2013 Argentine School of Micro-Nanoelectronics, Technology and Applications

A PWL ASIC Design for Maximum Throughput

O. D. Lifschitz, P. Julian and O. Agamennoni

Abstract— This paper presents the design of a digital archi-
tecture for a Simplicial piecewise-linear (PWL) integrated cir-
cuit (IC). This design maximizes the IC throughput by using
a enhance pipeline architecture and taking advantage of the
maximum memory device performance. The system latency is
also minimized in order to allow feedback implementations at
maximum output speed. Simulations and experimental results on
a Field Programmable Gate Array (FPGA) implementation are
included to showed the achieved performance.

Index Terms— Digital architecture, PWL, NOE

1. INTRODUCTION

The evaluation of non-linear functions in real time is a
topic of relevance in various engineering systems, ranging
from biological to power networks [1]. Among the known
approximations techniques for the realization of non-linear
functions, PWL functions are frequently chosen due to its
simplicity and approximation capabilities. There are different
topologies based on the grid divisions, showed in [2] and they
are hardware implementations. In this paper we will consider the
simplicial PWL approach [3] because it provides an universal
approximation based on a regular grid. This approach subdivides
the domain into simplices and inside every simplex performs a
linear interpolation [4]. From an algorithmic point of view, it is
necessary to produce the sequence of vertices that identify the
simplex, obtain the values of the function there (which are stored
in a memory), and then perform the interpolation using the
convex decomposition of the point into the set of vertices. From
an architectural point of view there are two ways to calculate
this algorithm. It can be calculated sequentially by ordering the
values and then calculating the partial products, or in parallel
through the use of more hardware to perform the necessary
comparisons and sums of the terms in the minimum amount
of time. Examples of the first option are [5], [6], for CNN cell
arrangements. Reference [7] presented a dedicated mixed-signal
integrated circuit. A dedicated IC microprocessor implementing
the algorithm in a sequential way has been presented in [1].
In [8] the authors describe both alternatives and provide an
FPGA implementation, although it is not completely optimized
for execution speed.

In this paper we propose a 3-input digital PWL architecture
that maximizes the output throughput to deal with high speed
applications. In order to accomplish this, it is key to take ad-
vantage of the integrated memory where the function parameters
are stored. The minimization of the system latency was also a
design consideration; this is an important factor if the designed
PWL function must operate in a feedback system.

O. Lifschitz and P. Julian are with the Departamento de Ingenieria Eléctrica
y de Computadoras - Universidad Nacional del Sur - Conicet. Av. Alem 1253
- (B8OOOCPB) Baha Blanca - Argentina Email: omar.lifschitz@uns.edu.ar.

0. Agamennoni is with Investigador principal CIC (Comision de Investiga-
ciones Cientificas).

ISBN 978-987-1907-44-1

92

The Simplicial PWL function is assumed to be defined
over an n-dimensional compact domain S € R"™. Where each
axis domain is partitioned into 2(In.tegerb.1ts) divisions and
quantized using o(Integer bits + Fractional bits) precision. Ac-
cordingly, the number of vertices or parameters of the function
is equal to:

_ o(nxInteger Bits)

Parameters = 20x4) — 4096

M

For a given point x in an arbitrary simplex of the domain,
the function can be expressed as follows

n+1

F(#) =~ Y cppun(x) ©)
k=1

where X = [x1,Z9,...,%,] is the point to be evaluated, cj
are the coefficients of the PWL function or simplex vertices,
which are stored in the memory device and pj are scaling
parameters dependent on x that form the elements of the basic
function [1]. For a more complete description of the simplicial
PWL algorithm, the reader is referred to [4].

The requirements, based on available typical results, can be
classified in two groups: configurations and speed.

o Configuration: Dimension, size and digitalization of the
PWL function must be defined. These factors are typically
dictated by the application. Regarding the dimension, three
input variables were chosen, as a proof of concept. The
number of divisions per variable is set to 16 so we have 4
bits for the integer part. The memory coefficients are set to
8-bit precision and the fractional part is set to 10 bits [9].
Every input variable has a 14-bit size that could be fed, if
needed, with an Analog to Digital commercial device.
Speed: The design should minimize the PWL calculation
time, this implies maximization of the output throughput.
Also, the system latency should be minimized to allow
feedback implementations, like the Nonlinear Output Error
(NOE) structure described in [10]. These two features,
throughput and latency are directly linked with the memory
device. To maximize the memory performance the device
should be accessed constantly so the latency penalty is paid
once, at the beginning of the process. In the particular case
under consideration, four coefficients must be read from
memory, so the use of a two port memory will divide the
read process time by two.

