orbit γ on the surface section, that is

x̃f = mt
γx̃i

From now on, the 2L dimensional autonomous flux is studied through the 2L− 2 map on the

mentioned surface of section. Also the point X2 on the periodic orbit of the flux is a fixed point

for the map on the section.

For values of the time that are integer multiples of τ and for points x̃ on the surface of

section, the expression (28) for the matrix elements of the propagator takes now the following

form (replacing time integrations by summations):

〈
ϕφ1

X1

∣∣∣ Û t
∣∣∣ϕφ2

X2

〉
= exp

i

~

[
−1

2
X1 ∧X2

]
A

∞∑

n′=−∞

e−2(t−t′)2/T 2

e−
i
2
(φ2+φ1)(t−t′)

×
exp i

~

[
S̃t′

γ (X) + δ†t′Bt′δt′ + ~
ε
2

]

[
|detVt′ |

∣∣det
(
Mt′

γ + 1
)∣∣] 1

2

× exp

[
−δ†t′Ct′δt′

~

]
. (31)
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with t = nτ and t′ = n′τ with n and n′ integer numbers. This last expression represents the

semiclassical propagator matrix elements in scar function basis, on the surface of section that

cuts transversally the periodic orbit on the point X2. In order to deal with the infinite time

summation in (31) we perform a cut off for values of |t− t′| greater that T , the Ehrenfest time,

beyond which the time dependent Gaussian became negligible. Remember also the discussion

according to the choice of the the function fT (t) in (1).

As we have already mentioned, we need to evaluate the classical objects involved in (31)

to perform the time summation. Let us first, obtain expressions for the point shifts δt′ and the

center action S̃t
γ(X) in terms of the monodromy matrix. For that purpose, we linearize the flux

in the the neighborhood of the fixed point X2. That is,

xf = X1 + δt = Lt
γ(xi) = Lt

γ(X2 − δt) ≈ Mt
γ(X2)−Mt

γδt = X2 −Mt
γδt,

where Mt
γ is the symplectic matrix denoting this linearized time evolution in the neighborhood

of X2 , the last equality hold because X2 is a fixed point. Resolving for δt we get,

δt = − 1

Mt
γ + 1

(X1 −X2) .

Equivalently we can perform the linearization using the center generating function near the

point X2 , so that

St
γ(x) = St

γ(X2) + (x−X2)
†
Bt (x−X2) +O(x′3). (32)

Note that, the linear term ξ2 ∧ (x−X2) is not present here since X2 is a fixed point, hence the

chord ξ2 passing thorough it is null, ξ2 = −J ∂St
γ(x)

∂x

∣∣∣∣
X2

= 0. Also, for X2 being a fixed point

St
γ(X2) = tSX2 ,

where SX2 is the action of the periodic orbit in X2 which the Morse index αt
γ = tαγ . Let us

define the action S̃X2 = SX2 + ~
π
2
αγ in order to include the Morse index in the action.

The chord ξ of the orbit γ centered in X is obtained by performing the derivative of the

center generating function (32) ,

ξ = −J
∂St

γ(x)

∂x

∣∣∣∣
X

= −2JBt

(
X −X2

)
= −JBtξ0.

So that (as was already seen):

δt =
1

2

(
ξ − ξ0

)
= −1

2
(JBt + 1) ξ0 = − 1

Mt
γ + 1

ξ0. (33)

Hence, the center generating function in the middle pointX is

S̃t
γ(X) = tS̃X2 +

(
X −X2

)†
Bt

(
X −X2

)
= tS̃X2 +

1

4
ξ†0Btξ0. (34)

It is important to mention that the summation to be performed in (31) is a summation on

the orbits γ that starts near X2 and after a time t end up near X1, having X̄ as center point,
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this is a sum on the family of heteroclinic orbits as has been already seen in [9]. Inserting the

expressions (33) and (34) respectively for the point shifts δt and the center action S̃t
γ(X) in the

scar function expressions (28), we obtain

〈
ϕφ1

X1

∣∣∣ Û t
SC

∣∣∣ϕφ2

X2

〉
= A exp

i

~

[
−1

2
X1 ∧X2

] ∞∑

n′=−∞

e−2(t−t′)2/T 2

e−
i
2
(φ2+φ1)(t−t′)

