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We propose a model-independent parametrization for the one-pion-to-vacuum matrix elements of the
vector and axial vector hadronic currents in the presence of an external uniform magnetic field. It is shown
that, in general, these hadronic matrix elements can be written in terms of several gauge covariant Lorentz
structures and form factors. Within this framework we obtain a general expression for the weak decay
7~ — Iy, and discuss the corresponding limits of strong and weak external magnetic fields.
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I. INTRODUCTION

The effect of intense magnetic fields on the properties of
strongly interacting matter has gained significant interest
in recent years [1-3]. This is mostly motivated by the
realization that strong magnetic fields might play an
important role in the study of the early Universe [4], in
the analysis of high energy noncentral heavy ion collisions
[5], and in the description of physical systems such as
compact stellar objects called magnetars [6]. It is well
known that magnetic fields also induce interesting phe-
nomena like the enhancement of the QCD vacuum (the
so-called “magnetic catalysis”) [7], and the decrease of
critical temperatures for chiral restoration and deconfine-
ment QCD transitions [8].

In this work we concentrate on the effect of a magnetic
field B on the weak pion-to-lepton decay z~ — [v;. In fact,
the study of weak decays of hadrons in the presence of
strong electromagnetic fields has a rather long history.
Already in the mid 1960s, the effect of some particularly
simple electromagnetic field configurations on leptonic
decays of charged pions was considered [9,10]. Some
years later, the decay of a neutron in the presence of a
magnetic field was also studied [11,12]. In most of the
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existing calculations of the decay rates, however, the
effect of the external field on the internal structure of
the participating particles has not been taken into account.
Only in recent years has the B-dependence of pion masses
actively been investigated from the theoretical point of
view. This has been done using approaches like e.g.,
chiral perturbation theory [13,14], quark effective models
[15-26] and lattice QCD (LQCD) simulations [8,27,28].
In addition, some of these works [13-21] (see also
Refs. [29,30]) considered, for the case of the neutral pion,
the B-dependence of the decay constant f,. For the
charged pion, such an effect has been analyzed in the
context of chiral perturbation theory [14], quark-antiquark
effective chiral models [30] and very recently through
LQCD calculations [31]. An interesting observation was
made in Ref. [29], where it is claimed that, due to the
explicit breaking of rotational invariance caused by the
magnetic field, one can define two different decay con-
stants, one of them associated with the direction parallel to

B and another one associated with the perpendicular
directions. A further relevant statement has been pointed
out in Ref. [31]. In that work it is noted that the existence
of the background field opens the possibility of a nonzero
pion-to-vacuum transition via the vector piece of the
electroweak current, which implies the existence of a
further decay constant. Taking into account this new
constant, the authors of Ref. [31] obtained an expression
for the decay width under the assumption that the decaying
pion is at rest. However, one should note that in the case of
a charged pion this condition cannot be exactly fulfilled,
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due to the presence of the magnetic field. Even in its lowest
energy level (hence, in the lowest Landau level), the
charged pion still keeps a zero point motion. In this
context, the aim of the present work is twofold. Firstly,
considering an external uniform magnetic field, we deter-
mine the form of the most general model-independent
hadronic matrix elements, written in terms of gauge
covariant Lorentz structures. In particular, we show that
in the presence of a magnetic field several independent
form factors can be in principle defined. Secondly, given
the general form of the hadronic matrix elements, we obtain
an expression for the z= — Ily; decay width, taking into
account the effect of the magnetic field on both pion and
lepton wave functions.

This paper is organized as follows. In Sec. II we discuss
the structure of the pion-to-vacuum matrix elements in the
presence of a uniform static magnetic field from a general
point of view. We start by identifying the relevant gauge
covariant Lorentz structures, and then we proceed to obtain
the hadronic matrix elements for neutral and charged pions.
In Sec. III we obtain an explicit expression for the z*
leptonic weak decay width. After considering the general
case of an arbitrary magnetic field strength, we discuss the
particular cases of both strong and weak magnetic fields.
Finally, in Sec. IV we present our main conclusions.
We also include Appendixes A, B, C and D to quote
technical details of our calculations.

II. PION-TO-VACUUM AMPLITUDES IN THE
PRESENCE OF AN EXTERNAL UNIFORM
MAGNETIC FIELD: GENERAL STRUCTURE

In this section we analyze the general form of the pion-
to-vacuum matrix elements of vector and axial vector quark
currents. Throughout this work we use the Minkowski
metric ¢ = diag(1, -1, -1, —1), as well as the convention
€"123 = 41 for the totally antisymmetric tensor e**%,

Let us start by considering the hadronic matrix elements
for the case of a neutral pion in the absence of the external
magnetic field. The amplitudes for the vector and axial
vector quark currents are

HY!(x. ) = Ol ()" Sy ()| (),
HY (5. 5) = O (rrs 2w (F). (1)

where w(x) includes the u and d quark fields,

o=(o) o

and 75 is a Pauli matrix that acts on flavor space. To deal
with the matrix elements in Eq. (1) it is possible to
hadronize the quark currents, i.e., to consider matrix
elements of hadronic field operators carrying appropriate

Lorentz indices and quantum numbers. In the low energy
limit (typically, below the p meson threshold), the relevant
hadronic field is the pion field ¢, (x), and (in absence of
external fields) the only available vectorlike differential
operator is the momentum operator p* = io¥. Since the
pion field is pseudoscalar, only the matrix element of the
axial-vector hadronic current can be nonzero. In this way,
one has

O ()7 Zy(x)|2°(5)) =0,

2
Ol (x)r7s W (B)) = £(52)0* (Olgsa ()| 2°()).
(3)

Here, the function f(p?) contains all the information of
nonperturbative QCD contributions. Using the explicit
form of ¢,0(x) and the commutation rules for the corre-
sponding creation and annihilation operators [see Eqs. (A1)
and (A2)], one immediately finds

HY(x,p) =0,
HY (x, p) = —if (p*) pre~ir=. (4)

As usual, the four-momentum p* is defined by p# =
(E,.p), with E, = \/m2 + |p|?>. Similar expressions can
be obtained for charged pions. It can be seen that the
invariance of strong interactions under P, C and 7 trans-
formations implies that f(p?) is a real function. In the
absence of external fields, the pion decay constant is given
by fr = f(m2) ~92.3 MeV [32].

We turn now to the situation in which a static external
electromagnetic field is present. In this case, other tensor
structures are possible. For a particle of charge Q the
relevant basic tensors are the gauge covariant derivative D*
and the gauge invariant electromagnetic field strength F**,
defined as

Dt =0t 4+ iQA*, FW = oFAY — P A (5)
Taking them as building blocks, one can in principle obtain
an infinite number of differential operators with different
Lorentz tensor structures. However, for the particular case
of a uniform static magnetic field E, it is well known (see
e.g., Ref. [33]) that only a few independent tensors exist.
Noting that F% = 0 and F = F;; = —e;3B*, we get

[D+, D¥] = iQF*" = —iQe% Bk, k=1,2,3. (6)
For definiteness, and without losing generality, in what
follows we take B¥ = B§,5. Using the above relations it is
easy to prove that one has only two independent scalars,
apart from the particle electric charge Q and F*F,, = 2B
These can be taken to be
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D = (D*)? —

H (D)2, DL=—(D'P- (DR (7)

In addition, it is possible to find four independent four-
vectors. One possible choice is the set

D+ = (D, D),
—iF"D, = —iB(0,D? -D',0),
F"F,,D* = —B*(0,D', D?,0),
1
ESﬂDaﬂFDaDﬂ == B(D3,O,O,DO) (8)

(notice that the last of these tensors transforms in fact as an
axial vector).

From the above expressions for Lorentz scalars and four-
vectors, we can write now a general form for the hadronic
currents we are interested in. We consider first the case of
the neutral pion, for which Q =0 and the operator D
reduces to the usual derivative O*. Taking into account once
again the intrinsic parity of the pion field, one has

Ol () Sy ()| ())

= 7'3(8.0.0,8°)(0]¢h0 (x)[2°(B)). (9)

Ol (x)rys Sy ()2 (3))
= [F4V(@°,8) - if %™ (0,67, -0",0)
- 707 (0.0". 2. 0)(0lp ()l (B)). (10)
where f o and f are complex functions of the magnetic

field and the scalar differential operators 82 and 9%. The

hadronic matrix elements can be readily obtamed using
Egs. (A1) and (A2). We find it convenient to define some
linear combinations of the respective Lorentz components,
namely

HY(x. p) + eHy (x. p)

= —icfyy

0. >
Hy(x. p) =
(Ep +ep?)e™ir=, (11)
HY(x, B) = Hy' (x, ) + ieHy (x, ) = 0, (12)
and

= H,"(x. p) + ety (x. p)

=~if "

H{ (x, p)

(Ep +ep®)er, (13)

= HY' (x. p) + icH*(x. B)
—i[f5Y —ef % — ra (!

H&.GA(X’ p)
+ iep?)e=iP¥,
(14)

with € = +. Here, ff;]/) and fff,')
(p')?+(p?)* and pf=E, - (p’)* with pj—pi =
p* = m2,. Notice that, although it is not indicated explic-
itly, the pion mass m o is a function of the magnetic field B.
As in the B =0 case, it is important to consider the
constraints on the form factors arising from the discrete
symmetries of the interaction Lagrangian in the presence of
the magnetic field. This is discussed in some detail in
Appendix B, where it is shown that these symmetries lead

to £47
real. In this way, we conclude that the most general forms
of the vector and axial vector pion-to-vacuum matrix
elements, in the presence of an external constant and
homogenous magnetic field along the 3-axis, are

are functions of p? =

= 0 while the remaining form factors turn out to be

HY (x. ) = —ief ) (Eq +ep*)em™, (15)

H(fv(x’ p)=0 (16)
and

H‘(‘)Z( ) = —lfilzl>(Eﬂo + 6‘])3)e—l‘p~x7 (17)

HY (6, p) = =ilfa") = £ )(p! + iep®)er™, (18)
where all form factors are real. The results in Egs. (17) and
(18) are in agreement with the observation made in
Ref. [29] that, due to the explicit breaking of rotational
invariance caused by the magnetic field, one can define for
the neutral meson two different form factors related to
the axial current. One of them can be associated with the

direction parallel to B, and the other one with the per-
pendicular directions. In addition, according to Eq. (15) we
find that a further form factor related to the vector current
can be defined as well.

Let us consider now the case of the charged pion z°, with
o = =+ (electric charge Q = ole|). We adopt in this work
the Landau gauge, in which A* = (0,0, Bx',0). Then,
Dt = O# + isB,x'6,,, with s = sign(cB) and B, = |eB.
One has in this case

HY" (x, p) = Olp (x)r*== 7w (x) |2 (p))
= V2(D?.0,0.D°) 7% (0l (x) |27 (p))  (19)
and
H3" (x, p) = Olg (x)7"yst= 7w (x) |7 ()
= V2[(D°. D)J2Y — is(0.D*, D', 0)] 2"
— (0. D', D2, 0) 7%V )(0lh3 (x) |2 (5)).

(20)
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where 7+ = (7, + it,)/2. Here, ffr‘p and fﬁﬁi) are functions
of the scalar operators Dﬁ and D3, while p = (¢, p?, p?), ¢

being a non-negative integer (Landau index), denotes a set
of quantum numbers that characterize the charged pion
state in the presence of the magnetic field (see
Appendix A.2 for details). The sign s in the term carrying

ff::z) has been conventionally introduced for later conven-
ience. Notice that in Egs. (19) and (20) the operators f,(,‘:)

and ff?’) have been placed to the right of the operators
listed in Eq. (8). In fact, the ordering is relevant, since
(contrary to the case of the neutral pion) the operators D'
and D? do not commute. On the other hand, since the basis
formed by the operators in Eq. (8) is complete, our ordering
choice does not imply a loss of generality (different
orderings just correspond to alternative definitions of the
form factors). The convenience of our election will become
clear below.

To proceed we need the general form of the 7 wave
functions in the presence of the external magnetic field. For
our choice of gauge and magnetic field direction these are
given by Eq. (A10). From this equation, together with the
commutation relations of the associated creation and
annihilation operators given in Eq. (A16), one can obtain
general expressions for the hadronic matrix elements. As in
the case of the neutral pion, these can be conveniently
written in terms of linear combinations of their Lorentz
components. We have

HY® (x. p) +eH (x. p) = eV2D FUFy (x),
HY'(x,p) +ieHy  (x, p) =0 (21)

H{Y (x, )
H(x. )

and

HIS (v, ) = H3 (x. p) + €HE (x.p) = V2D 10V ().
H\ (x, p) = HY' (x, p) + ieH3? (x, p)

=VaDL (" ~sefp? = Fe)Fy (). (22)
where Dj=7D'+¢D’ and D =D'+ieD’. We
use here the notation p = (E.,p), with E. =
Vm2 + 26+ 1)B, + (p°)> (in  fact, one has
E,+ = E_-, the charge index ¢ being kept in order to
distinguish E, . from Ep). The functions F5(x) are
eigenfunctions of the charged pion Klein-Gordon equation
in the presence of the magnetic field, for our choices of
gauge and magnetic field direction. Their explicit expres-
sions are given in Eq. (A12). Notice that on the rhs of
Egs. (21) and (22) we have differential operators acting on
these functions. Using the relations

DEFy(x) = —i(Ep +ep))Fy(x).  (23)

DiF5(x) = —se/B,(2¢ + 1 = se)F5_ (x)  (24)
and

Dﬁ[F}%(x) = [E%. — (P?))F (%), (25)

DI (x) = (2 + 1)B,F (x), (26)

where p+1=(E, p+1),withp+1=(£+1,p% p?),
we finally obtain

HP(x, p) = —ieV2f Y (Ep + ep?)Fy(x),  (27)
HT(x, p) =0 (28)

and
H (6. p) = —iV2f SV (B + ep?)Fy(x). (29)

HS (2 p) = =seV a2 = sef i = 17)
x /B, (20 + 1 — s€)F5_(x). (30)

(Ai)

In the above expressions, the form factors fgp, [ arise

2(AQ)

from the action of the operators fj(r‘g/), f,» on the functions

F3(x). These operators are, in general, gauge-dependent
functions of the operators Dﬁ and Di. However, for an on-
energy-shell pion, taking into account Egs. (25) and (26) it

can be seen that the resulting form factors ff,‘a/) and ff:ﬁ')
turn out to be gauge-independent functions of the pion
mass, m,; the third component of the momentum, p3; the
Landau index, #; and the magnetic field, B (both explicitly
and through the charged pion mass). In the so-called
symmetric gauge, Eqs. (25) and (26) should be modified
by changing the functions [ (x) by the corresponding ones
in that gauge, which involve associated Laguerre poly-
nomials [34]. On the other hand, notice that the eigenvalues
in Egs. (25) and (26) are functions of |B|, while the scalar
combination F**F,, depends on B*. Therefore, taking into
account the form of the four-vectors in Eq. (8), and the

factor s introduced in the term carrying ffrﬂz) in Eq. (20), it

is seen that the vector form factor f f[‘:) should be odd under
the exchange B — —B, while the axial vector form factors

f,(;g’) should be even functions of B. For definiteness, in
what follows we will take B > 0, and consequently s = o.