×
exp i

~

[
t′S̃X2 + ξ†0

(
1
4
Bt′ +Dt′

)
ξ0 + ~

ε
2

]

[
|detVt′ |

∣∣det
(
Mt′

γ + 1
)∣∣] 1

2

exp

[
−ξ†0Et′ξ0

~

]
, (35)

with the matrices Et and Dt so that

Et =

(
1

Mt
γ + 1

)†

Ct

(
1

Mt
γ + 1

)
and Dt =

(
1

Mt
γ + 1

)†

Bt

(
1

Mt
γ + 1

)
. (36)

Equation (35) is a general expression only in term of classical objects, its difference from (31)

is that we have used the linearization around the periodic orbit in order to express both the

point shift and the center generating function only in terms of the monodromy matrix of the

linearized transformation. In this way, the semiclassical approximation of the scar function’s

matrix elements involves uniquely the action of the classical orbit S̃X2 , the scalar product C

for the symplectic basis of vectors and the monodromy matrices Mt
γ . From this former, we

obtain it Cayley representation Bt through equation (15), after what the complex matrix Vt is

obtained with (19) and (24) expresses its exponential form, while the real matrices Ct and Bt

defined in (23) allows to obtain Dt and Et though (36).

Although, in order to perform the time summation we need the classical objects for all the

different times involved. As we will show, for that purpose, it will be convenient to express them

in the basis of eigenvectors of the symplectic matrix. For the case of a map with one degree of

freedom (corresponding to a two degrees of freedom flux), this is the stable and unstable vector

basis
(
~ζu, ~ζs

)
where the eigenvalues of the symplectic matrix Mt

γ are exp(−λt) and exp(λt),

(λ is the stability or Lyapunov exponent of the orbit).

Let us then define xs and xu as canonical coordinates along the stable and unstable

directions respectively such that x = (xu, xs) = xu
~ζu + xs

~ζs with ~ζu ∧ ~ζs = 1. As the basis

formed by
(
~ζu, ~ζs

)
is non orthonormal, the scalar product of two vectors takes the form,

x1.x2 = x†
1Cx2 =

[
ζ2ux1ux2u + ζ2sx1sx1s + ~ζu.~ζs (x1ux2s + x1sx2u)

]
.

That is, the scalar product matrix is,

C =

[
ζ2u

~ζu.~ζs
~ζu.~ζs ζ2s

]
(37)

with ζ2u = ~ζu. ~ζu and ζ2s = ~ζs.~ζs. Since the transformation from the orthonormal basis
(
~i,~j
)

to

the basis
(
~ζu, ~ζs

)
is symplectic

detC = ζ2uζ
2
s −

(
~ζu.~ζs

)2
= 1.
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Also, in the
(
~ζu, ~ζs

)
basis,

Mt
γ + 1 = 2 cosh

(
λt

2

)[
etλ/2 0

0 e−tλ/2

]
, (38)

hence ∣∣det
(
Mt

γ + 1
)∣∣ = 4 cosh2

(
λt

2

)
, (39)

is easily obtained only in terms of λ and t. Analogously,

Mt
γ − 1 = 2 sinh

(
λt

2

)[
etλ/2 0

0 −e−tλ/2

]
,

while, Bt, the Cayley parametrization of Mt
γ, is in this basis

Bt =

[
0 tanh (tλ/2)

tanh (tλ/2) 0

]
. (40)

Hence, using the expression of the symmetric matrix Bt (40) and the scalar product (37) we

get the complex matrix

Vt = C − iBt =

[
ζ2u

~ζu.~ζs − i tanh (tλ/2)
~ζu.~ζs − i tanh (tλ/2) ζ2s

]
. (41)

For which the complex determinant

detVt =
[
1 + tanh2 (tλ/2) + 2i~ζu.~ζs tanh (tλ/2)

]
, (42)

with modulus

|detVt| =
√
(
1 + tanh2 (tλ/2)

)2
+
(
2~ζu.~ζs tanh (tλ/2)

)2
(43)

and argument

ǫ = arctan
2~ζu.~ζs tanh (tλ/2)

1 + tanh2 (tλ/2)
, (44)

can be explicitly written in terms of the time and the Lyapunov exponent. Now, inverting the

matrix Vt (41) we get,

V−1
t =

1

detVt

[
ζ2s −~ζu.~ζs + i tanh (tλ/2)

−~ζu.~ζs + i tanh (tλ/2) ζ2u

]
=

1

detVt

(
C

−1 + iBt

)
.

Also, we must note that since the matrix Vt is symmetric, we get that

Ṽ = J †V−1
t J =

Vt

detVt
=

1

|detVt|2
(ℜ(detV t)− iℑ(detV t)) (C − iBt) = Ct − iBt. (45)

Hence, in the stable and unstable vector basis
(
~ζu, ~ζs

)
, the real matrices Ct and Bt take the

form
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Ct = ℜ(Ṽ) = 1

|detVt|2
[
C
(
1 + tanh2 (tλ/2)

)
− 2Bt

~ζu.~ζs tanh (tλ/2)
]
, (46)

and

Bt = −ℑ(Ṽ) = 1

|detVt|2
[
Bt

(
1 + tanh2 (tλ/2)

)
+ 2C ~ζu.~ζs tanh (tλ/2)

]
(47)

with the symmetric matrix Bt, the scalar product matrix C and the determinant detVt

respectively given by the expressions (40), (37) and (43). Inserting the expressions (38), (46)

and (47) in the definition of the symmetric matrices Dt and Et (36), we get

Dt = −2
tanh (tλ/2)

det1


 −ζ2s

(
~ζu.~ζs

)
e−tλ 1 + tanh2 (tλ/2) + 2

(
~ζu.~ζs

)2

1 + tanh2 (tλ/2) + 2
(
~ζu.~ζs

)2
−ζ2u

(
~ζu.~ζs

)
etλ


 (48)

and

Et = −1 + tanh2 (tλ/2)

det1

[
−ζ2s e

−tλ/2 ~ζu. ~ζs
2 sinh2(tλ/2)+1

~ζu. ~ζs
2 sinh2(tλ/2)+1

−ζ2ue
tλ/2

]
(49)

where we have defined

det1 = 4 cosh2 (tλ/2) |detVt|2 .
It is important to note that, (48), (49), (40), (42) and (39) are respectively explicit expression of

the symmetric matrices Dt, Et and Bt and the determinants |detVt|and
∣∣det

(
Mt

γ + 1
)∣∣ for any

value of the time t. Inserting these expressions in (35), the time summation can be numerically

performed. In this way, we obtain a semiclassical expression for the matrix elements of the

propagator in the scar functions basis entirely in terms of classical features such as, the chord

ξ0 that joins the points X2 and X1, the action of the periodic orbit S̃X2 , the stable and unstable

vectors ~ζu, ~ζs and the Lyapunov exponent λ.

4. Scar functions Matrix elements for the Cat Map

Now the present theory is applied to the cat map i.e. the linear automorphism on the 2-

torus generated by the 2 × 2 symplectic matrix M, that takes a point x− to a point x+ :

x+ = Mx− mod(1). In other words, there exists an integer 2-dimensional vector m such that

x+ = Mx− −m. Equivalently, the map can also be studied in terms of the center generating

function [36]. This is defined in terms of center points

x ≡ x+ + x−

2
(50)

and chords

ξ ≡ x+ − x− = −J ∂S(x,m)

∂x
, (51)

where

S(x,m) = xBx+ x (B −J )m+
1

4
m(B + J̃ )m (52)
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is the center generating function. Here B is a symmetric matrix (the Cayley parameterization

of M, as in (40)), while

J̃ =

[
0 1

1 0

]
. (53)

We will study here the cat map with the symplectic matrix

M =

[
2 3

1 2

]
, and symmetric matrix B =

[
−1

3
0

0 1

]
. (54)

This map is known to be chaotic, (ergodic and mixing) as all its periodic orbits are hyperbolic.

The periodic points xl of integer period l are labeled by the winding numbers m, so that

xl =

(
pl
ql

)
= (Ml − 1)−1m. (55)

The first periodic points of the map are the fixed points at (0, 0) and (1
2
, 1
2
) and the periodic

orbits of period 2 are [(0, 1
2
) , (1

2
, 0)], [(1

2
, 1
6
) , (1

2
, 5
6
)], [(0, 1

6
) , (1

2
, 2
6
)], [(0, 5

6
), (1

2
, 4
6
)] and

[(0, 2
6
), (0, 4

6
)]. The eigenvalues of M are e−λ and eλ with λ = ln(2 +

√
3) ≈ 1.317. This

is then the stability exponent for the fixed points, whereas the exponents must be doubled

for orbits of period 2. All the eigenvectors have directions ~ζs = (−
√
3
2
, 1
2
) and ~ζu = (1, 1√

3
)

corresponding to the stable and unstable directions respectively.