As in the case of the neutral pion, the discrete sym-
metries of the interaction Lagrangian in the presence of the

magnetic field lead to some restrictions on the form factors
f 5[‘:) and ff[Agl) . Indeed, as shown in Appendix B, they have
to be real and independent of the sign of the pion charge.

Finally, let us point out that the form factors f ,(?1) appearing
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in Egs. (29) and (30) are the same. In fact, this is a
consequence of our choice of ordering in Eq. (20). Had we

to the left of the other
in Eq. (29)
would have arisen from the action of f f[f,m on FZ(x), while

put the operator functions f(ﬂéi)

operators in Eq. (20), the form factor ffﬁl)

the one in Eq. (30) would correspond to the action of ffrf,m

on F7_,.(x). In any case, it should be stressed that this

would also imply a redefinition of fﬁﬁm and f](f), in such a
way that the contribution of H7%(x, p) to any physical
quantity remains unchanged.

III. WEAK DECAY WIDTH OF CHARGED
PIONS UNDER A MAGNETIC FIELD

A. Basic relations and decay kinematics

Let us analyze the decay width for the process z~ — Iy,
with [ = pu, e, in the presence of the external magnetic field.
Following the notation introduced in the previous section,
the initial charged pion state is determined by the quantum
numbers p = (¢, p?, p?), the associated energy being
E, = \/m2 + (2¢ + 1)B, + (p*)*. The quantum num-
bers corresponding to the outgoing lepton state are taken to
be § = (n, ¢, ¢*), together with a polarization index r;. In

\/m% +2nB, + (q3)2

(see Appendix A.3). Finally, being electrically neutral,
the outgoing antineutrino is taken to be in a state of

this case the energy is given by E; =

momentum k = (k',k2,k3) and polarization ry, with

= V) + (7 + () = [K].

energy Ej,

(UG, r)o (K. 3,)| Lol (p)) = fcose
where H, "

H"(x, p) = Hy"(x, p) — Hy"

d*xH " (x, p)U7 (x.g.rp)y,(1 -

(x,p) =

On general grounds, the decay width for the process is
given by

where (S —1); is the relevant S-matrix element between
the initial and final states, and the particle number n,-
associated with the initial z~ state is given in Eq. (A17).
Thus, one has

I'7(B) = lim

ST—>w2E 27[ 32E1 27[ 32E-

q. rz l/z k "u,)|ﬁw|” ( )>|2
27xST ’

x> il (32)

ry, rb[

where Ly is the usual V — A four-fermion effective weak
interaction Langrangian integrated over space-time, while
T and S are the time interval and the surface on the x%x?
plane in which the interaction is active. At the end of the
calculation, the limit S, 7 — oo will be taken. Let us recall
that, according to our gauge choice, the motion in the x!
axis is bounded. Using the notation introduced in

Appendix A, the matrix element in Eq. (32) is given by

(x, p) stands for the matrix element of the hadronic current [see Egs. (19) and (20)],

Oy, ()7 (1 = 7s)wa(x) |z~ (P))- (34)

Thus, from Egs. (A6), (A20) and (A25), the decay amplitude is given by

v \= (T . G __ oy
(g, r)o(k,r5)|[Lwla=(p)) = —7gcos GCZMI (g.r)A%,(1

A==+

—ys)u,rs) / FH (x, D) E; (x)7 e, (35)

where k* = (E,;l,l;) and g = (E,, G). Given our gauge choice for the external magnetic field, the electromagnetic
potential depends only on the x! coordinate. Consequently, the momentum is conserved in the 0, 2 and 3 directions,
leading to the corresponding delta functions when the space-time integration in Eq. (35) is performed. We
obtain

[t ) ) e = OB~ B~ E)

5(p'—q' = kK)M*, (36)
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where the M functions will be explicitly given below. In this way, the amplitude can be written as

(UG, r)oi(k, 75) | Lwla(p)) = (22)*6(E,- — E; — Ey) 160 = 4" = k)M, (37)
=23
where
__Gr — 2 P —H
Mo, = —7§COS HCZMI (q.r) A, (1 =ys)v, (k,r;, )M *. (38)
—

Thus, replacing in Eq. (32) and taking the limit of infinite space-time volume, the decay width is given by

dg*dqg® &Pk 1 ) ) R
I'7(B) S8(E-—-E, —E, S(pi—qg' — ki e 39
F(B) = Z/ 52, ey =B [[otr - =AM (39)
where m: —m?+ B,
Nmax = 2Bl , (42)
|M7r'—>ll71|2 = Z|M7z‘—>lﬂ,|2' (40)
Ty, I_él — (kl,kz), (43)

As customary, when putting the expression on the rhs of
Eq. F37) into Eq. (32) we have replaced [6(E - —-E - E,;l')]2 ) \/Eff —2E2 (m}+2nB, + k2 ) + (m? +2nB, — k3 )2
by limy_ o T8(E,- — E; = E;,) and [I536(p" — ¢' = K')? I = ,
by lims_. ST, 35(p" — i — k). 2Er

Now, as it is usually done, we concentrate on the (44)
situation in which the decaying pion is in the state of
lowest energy. This corresponds to the case £ =0 and  and the integral over k, space is restricted to
p? = 0. Moreover, as wil! be shown below, neither the pi02n | ]-C'll <E, - \/m . In addition, in the amplitude
energy nor the decay width depend on the value of p~°.
The expression for the decay width can be worked out, M-, one should take g =—k.
leading to

B. Evaluation of the weak decay amplitude

1 Mmax 2 3 1
I'7(B) = 5 / d kLz / ﬂfg As a second step we concentrate on the evaluation of the
167E (27) 27 I sum of the squared amplitudes for all possible lepton

T~ n=0
x [k = 1) + 8(k> + k)| Mg,

., (41)  polarizations, |M,-_;, |. Using the properties of electron
and neutrino spinors in Eqgs. (A7) and (A23), a somewhat
where we have used the definitions tedious but straightforward calculation leads to

My, = 2G3e0s0.{(Ey — ¢*)[(Es, — K3)|MF 2 4 (B, + K)[MT7 P = 2Re(MF) M7 k)]

+ (Er+ @) [(Ey, + )M TP + (Ep, — )| M L] = 2Re((M ) 7)" M1 7k™)]

+2y/2nB,[(E;, + K )Im((M2)" M) = (E;, = K )Im((M; 1) M)

—Im(Mf (M} ) k") = Im(M 77 (M75) )]}, (43)
where we have used the definitions

My =M;" +eM;®, MY =M ieM;? k=K ek, (46)

To proceed we need to calculate M W . and M m which are related to the matrix elements of the hadronic current through
Eq. (36). Defining
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||L

H7S = Hp' + ieHp?

from the expressions in Eqs. (27)—(30) we get

l\[(
e\/_(

H L(x p) =

HJ__‘,L('X’p) + fzz

+€H_

=Hpy -

=H]Y,

H %

- H%, (47)

>><E +epd)F;(x),

— fY /B (26 T 1+ €)F;,.(x). (48)

Now the integral over space-time variables in Eq. (36) can be carried out as described in Appendix C. In this way one gets

M5 =iv2(fY

—eV2(f,

- A2
M7 = + ef,(,— )

where the functions g;",f(k 1) are explicitly given in
Eq. (C9). Notice that Mﬁ and M7, depend on p* and
g* only through a global common phase; therefore the
decay width turns out to be p? and ¢* independent.