Quantum mechanics on the torus, implies a finite Hilbert space of dimension N = 1
2π~

,

and that positions and momenta are defined to have discrete values in a lattice of separation
1
N

[35, 30]. The cat map was originally quantized by Hannay and Berry [35] in the coordinate

representation the propagator is:

〈qk|ÛM|qj〉 =
(

i

N

) 1
2

exp

[
i2π

N
(k2 − jk + j2)

]
, (56)

where the states 〈q|qj〉 are periodic combs of Dirac delta distributions at positions q =

j/Nmod(1), with j integer in [0, N −1]. In the Weyl representation [30], the quantum map has

been obtained in [36] as

UM(x) =
2

|det(M+ 1)|
1
2

∑

m

ei2πN [S(x,m)] (57)

=
2

|det(M+ 1)|
1
2

∑

m

ei2πN[xBx+x(B−J )m+ 1
4
m(B+J̃ )m], (58)

where the center points are represented by x = ( a
N
, b
N
) with a and b integer numbers in [0, N−1]

for odd values of N [30]. There exists an alternative definition of the torus Wigner function

which also holds for even N .

The fact that the symplectic matrix M has equal diagonal elements implies in the time

reversal symmetry and then the symmetric matrix B has no off-diagonal elements. This

property will be valid for all the powers of the map and, using (58), we can see that it implies

in the quantum symmetry

Ul
M(p, q) =

(
Ul

M(−p, q)
)∗

=
(
Ul

M(p,−q)
)∗

. (59)
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for any integer value of l.

It has been shown [35] that the unitary propagator is periodic (nilpotent) in the sense that,

for any value of N there is an integer k(N) such that

Û
k(N)
M = eiφ.

Hence the eigenvalues of the map lie on the k(N) possible sites
{
exp

[
i(2mπ + φ)

k(N)

]}
, 1 ≤ m ≤ k(N). (60)

For the cases where k(N)〈N there are degeneracies and the spectrum does not behave as

expected for chaotic quantum systems. In spite of the peculiarities in this map, a very weak

nonlinear perturbations of cat maps restores the universal behavior of non degenerate chaotic

quantum systems spectra [37]. Eckhardt [38] has argued that typically the eigenfunctions of

cat maps are random.

The Scar Wigner Function on the torus depends on the definition of the periodic coherent

state [39], with 〈p〉 = P and 〈q〉 = Q. In accordance to (6)

〈X|qk〉 =
∞∑

j=−∞
exp

{
−1

~

[
iP (j +

Q

2
− k/N) +

1

2
(j +Q− k/N)2

]}
. (61)

The Scar function is then defined on the torus as

|ϕX,φ〉 =
∞∑

t=−∞
eiφte−(

4t
T )

2

Ut
M |X〉 . (62)

Remember that for maps, time only takes discrete values, then the time integral in (2) has

been in this case replaced by a summation. Also, as we have already discuss, for our numerical

computations we truncate the sum for times |t| > T/2 where the Gaussian damping term

became negligible.

In order to construct operators or functions on the torus we have to periodize the

construction. This is done merely using the recipe [30] that for any operator its Weyl

representation on the torus A(x) is obtained from is analogue in the plane A(x) by

A(x) =
∞∑

j=−∞

∞∑

k=−∞

(−1)2ja+2kb+jkNA(x+
(k, j)

2
).