Let us consider once again the case in which the

decaying pion is in the state of lowest energy. Taking
¢ =0, from Eq. (C9) one gets

g ln(kJ_)

k2 1 —ik n
ga;:(kgzznexp( 45>ﬁ( ’ZB) ,
Goin (k1) = (1=68,0)G 1 (ky),

RN\ 1 [ =ik \r K2
— n f— .
4B,) /n! \\/2B, 2B,

810)G71 ey (k1) (50)

G (k) = 2renp -
Gt (k) = (1 -

The result obtained for the sum of the squared amplitudes,
taking # = 0 and p? = 0, can be replaced in the expression
for the partial decay width I'; (B), Eq. (41). Notice that for a
pion in the lowest energy state the “perpendicular” ampli-
tudes Mlj vanish for ¢ = —1. Thus, from Eq. (49), it is
seen that the partial decay width will depend on three form
factor combinations, namely

) —ff!% b = £+ £,
i (51)

A7 = fgrél
Cr :f;(;é f

We recall that the form factors are in general functions of 7,
p? and B (to be evaluated in this case at # = 0, p> = 0). In
this way, after some algebra one arrives at

G2 29 Mmax Ximax 1 n—1
7 (B) =2 Zcp / =
0

—x 4 (1)
iz Do)y PEar AT

(52)

— ef ) (Er + ep?) Gt (k e (P4 28,

FNB 2+ 1+ €)G (ke (7P +a)/ 2B (49)

where we have introduced the dimensionless variable x =
k% /(2B,) and used the definitions

(n) m;
AP0 = (B =280 =) =) |"2 ol -+ 10 P)
T By(n =) (nldy — x4 xlbye — c,,-|2>]
+ ZBex[Ezzz’<n|aﬂ:’ - bn." |2 - (l’l - x)lbn" - Czr"z)
T (n-ymlles P (53)
and

(E,f —/2nB, + m%)z (54

Xmax = 2B
e

In addition, from Eq. (44) one has

- 1
k3 pu—
2E,-

[E2- —=2B,(n — x) — m?]* = 8B, E2-x}'/2,

(55)

while n,,, is given by Eq. (42). Notice that for £ = 0,
p? =0, the 7~ energy is given by E,- = /B, + m2-.

It is worth remarking that the above expression for I'; (B)
corresponds to the case B > 0, s = 6 = —, in Egs. (27)—
(30). For B < 0, s = —o = +, we obtain an expression for
I'; (B) similar to that in Eq. (52), where in the function
A,(,'f) (x) one has to exchange a,- <> b,-. Recalling that ffp
has to be an odd function of B, it is seen that the partial
decay width is invariant under the exchange B — —B, as
expected.

C. Large magnetic field limit

It is interesting to study the case of a large external
magnetic field. As stated, since the pion is built with
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charged quarks, the pion mass will depend in general on the
magnetic field. Now, if the mass growth is relatively mild,
for large magnetic fields one should get B, > m2 — m?. In
fact, this is what is obtained from lattice QCD calculations
[31] as well as from effective approaches like the Nambu—
Jona-Lasinio model [26], for values of B, say =0.05 GeV?.
According to Eq. (42), this implies n,,, = 0; hence the
outgoing muon or electron (assuming that the energy is
below the 7 production threshold) has to lie in its lowest
Landau level n = 0. In this case the expression for the
partial width simplifies to

_ G%cos0,. [E~—m e—k/(2B.)
7o(B) :471715,,-/0 dk  ky &
2 K 2
X mj E171|b7r‘| _7|Cﬂ_|
E,-
+ Ekd by — cﬂlz] : (56)
where Ey, = E,- — E;=\/k + k3 and E; = [k + m},
with
= 1
R = o (B + 4 - m = 4] (57)

A further simplification can be obtained in the case
where the squared lepton mass can be neglected in
comparison with B, (or, equivalently, in comparison with
E2-, which is expected to grow approximately as B,).
Setting m; = 0, one has E, = k?, and the integral over k|
extends up to E_-. Thus, the decay width is given by

G%cos?0,. [Ex ,
|m,:0 = —Sﬂ,’E 8 A dklkie_kL/(ZBf)

_ Gicos’d, B; [1 _ <1 N §2> e—Ei—/<23e>}
B

4 E, - e

X |ba = cp |, (58)

I'7,(B) by —cp|?

where, according to the definitions in Eq. (51),
by = = 1) = 2+ 12, (59)

It is worth stressing that the decay width does not vanish
in the limit m; = 0; i.e., it does not show the helicity
suppression found in the B =0 case. In fact, it turns
out to grow with the magnetic field as B2/E,-, with some
suppression due to the factor in square brackets. Moreover,
it is seen that the contributions of the usual pion decay form

factor, fﬁ,ﬂl) , get canceled in Eq. (59); hence the decay
width is proportional to a combination of form factors that
do not contribute to the hadronic amplitude in the absence
of the external magnetic field. Clearly, the relevance

of Eq. (58) depends on whether these form factors are
non-negligible for magnetic fields that are much larger than
the lepton mass squared. While this is likely to happen for
the 7~ decay to er,, in the case of the muon (and of course,
the tau) the situation is less clear, and the corrections arising
from a finite lepton mass should be taken into account.
Interestingly, it is possible to obtain relatively simple
expressions for the 7~ — [, decay width at leading order
in the ratio m;/E,-. From Eq. (56) one gets

Gc0s20, B e Ex/(2B.)

FI_O(B) - FZO(B)|ml:0 + 0 E _
X [f1lbaI* = 2f2Re(bz-c,-) + filep|*]mi
m3
- O(ﬁ) (60)

where

fi=0+a)*=(1+2a)e* +2a° <I(a) —ln;n—l>, (61)

fy=a(2+a) —2ae* + 2a(a—1) <I(a) - 1n;”—1> . (62)

fi=a>+2a-2+2(1 —a)e®

+ 2a(a—2) <I(a) ~In ﬂ) , (63)
E, -
with @ = E2-/2B, and I(a) = [} dx(e®™ —1)/x. It is seen
that for m; =m, =105.65 MeV and B, % 0.3 GeV?,
Eq. (60) approximates the full result in Eq. (56) within
15% accuracy.

It is also interesting at this point to compare our result in
Eq. (56) with the expression quoted in Eq. (5) of Ref. [31],
which also corresponds to the limit of a large external
magnetic field. The authors of that work make some
approximations for the motion of a charged pion in the
presence of the magnetic field, concluding that only one of
the two possible antineutrino polarizations can contribute to
the decay amplitude. Moreover, based on considerations of
angular momentum conservation, they assume that the
antineutrino momentum in the perpendicular plane k;
vanishes. In fact, it can be seen that if one imposes such
a condition in Eq. (56), the result quoted in Ref. [31] can be
recovered. However, we find that if one takes full account
of the effect of the magnetic field on charged pion wave

functions, conservation laws do not imply k | = 05 there-
fore one should integrate over all possible values of the
antineutrino momentum, as in Eq. (56). Another main
difference between our work and the analysis in Ref. [31] is
that our calculations include a perpendicular piece of the
hadronic amplitude (related to c,-), which arises due to the
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presence of a z~ zero point motion in the perpendicular
plane, even in the £ = O state.

The study of angular momentum in the presence of
magnetic fields has been addressed in the recent literature
(see e.g., Ref. [34]) and deserves some discussion. As
suggested in Ref. [34], the consequences of the axial
symmetry of the problem, as well as the physical
meaning of angular momenta, can be better understood
if one works in the symmetric gauge. Having this in
mind, we have rederived the 7~ — [, decay width in this
gauge, considering for simplicity the case of a charged
pion in its lowest energy state and a charged lepton in the
lowest Landau level. For the spatial wave functions of the
pion and charged lepton states we have used the
functions given e.g., in Eq. (17) of Ref. [34] (see also
Ref. [35]). These functions are eigenstates of the z
component of the orbital angular momentum operator,
L3, with eigenvalues say M » and M, for the pion and the
charged lepton, respectively. If the particles are in the
lowest Landau level, it is found that M, and M, can take
any integer value < 0. In order to deal with right-handed
antineutrino states we have used spinors that are eigen-
states of the z component of the total angular momentum,
J3, with eigenvalue j*. Replacing in the corresponding
weak decay matrix element and performing the integral
over space-time coordinates we obtain

<l(q3’ n= O’ Mq>Dl(k37 kLaj3)|£W‘7[_(p3, I/ﬂ = O, Mp)>
= (27)°8(E,- — E; - E;)5(p° = ¢° - k3)5Mp.Mq—%+j3M’
(64)

where M is a function that depends on the pion decay

form factors f,(,‘-/’A"> and on particle quantum numbers.
Hence, in this gauge it is clearly seen that angular
momentum conservation leads to the selection rule M, =
M, —1/2+ j?, without requiring k; = k.| = 0. Using
the explicit form of M and taking p? =0, we have
then calculated the sum/integral over all allowed out-
going states. The outcome (which, as expected, does not
depend on M), leads to an expression for the decay
width that coincides exactly with the one quoted in
Eq. (56), confirming the gauge independence of our
result. It is also worth mentioning that, in addition to
the wusual “canonical” angular momentum, one can
define “mechanical” angular momenta replacing particle
momenta P* by Ph , = P'— QA" (a detailed compari-
son of both quantities for various gauge choices is given
in Ref. [34]). Interestingly, for the z= — [7; decay in the
limit of large B (when only the n = 0 state contributes) it
is found that the third components of mechanical angular
momenta of incoming and outgoing states only coincide
when the transverse antineutrino momentum vanishes,
ie., for |k, |=0.

D. B — 0 limit

In the B — 0 limit our expressions should reduce to the
well-known result for the z~ — [, decay width obtained in
the absence of external fields. For simplicity we consider
the decay of a z™ in its fundamental state, taking # = 0 and
p* = p?> = 0. Then, in the B — 0 limit the decay width
should reduce to that of a z~ at rest, namely

1 &’k d*q
[7(0)=— 20)4W(p— g —k
r(0) 2m, / (27)2E,, (27;)3215,( 760 (p— g =k

X (G cos 0. f)*8m2(E Ey, + G- ) (65)
(GpcosO,.f,)? m?\ 2
:FTm,,m,2 1-—L1), (66)

where p* = (m,.,0); ¢* = (E;.§); and k* = (E;,. k) stand
for the pion, lepton and antineutrino four-momenta, respec-
tively. It can be checked that for a given value of the lepton
mass the numerical results for Egs. (66) and (52), in the
limit B, =0, ngy = 00, d, =b,- =c,- =f,, are
coincident. However, the comparison between Egs. (39)
and (65) still leads to the question of how one can arrive at
four-momentum conservation in the limit of vanishing
external magnetic field. Hence, the goal of this section
is to recover analytically the Dirac deltas of momentum
conservation, obtaining Eq. (65) from Eq. (39) in the
B — 0 limit.

The presence of a magnetic field implies the existence
of a characteristic time and a characteristic length of the
system, given in natural units by le/ 2 which is usually
called the “magnetic length.” In the B — 0 limit these have
to be much larger than the time 7 and the distance 2L along
which the interaction is active, i.e.,

VB.L <1,

In addition, we assume that 7 and L are large enough so
that the product of any momentum of the system times L or
any energy of the system times 7' turns out to be much
larger than 1. In particular,

VBT < 1. (67)

nB,L>1, k.L>1, ET>1, EJT>1. (68)

We recall that the lepton energy is given by E; =

\/ m? +2nB, + (¢*)?, which implies that the magnetic

field will contribute significantly to the energy only for
very large values of n. In fact, from this expression we can
infer that the term 2nB, will lead to the (g, )* contribution
to the energy in the B — O limit. As B decreases, the
contributing leptonic states will have increasingly larger
values of n, in such a way that nB remains finite.
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From Egs. (8), (19) and (20), we observe that in the B — 0 limit the only nonvanishing pion decay form factor is fﬁﬁl).
Thus, from Eqgs. (45)—(48) we have

YY) 2 — _ _

M5, Plrpio = 4G3cos20, | f 2V PAE2- (E1 — ¢*) (Eg, — k) Tyl P+ E2- (B + @) (s, + k)| T
2B, (E) + @) (Es, = k) |I77 12 = 2/2BEy-(E; + ¢)Im((Zy 7 ) 7 k™)
+24/2nB.E,-[\/2B,(E;, — K)Im((Zg, ) IT;)) = Ex-Im(Zg,) (Z57,) k7)), (69)

where the functions I;,‘f are given by

L i1l 2
I, =N¢N,, / dx'e™ ¥ Dy(+/2B.x")D,_ <\/ZBex1 + 4 /B—q2>. (70)
—-L e

In fact, the latter correspond to the functions Z Zi(k 1, P%. q%) defined in Eq. (C3), taking p? = 0 and restricting the integral
over x! to the interval (—L, L) in order to take into account the conditions in Eqgs. (67) and (68).

Owing to the restriction of the integration interval in Eq. (70), in the B — 0 limit one has v/2B,x' — 0. Thus, the factors
N;D,(/2B,x'), where £ = 0 or 1, satisfy

NoDo(\/2B,x') — (4zB,)"/*, (71)
\/2B,x'—=0
1
NiD(\/2B.x") — (4zB,)"*~/2B.x' ~0, (72)
\/2B,x'=0 2

and the terms with Z " in Eq. (69) can be neglected. We obtain
(Mo Plompico = 4Gheos?0 |12 EE-{(E, = ) (Es, = K)IZ5,
+(Ei+ ) (B, + )| Zo;, P = 2/2nB.Im(Z, (Zo;,) k). (73)

The detailed calculation of the functions Z, j and their contributions to the expression in Eq. (73) is given in Appendix D.
We finally arrive at

M Plep-o = 8Giov, 11 Pant () 01— 1) 2
X Ez-{(E\Ep, + ¢k + @12 [6(k' = g,) +6(k' + g,,))
+k'q,0(k" +g,) = K'g,6(k' = g,)}, (74)
where g, = \/2nB, — (¢q*)*. We recall that n has to be a large number, in such a way that nB, is kept finite for small B.

We introduce now a new variable ¢!, in the following way:

2
_— A1) 2 lg°| "\ B.
|Mﬂ'—>ll71‘2|f:p3:0 = 86%00529c|f§z- >| 2L(4”Be)1/29<1 - ﬁ) a
x / dq'275(g" + K)[3(g" — 7,) +5(q" + )]
X Ex-(E(E; + q'k' + ¢*k2 + ¢°1F). (75)

Next, let us consider the decay width in Eq. (39). We need to treat with some care the pion density n,-, which appears in the
definition of the width in Eq. (31). In fact, for a finite space length 2L, taking into account the approximation in Eq. (71), the
pion density will be given by

L
n; =S / dx'2E,-(4zB,)'/* = ALSE,- (4zB,)"/?. (76)
-L
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This result can be understood by writing the pion density
in the form n, = V2E, (4zxB,)'/?, where V is the
volume in which the interaction occurs. It is seen that
Eq. (76) recovers the pion density in the absence of the
magnetic field [see Eq. (A3)] times a factor (4zB,)"/%.
The latter compensates the fact that in the limit of
small B, according to our normalization of charged pion
states, the spacial wave function of a pion in a zero
|

three-momentum state is NoDy(y/2B.x') — (4zB,)"/4,
instead of 1. Now, comparing the result in Eq. (76) with
the expression n,- = 4zSE,- quoted in Eq. (Al7), it
comes out that the width in the rhs of Eq. (39) has to be
modified by a factor z/[L(47zB,)"/?]. In addition, in the
limit of small B one can change the sum over n in
Eq. (39) by an integral over a variable x = 2nB,. Hence,
for p> = p> =0 we get

dqqu

2G%cos%6,
[7(B—0)= ; £ 2 5]
X 6(E, — E, —

i=2,3

x /dq1|f§’i”|22n5(ql +k1)2L(4nBe)1/29<1

x [5(q' -

> — (q2)2) + 5(511 +

&k
2 3
(2n)} 2E,/ )32E- (27)

H5q + k')

L(4zB,)'/?
_@> B,
Vx) = (q*)?