Indeed the construction on the torus from the plane is obtain in terms of averages over equivalent

points, that are obtained by translation with integer chords: T̂−→
k

where
−→
k = (kp, kq) is a two

dimensional vector with integer components kp and kq. Hence, the unit operator in the Hilbert

space of the torus is [30]

1̂N =

N−1∑

k=0

|qk〉〈qk| =
〈
T̂−→

k
ei2π(χ∧

−→
k +N

4

−→
k J̃ −→

k )

〉

so that

|X〉 = 1̂N |X〉 =
〈
ei2π(χ∧

−→
k +N

4

−→
k J̃ −→

k )T̂−→
k
|X〉
〉

=

〈
ei2π(χ∧

−→
k +N

4

−→
k J̃ −→

k )e−
i
2~

X∧−→k |X +
−→
k 〉
〉
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In this way the coherent sates matrix elements for any operator on the torus are obtained

through

〈X1|Â|X2〉 =
〈
ei2π(χ∧

−→
k +N

4

−→
k J̃

−→
k )e−

i
2~

X∧
−→
k 〈X1|Â|X2 +

−→
k 〉
〉

(63)

and analogously for the scar functions matrix elements.

In table 1 we compare, for different values of N correspondingly ~ = 1/(2πN), the exact

Scar matrix elements for a cat map with the semi classical ones obtained with expression

(35) taking in both cases the torus periodization (63). As we can observe the semi classical

expression (35) is exact in this case. This fact is not surprising since the cat map is equivalent

to a quadratic Hamiltonian system. Also, we have verified that, as was previously seen in [10],

this matrix elements are no null only for values of N that are multiple of four and in this cases

the matrix elements
〈
ϕφ1

X1

∣∣∣ ϕφ2

X2

〉
are real numbers.

N
〈
ϕφ1

X1

∣∣∣ ϕφ2

X2

〉 〈
ϕφ1

X1

∣∣∣ ϕφ2

X2

〉
SC

〈
ϕφ1

X1

∣∣∣ Û
∣∣∣ϕφ2

X2

〉 〈
ϕφ1

X1

∣∣∣ Û
∣∣∣ϕφ2

X2

〉
SC

100 0.32170130 0.32170128 0.36448490 + i0.419063829 0.36448489 + i0.419063830

101 0, 0 0, 0 0, 0 0, 0

104 0.33082419 0.33082418 0.37520132 + i0.397240638 0.37520133 + i0.397240637

200 0.36468529 0.36468530 0.45326651 + i0.358242569 0.45326650 + i0.358242570

Table 1. Numerical comparison between the exact scar functions matrix elements and scar
functions matrix elements obtained from expression (35). First column shows the different
values of N = 1/(2π~), the inverse of the Plank constant. Second column displays (real and
imaginary parts) the exact of the matrix elements between the two scar functions constructed on
the fixed points of the cat map. Third column shows the respective semi classical approximation,
using expression (35), of the matrix elements shown in the second column. Fourth column
displays (real and imaginary parts) the exact matrix elements between the two scar functions
constructed on the fixed points now for one iteration of the quantum propagator for the cat
map. Fifth column shows the respective semi classical approximation, using expression (35), of
the matrix elements shown in the forth column.

5. Discussion

The semiclassical theory of short periodic orbits developed by Vergini and co-workers [5]-[10]

is a formalism where the number of used periodic orbits needed to obtain the spectrum of

a classically chaotic system increases only linearly with the mean energy density, allowing to

obtain all the quantum information of a chaotic Hamiltonian system in terms of a very small

number of short periodic orbits. The key elements in this theory are wave functions related

to short unstable POs and then, it is crucial the evaluation of matrix elements between these

wave functions.

In this work by means of the Weyl representation, we have obtained a semiclassical

expression for this matrix elements of the propagator in scar functions basis entirely in terms of

the classical canonical invariants such as, the chord that joins the points X2 and X1, the action

of the periodic orbit, the stable and unstable vectors ~ζu, ~ζs and the Lyapunov exponent λ. Also,

the comparison with a system whose semiclassical limit is exact has allowed to correctly check

the exactness of the obtained expression up to quadratic Hamiltonian systems.



Semiclassical matrix elements for a chaotic propagator in the Scar functions basis 17

As has been already seen [10, 20], with these matrix elements at hand, the spectrum of

the propagator can be obtained without requiring an explicit computation of scar functions.

Of course, in order to include nonlinear contributions a deeper understanding of the dynamics

up to the Ehrenfest time is required; in this respect, enormous efforts were recently carried out

in such a direction for the diagonal matrix elements [20].
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Appendix: Reflection Operators in Phase Space

Among the several representations of quantum mechanics, the Weyl-Wigner representation is

the one that performs a decomposition of the operators that acts on the Hilbert space, on the

basis formed by the set of unitary reflection operators. In this appendix we review the definition

and some properties of this reflection operators.