- (@))]

X B2 (E\E;, + q'k' + ¢*k2 + ¢° k). (77)

Finally, we can perform the integral over x. The delta

functions fix ¢' = ++/x — (¢*)?, leading to the expected
result x = 2nB, = ¢2. Identifying £ with f, in the
B — 0 limit, we arrive at the expression in Eq. (65).

IV. CONCLUSIONS

In this work we present a general method to parametrize
the one-pion-to-vacuum matrix elements of the vector and
axial vector hadronic currents in the presence of an external
uniform static magnetic field B. Choosing this field to be
orientated along the 3-axis, we show that for the case of the
neutral pion the matrix elements of the parallel (0- and 3-)
components of the vector current can be expressed in terms

of one single real form factor, f](;,/), while the perpendicular

(1- and 2-) components vanish identically. For the matrix
elements of the axial vector current, two real form factors

ff:o‘l) and fff) can be defined. Alternatively, the latter can
be written in terms of a parallel and a perpendicular form
factor, in consistency with the result obtained in Ref. [29].
In the case of the charged pion, the situation is similar in
what concerns the vector current. Namely, the matrix
elements of the parallel components can be expressed in

terms of a real (in general, nonvanishing) form factor ff)./) ,
common to both z* and z~, while the perpendicular (i.e., 1-
and 2-) components vanish. This is in agreement with the
statement made in Ref. [31]. On the other hand, we find that
three form factors, ff[Ail) , fi(:f) and fff) , are in general
required to parametrize the matrix elements of the axial
vector hadronic current. Once again, the three of them are

|
real, and they are equal for both pion charges. The matrix
elements of the charged pions in Egs. (27)—(30) can be
viewed as a proper generalization of the corresponding
expressions given in Ref. [31]. We have included here all
possible gauge covariant structures, taking fully into
account the effect of the magnetic field on the charged
pion wave functions. It should be noticed that in the
particular case of a charged pion lying in the lowest
Landau level, only two combinations of these three form
factors contribute to the decay width.

Using the above results we introduce a general,
model-independent framework to study the weak decay
n~ — Iy, in the presence of an arbitrary large external
magnetic field. For the case in which the decaying pion lies
in its state of minimum energy (i.e., in the lowest Landau
level, with zero momentum along the 3-direction), we
obtain an explicit expression for the #~ — Iy, decay width.
The limits of this expression for the cases of strong and
weak magnetic fields are also studied, checking that in the
limit of B = 0 it reduces to the usual result. It is interesting
to note that the expression obtained in the limit of large
magnetic field, Eq. (56), is valid in most cases of physical
interest. Namely, we estimate its range of validity to be
0.05 GeV? < eB < m? ~ 3 GeV?. It is seen that our result
shows some differences with the one given in Ref. [31],
also obtained in the limit of large B. We understand that the
discrepancies arise from some approximations made in
Ref. [31] concerning the motion of a charged pion in the
presence of the magnetic field. It is also worth noticing that
the decay width does not vanish in the limit m; = 0; i.e., it
does not show the helicity suppression found in the absence
of the external magnetic field.
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We finally mention that an obvious application of our work
would be to study how weak decay rates of charged pions get
modified due to the presence of the magnetic field. To reach
this goal, however, the behavior of the decay form factors as
functions of the magnetic field should be determined. This
would require either the use of LQCD simulations, as
proposed in Ref. [31], or to rely on some hadronic effective
model. We expect to report soon on such a calculation in the
framework of Nambu—Jona-Lasinio-like models.
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APPENDIX A: PION AND FERMION FIELDS
IN A CONSTANT MAGNETIC FIELD

In this appendix we quote expressions for the different
fields used in our work, written in terms of creation and
annihilation operators. As in the main text, we assume

B = B#3 and make use of the Landau gauge, in which
A% = (0,0, Bx',0).

1. Neutral pion and neutrino fields

The expressions for neutral fields do not get changed by
the presence of the external magnetic fields. Thus, they can
be written in terms of the usual creation and annihilation
operators of definite momentum states. Following the
conventions given e.g., in Ref. [36], the neutral pion field
is given by

N dp
Pulx) = / (27)2Ep

where x = (,X) and p = (E, p), with E,o =\ /m>, + | p|?

(it is worth mentioning that, in the presence of an external
field, one could also take into account corrections leading
to an anisotropic dispersion relation [29]). The operators
a(p) and a'(p) satisfy the commutation rule

la(p)e™* +a'(p)e],  (Al)

[a(p),a"(P)] = 2Ep (27)°6%) (p - ). (A2)
For a finite volume V, the particle number n, associated
with the momentum eigenstate |z°(p)) = af(p)|0) is

given by

no = [ @ ENLAG) = 2BV, (A3)
v
where
7% () = i ()b 0 (x) = Ty (x) o (x)].  (A4)
The neutrino field can be written as
v, () = / bk YU, (. F. )
] r=12 32E 1
+d(k, )t V,,(x, k.r), (AS)
where
U, (x, k, r) = u,,l(l_é, r)eikx, vV, (x, k. r)= vyl(lz, r)e’kx,
(A6)
Here k = (E,.k), with E, = [k|, while u, (k,r) and

v, (1: r) are the usual Dirac spinors with polarization states
r =1 or 2. They satisfy

Z uy, (l_é r)i, Z v,,l vyl

r=1,2 r=1,2

) =4 (A7)

Note that we are assuming that neutrinos are massless. The
corresponding creation and annihilation operators satisfy
the relations

{b(k.r). b(E 7)) = {d(k.r). d(.. 1))
= 2E, (27)%5,,6" J(k=K), (A8)
{b(l_c), r), d(]z” P} = {b(l_{, ", d(l?, P =0, (A9)

2. Charged pion field

The charged pion fields can be written as

e (¥) = ¢S—o(

(A10)

where Q.. = ole| is the pion charge with 6 =+, 5 =
sign(Q,~B) and B, = |Q,-B|. Note that if B> 0 then
s = 6. As defined in the main text, p = (p°, p), where
p=(¢,p* p’) and the pion energy is given by p® =
Ep =+\/m% + (2¢ + 1)B, + (p*)*.

The functions F3(x) are solutions of the eigenvalue
equation

D,D'Fy(x) = =[(p°)* = (22 + 1)B, = (p*’]F} (x).

(Al1)
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where D¥ = 0¥ + isB,x'8,,.
given by

Their explicit form is

B3 (x) = Nyl =729, () (A12)
where N, = (4zB,)"*/\/¢\, p; = \/2B,x" — 5\/2/B,p*
and D,(x) are cylindrical parabolic functions. The latter
are defined as

Dy(x) = 272e>"/4H ,(x/V2), (A13)
H,(x) being the Hermite polynomials, with the standard
convention H_;(x) = 0. It can be seen that the functions
[ (x) satisty the orthogonality relations

i/dpodPQdP S()FS ()" = sW(x—x) (A14)
=
/d4x[Fj_7, (x)*[l:‘;-)(x) = (22)*8,08(p° — p°)

X 5(p2 _ p'2)5(P3 _ p'3). (AIS)

In addition, the creation and annihilation operators in
Eq. (A10) satisfy the commutation relations

[a*(p). a”(P')"] = [a“’(i?),a"’( )
- p?)s(p’ = p?).
(A16)

Note that with these conventions the operators a’(p) and
a~’(p) turn out to have different dimensions from the
creation and annihilation operators that are usually defined
in the absence of the external magnetic field [and also from
those corresponding to the 7° field; see Eq. (A2)].

It is also useful to calculate the particle number asso-
ciated with the state |z°(p)) = a'(p)|0) in a volume V.
Given our choice of the Landau gauge, in this case it is
convenient to consider an infinite cylinder of section §
lying along the x! axis. We obtain

o_/ dx! /dxzdx

where the current is defined in a similar way to that
corresponding to the neutral pion; see Eq. (A4). Note that
we are normalizing to 4z E particles per unit surface, which
differs from the usual normalization p = n/V = 2E.

P)\ja (x)|77(p)) = 2E-2xS.

(A17)

3. Charged lepton field

Assuming the same conventions for the magnetic field
and considering the Landau gauge, for the charged lepton
fields we have

dq*dq’ y
3 g, r)Uj(x,q,r)
=12 = o/ 2r) 2El
+d(q.r)'V(x. g, 7))

Here, s = sign(Q;B) with Q; =
main text, § = (n, ¢%,¢*) and E; = \/ml2 +2nB, + (¢*)?,

with B, = |Q;B|. The creation and annihilation operators
satisfy

{b(g.r).b(q'

(A18)

—|e|. As indicated in the

r)'y =1{d(g.r).d(q.r)"} = 2E,(2x)?
X 5rﬂ5nn’5(q2 - q/2)5(q3 - C]/3),

{b(g.r).d(g".r)'} ={d(q.r)".b(7. ")} =0. (Al9)
In Eq. (A18) we have also used the definitions
Uj(x,q,r) = E3(x)uj(g.r),
Vit (x,q,r) = B3 ()7 (8. 7), (A20)

where ¢ = (¢°, ¢), with ¢° = E,. The spinors u} and v;*
are given in the Weyl basis by

. 1
uy(q,r) = m
(E; + m; 4 s1/2nB,7, — ¢*13)p!")
) ( (E; 4 my — s7/2nB,7y + ¢°13) ") )
(A21)
1
v°(g,r) = NOCRETD)

(B
—(E;+ m; + s+/2nB,7, + q3r3)q§(’> ’

(A22)
where (VT = -7 = (1,0) and @7 = g7 = (0,1).
They satisfy the relations
> ui(@.n)(g.r) = 4 +m.
r=12
Do (@) (G r) = G —my. (A23)
r=12

where 5 = (E;,0.—sv/2nB,. ¢*). In Eq. (A20), E (x) and
E;*(x) are Ritus functions that satisfy the eigenvalue
equation

P’Ey(x) = —[(¢°)* = 2nB, — (¢’ ’]E(x).  (A24)

where P = @) — isB,x'y?. They can be written as
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Ey(x) = ZEq L(x)A%, B (x) = ZE;_ NE
A=+ A=%
(A25)
where A* = (1 £iy'y?)/2, and

E;,(x)=Flo, 25 (A26)

/ PxU(x, g, 1)U (x, 4, 1') = / BV, g, r) V7 (6, g 1) = 2E/(27)28;,.4 6,0

/d3xl_]5(x, g, nU(x,q',r) = - / dxV=(x, g, 1)V (x,4,7) = 2m1(2ﬂ)35é’,~]/5ﬂ/

F:(x) being the function defined in Eq. (A12). Here the
integer index ng, is related to the quantum number n by

1Fs
5,

Ngy =N —

(A27)

It can be seen that the spinors in Eq. (A20) satisfy

(A28)
/d%cU”(x,é, NV>S(x,q,r) = /d3xV‘”(x,ZI, NUS(x,q,7)=0 (A29)
(A30)
/d3xl_]s(x,Z],r)V‘s()E, q.r) = /d3xV‘S(x, g, r)U(%,4',r) =0, (A31)

where 8, ;v = 5,,6(¢* — ¢*)5(q> — ¢”) and % = (x°, =X).

Following the same steps that led to Eq. (A17), it is
found that the number of particles in an infinite cylinder
of section S lying along the x' axis is given by
n; =2E;2xS.

APPENDIX B: DISCRETE SYMMETRIES

In the Landau gauge, the electromagnetic interaction
term between the light quarks and the external field (chosen
to be orientated along the z axis) is given by

L(x) = —ZQfoll/?f(x)Vle/f(x)’ (B1)
f

where the sum extends over f = u, d, and Qf are the
corresponding electric charges. It is easy to see that the
action is separately invariant under P, CT and PCT, where
|

I
P, C and 7 stand for parity, charge conjugation and time
reversal transformations acting on the quark fields.
Moreover, it can be seen that the Lagrangian density in
Eq. (B1) is invariant under the transformation CR, where
R, is a spatial rotation by angle z about the x axis (i.e., a

rotation that inverts the orientation of the magnetic field B).

The existence of these symmetries imposes constraints
on the form factors in the pion-to-vacuum hadronic matrix
elements discussed in our work. As in the case of no
external field, parity is responsible for selecting which
Lorentz structures in Eq. (8) contribute to the matrix
elements of the vector and axial-vector currents, as quoted
in Egs. (9), (10), (19), and (20). Moreover, it is possible to
use C7 and CR; symmetries to show that the form factors
are real and equal for both charged pions.

We start by using C7 symmetry to show that the form

factor ff:o/) in Eq. (11) is real. One has

(Olgry (x)rw ¢ () |7°(P)) = (O1(CT ) CT ¢ (x)ry s (x)(CT)'CT |2°(p))
= nr{0ICTC ¢ (=X)7, (=X)C'C|z"(=p))"
= (Ol (=X)r,p (=) 2" (=P))" (B2)

where # = (x, —X), and the phase 77, arising from the action of the time reversal operator on the pion state, has been taken
to be equal to —1 due to PC7 invariance. From Egs. (11) and (B2) it can be easily seen that f SO/) is real. For example, from

the definition of H(‘);” (x. p), Eq. (B2) implies HY(x, p) = H°(=%,—p)*, which according to the relations in Egs. (11)
leads to

=if ) PP = (=if ) (=p)er Y, (B3)
e, fu = fin".

T
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In the case of the matrix elements of the ax1a1 vector
current, a similar analysis leads to f(o = f 3 fori =1,
2 and 3. On the other hand, taklng into account the
invariance of the action under CR; one has

HY (%, B) = (O[(CR ) CR s (x) (v + ier?)

X J/sllff( X)(CRY)TCRy|7°(p))

= (0[CTC () (" — ier?)ysy s (x')CTCl2°(P'))
= (O (x)(y" — iey®)ysw(x)|2°(P"))
= HY 5 (¢, P), (B4)
where x* = (x°, x!, —x%,—x%) and p' = (p',-p? -p?)
From Eq. (14), this leads to
—i(f%" —ef9? = r9)(p' + iep?)e i
= —i(fa" + ef %7 = r9N) (" —iep?)e= Y, (BS)

which implies 5” =0

We consider next the matrix elements with charged pion
initial states. Proceeding in a similar way as in the neutral
case, from Eq. (19) we get
Hy" (x, p) = (O(CT)*CTwr (x)r="w (x)(CT)'CT |z°(p))
—(0[CTC (=%)y, e w(=X)C'Cl="(p))*
= Ol (=%)y, = (=%)|=~(p"))"
= gpwH[_/g’y(_-f’ ﬁ/)*? (B6)

|

HY (x, p) =
—(0|C"Cp (%) (y1 —

In this way, taking ¢ = —

(FA) 4 ef ) - fANF- (x) =

which implies £ = f4?* and 29 = f
transformations, one has

HT(x. p) = (O[(CRy)'CRy (x)(r'!