First of all we construct the family of unitary operators

T̂q = exp(−i~−1q.p̂), T̂p = exp(i~−1p.q̂), (.1)

and following [29], we define the operator corresponding to a general translation in phase space

by ξ = (p, q) as

T̂ξ ≡ exp

(
i

~
ξ ∧ x̂

)
≡ exp

[
i

~
(p.q̂ − q.p̂)

]
(.2)

= T̂pT̂q exp

[
− i

2~
p.q

]
= T̂qT̂p exp

[
i

2~
p.q

]
, (.3)

where naturally x̂ = (p̂, q̂). In other words, the order of T̂p and T̂q affects only the overall phase

of the product, allowing us to define the translation as above. T̂ξ is also known as a Heisenberg

operator. Acting on the Hilbert space we have:

T̂ξ|qa〉 = e
i
~
p(qa+

q

2
)|qa + q〉 (.4)

and

T̂ξ|pa〉 = e−
i
~
q(pa+

p

2
)|pa + p〉. (.5)

We, hence, verify their interpretation as translation operators in phase space. The group

property is maintained within a phase factor:

T̂ξ2 T̂ξ1 = T̂ξ1+ξ2 exp[
−i

2~
ξ1 ∧ ξ2] = T̂ξ1+ξ2 exp[

−i

~
D3(ξ1, ξ2)], (.6)

where D3 is the symplectic area of the triangle determined by two of its sides. Evidently, the

inverse of the unitary operator T̂−1
ξ = T̂ †

ξ = T̂−ξ .
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The set of operators corresponding to phase space reflections R̂x about points x = (p, q)

in phase space, is formally defined in [29] as the Fourier transform of the translation (or

Heisenberg) operators

R̂x ≡ (4π~)−L

ˆ

dξ e
i
~
x∧ξT̂ξ. (.7)

Their action on the coordinate and momentum bases are

R̂x |qa〉 = e2i(q−qa)p/~ |2q − qa〉 (.8)

R̂x |pa〉 = e2i(p−pa)q/~ |2p− pa〉 , (.9)

displaying the interpretation of these operators as reflections in phase space. Also, Using the

coordinate representation of the coherent state (6) and the action of reflection on the coordinate

basis (.8), we can see that the action of the reflection operator R̂x on a coherent state |X〉 is

the x reflected coherent state

R̂x |X〉 = exp

(
i

~
X ∧ x

)
|2x−X〉 . (.10)

This family of operators have the property that they are a decomposition of the unity

(completeness relation)

1̂ =
1

2π~

ˆ

dx R̂x, (.11)

and also they are orthogonal in the sense that

Tr
[
R̂x1 R̂x2

]
= 2π~ δ(x2 − x1). (.12)

Hence, an operator Â can be decomposed in terms of reflection operators as follows

Â =
1

2π~

ˆ

dx AW (x) R̂x. (.13)

With this decomposition, the operator Â is mapped on a function AW (x) living in phase space,

the so called Weyl-Wigner symbol of the operator. Using (.12) it is easy to show that AW (x)

can be obtained by performing the following trace operation

AW (x) = Tr
[
R̂x Â

]
.

Of course, as it is shown in [29], the Weyl symbol also takes the usual expression in terms of

matrix elements of Â in coordinate representation

AW (x) =

ˆ

〈
q − Q

2

∣∣∣∣ Â
∣∣∣∣q +

Q

2

〉
exp

(
− i

~
pQ

)
dQ.

It was also shown in [29] that reflection and translation operators have the following

composition properties

R̂xT̂ξ = R̂x−ξ/2e
− i

~
x∧ξ , (.14)

T̂ξR̂x = R̂x+ξ/2e
− i

~
x∧ξ , (.15)
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R̂x1R̂x2 = T̂2(x2−x1)e
i
~
2x1∧x2 (.16)

so that

R̂xR̂x = 1̂ . (.17)

Now using (.16) and (.15) we can compose three reflections so that

R̂x2R̂xR̂x1 = e
i
~
∆3(x2,x1,x)R̂x2−x+x1 (.18)

where ∆3(x2, x1, x) = 2(x2 − x) ∧ (x1 − x) is the area of the oriented triangle whose sides are

centered on the points x2, x1 and x respectively.
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