-5
in Egs. (30) and (B9) one obtains
(fAl n f (A2)

" (we have used the fact that fg}l) = ffrAl)

+ iey?)ystw(x)(CR,

where we have used C|lz*(p)) = |zT(p)) and defined
=(¢,~p*,~p?). Since F}(x) = F}(=%)", taking 4 =0
and 6 = — one obtains [see Eq. (27)]

- v )*pzﬂ: ( )’
(B7)

—if Y pIF (x) = (=ifi pPF (=2))"

which leads to the relation fi‘i)* =Y Here, p' =

(E,-,p'). Now, from the invariance of the action under
CR, one has

H®(x, p) = (0|(CRy) ' CR 1w (x)r" 7w (x) (CRy )
X CRy|n"(p))

= (0[CTCy (x)r e ow (¥)CTCla (p'))
—(O(x)y 27y (x) [~ (p"))

= —H (. B). (BS)

Since [ (x) =F; (x'), taking 4 =0 and o=~ one

obtains f,,— = f( and then Im(f ,(TZ)) =0.

For the matrix elements of the axial vector current, the
analysis of the zeroth and third components of the pion-to-
D= f(A1 and Im(f(Al))fO,
while to constrain the form factors f,[,; and f,,g

needs to study the first and second components. Taking into
account the invariance under C7 one has (¢ = %)

vacuum amplitude leads to f ,(,é

OCT) CTw(x)(y' + iey?)ystw(x)(CT)'CT|2°(p))
ieys)ystow(=X)CCln®(p'))*

=+ Ol (=%)(r' — ier*)rstw(
= (Hy"(=%.p') — ieH}*

Dl (p)

= (H T (=%.p)" (B9)

— Y EL (-5 (B10)

+"). Finally, considering CR,

)'CR1|2°(p))

= (O[T (x')(y' — iey*)yst=ow(x')CTCla" (P'))
= (O (') (r" = ier*)ysty (x') |z~ (p"))

_ H—nl(x/ v/) _ ieHZ”’z(x’,[?’)

which leads to fﬁﬁz) = f and f )

= H (. p'), (B11)

f(+ ), together with Im(f(Az)) = Im(ff?‘%)) =0.
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APPENDIX C: SPATIAL INTEGRAL
We are interested in the calculation of the integral
I};i;,z = /d“xF},(x)E;fL/l(x)*eik‘x, (C1)
where s, 1 = +. Here, [} (x) comes from the pion, e'** from the neutrino and E; ;(x) from the lepton. We use the notation
already defined in Appendix A, namely g=(E;,q) and p = (E,-, p), with §= (n,q¢*,¢°) and p= (¢, p? p°),

respectively. Since |Q,«B| =|0Q;B| =|eB| =B, and we are interested in the situation where sign(Q,B) =
sign(Q,;B) = s, after integration over x’, x> and x> we obtain

o0 . 2 2
I}"’;(kl, p*.q*) =N/N,, dx'e"*x'p, (\/238)(1 — 5y /Bp2> D, <\/2Be)c1 -5y /qu) , (C3)

where, as also defined in Appendix A, ng; = n + (sA —1)/2. Changing variables according to

I o= Qn)6(E, — B, = EN3(p* = K = ¢*)8(p* = K = )T, (k1. p*.4°). (€2)

with

v = V2B — (P’ + ¢°) \/_2Bex1—s\/BZng:l,,_,7

n= s (p2 —(]2) ’ h 2 ’ (C4)
/2B, 2B x —s\/B:eq =y +n
and using D,(y — 1) = (=1)’D,(n — y), we find
5. 2 2 (—1)7 o) foo iy
Tyu(kL,p*.q7) = NeNy, N / dye V" Dy(n—y)D,,(n+w). (Cs)
Next, we make use of the following property:
2,2
. —1)/V2rtle 5 (iy + )" L (P ) ifn> ¢
[averna-wpsn+p =1 7Y L) (cs)

(—1)”\/271’11!6_@(—1'7 +n) LT () i £ > .

In our case, y = —k'//2B,. Owing to one of the delta functions in Eq. (C2), one has n = sk?//2B, and therefore
n* +y* = k% /2B,. Then,

_aty g2\ ng—t (K .
f!(M) i LY f(_L) if ng, >¢

2B,
T (kps p2q?) = NN, o |Temisk! (r40)/(2B,) gk, /(48.) V2B (€7)
n\M Lo s AV ng B i k2 \ENsh  £— K
e n,,l!(—’k “k> R A (—L) if 2>ny,.
S \/276 sA ZB‘, s
Writing the explicit expression of N, N, and canceling some terms, we finally arrive at
Ty (ks p?og?) = e R )/ @BIG (k ), (C8)
where
—ik! 2\ ngy—¢ ng—¢ K2 .
) VGRS () iz
G (k) = 2me ™ ()
n M(_ikl_skz)f—"vALf—Hﬂ (i) if Z>n ;
21 \/2?8 ng) zBe - SA*
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APPENDIX D: B — 0 LIMIT

We provide here the explicit calculation of the integrals
7, ,’} appearing in Eq. (73). Let us consider the integral in
Eq. (C3) extended to a finite length, in the limit of a weak
external magnetic field. We find it convenient to define

L .
I, = Nan_A/ dx'e® ' D,(\/2B,x")
-L

2
xD, < 2B.x' 4 /B—q2>,

where we have taken p> =0, and L is assumed to
satisfy the conditions in Eqs. (67) and (68). It is worth
noticing that NyD,(1/2B,x') comes form the pion field,
N, D, (v2B.x'+/(2/B,)q*) comes from the lepton
field, and the exponential comes from the antineu-
trino field.

As discussed in Sec. III D, in the B — 0 limit one has
V2B,x' — 0; therefore the # =0 and # = 1 pion wave
functions satisfy

(D1)

NODO(\/Q'Bexl) - (4”Be)1/47

\/2B,x'=0
1
N,D;(1/2B,x") — 0(4ﬂBe)l/4§\/2B€xl~O. (D2)

For the lepton contribution, we have to analyze the
behavior of the product N, D, (v/2B.x'++/(2/B.)q?)
in the limit of small B and large n, keeping nB finite. Using
Egs. (12.7.2), (12.10.35), (9.7.5) and (9.7.9) of Ref. [37]
we obtain

4zB, 1/4 2
%DM (V 2By B—‘f)

~0(1-r, )[(=1)"60(—¢g%) + 6(¢?)]
" VB,
I(¢*)? = B,(2n_, + 1)|'/*

X [ei((pn_i_qnﬂ{’v]) + e_i((pn_/l_qnfxx])]’

(D3)

where

_[@n,+1)
b o[

2
q
v, =T b2 ) =

> /4
arccosr,_ —r, /1 —ry, ~al

2
oy = 1] (D4)

“ /B.(2n_,+ 1)

Here, all quantities have a smooth behavior in the limit of
small B, large n and finite nB, except ¢, ,.
The above equations lead to

) _ vag({_ 11
Iy = 2xn(4nB,)" 9(1 B 1))
< [(=1)"0(=q%) + 0(q°)]

VB,

(@ = B.@n, + D[
x [ePb(k! = q,,) + e 8(K + q,.,)],

(D5)
from which we can easily calculate the quantities [Z;7[?
appearing in Eq. (73). We are also interested in the product
Iaj (Zy, )", which involves the divergent phases ¢,_and

¢n, - These appear through the finite difference

2
by_. — pn__ ~ —arccos \/%, (D6)
which leads to
2 o—
el((,lS,L+ bn__) |q |2+;Qn i (D7)
n e

with g, = \/2nB, — (¢*)*. We obtain in this way

To (Ton)"

n

2l \B, 1
z4ﬂL(4ﬂBe)l/29<l— V';’HL)C_]—: N
x{[-0(=¢*) (=4 +ig,) + 0(¢*)(¢* — iq,)6(k" + G,
+ [-0(=¢*)(=¢* = iq,) + 0(¢*)(¢* + iq,)|6(k' = q,)}.
(D8)
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