In order to meet the speed and latency requirements an
internal memory must be used. External memory latency is
in the order of tens of clock cycles, which is not acceptable
in feedback structures. On the other hand, internal memories
or on-die memories have size limitations so a compromise is
needed [11]. The total memory size is equal to the number of

IEEE Catalog Number: CFP1354E-CDR

2013 Argentine School of Micro-Nanoelectronics, Technology and Applications

parameters of the function, multiplied by the Word length. In
the present case, this is equivalent to:

Mem size = parameters x 1 Byte = 4096 Bytes

3)

The outline of the paper is as follows: Section II describes the
architecture; Section III introduces the IC pipeline; Section IV
and V show the simulations and FPGA implementation results;
and finally, Section VI presents the conclusions.

II. ARCHITECTURE

In order to calculate the PWL function (2) two parameters
are needed: the 1 and the memory coefficients (c) of a specific
simplex [4]. The p parameters must be extracted from the
fractional part of the sorted input variable. Thus a rank order
is implemented using a crossbar block. This combinational
crossbar block, shown in Fig.1, compares all the input variables
in one clock cycle.

u >
Lower
v > Middle
Bigger
w >

Mult. Selector

Comparators

Fig. 1. Crossbar combinational implementation.

Once the inputs are sorted, the p generator block produces
the 1 values and saves them in a temporary array waiting until
the memory coefficients are available. The following equations
show how the 1 values are calculated:

wo = Fraction part(z1)

w1 = Fraction part(zs) — Fraction part(z;)

4

g = Fraction part(zs) — Fraction part(zs)
us = 1 — Fraction part(xs)

where x1, 29,23 are the sorted input variables. Even though
these differences are combinational operations, a synchroniza-
tion signal, not showed here, forces the p reading once the
crossbar has finished, in order to guarantee correct values.

Regarding the addresses, the first two addresses are instantly
known once the inputs reach the PWL front-end. This is a
result of the concatenation of the input variable integer part.
Thus, the base and the far end addresses of the hypercube are
obtained immediately. The intermediate addresses are obtained
from the sorting process. The crossbar produces the ordered set
of vertices, which is also known as the hypercube path (for a
description of the hypercube path method, the reader is referred
to [4]). Using this information the 2"¢ and 37¢ addresses are
formed.

ISBN 978-987-1907-44-1

The four addresses are sent to the memory control unit to
activate the memory device. The memory control is a very
simple state machine containing three stages. The use of a
double-port memory device allows to parallelize the reading
phase. The memory access is done with the first two addresses
and then with the other two addresses produced by the crossbar.
In the case of a single port memory, the latency of the pipeline
increases by two clocks because the address is split from two
to four addresses in a serial way.

To complete the PWL calculation four multiplications and
three additions must be performed. Fig. 2 shows the PWL ar-
chitecture with the processing blocks. One important assumption
here is the one-clock multiplication capability which is enforced
by design, setting the limit to the clock frequency.

"""""""""""""" : Control o
U - ‘ : 4';
Crossbar u Gen. >
vk & & Mglz,llt
Address Addre
Wk | {st g gth gnd 8Z ;ﬁd » Adders
Memory Pl
CONtrol fa---w-wmmfrrrreeeeecs | Mult
e 4
,,,,,, » Adders
Mem -------=====m=e-2

Fig. 2. PWL Architecture showing the data path (solid lines) and control path
(dashed lines). Note the two multipliers and adders to process the even and odd
data.

We can observe the duplication of the multipliers and adders
in order to process the PWL calculation in one clock cycle.
This comes from the delay introduced by the memory until
the coefficient values are ready. The crossbar and p Generator
are not duplicated, so that they are processing odd and even
incoming data and passing their results to the rest of the pipeline.

A. Pipeline Design

The main goal of this work is to produce a faster architecture
in terms of execution speed. Note that the approach in [§]
presents two alternatives to perform the PWL calculation: a
serial option and a parallel option. In the serial approach the
output throughput is intentionally sacrificed in order to obtain a
reduced hardware architecture. In the parallel approach, the idea
is to replicate hardware units in order to speed up the execution.
However, the parallel approach presented in [8] cannot operate
at the maximum possible frequency because the delay of the
combinational circuits limits the clock period.

The strategy we present is based on the optimization of the
pipeline to produce the computation result in minimum time.
In order to do this, order and access operations are adequately
partitioned, while, at the same time, the memory device is read
constantly, so the memory latency cost is paid once immediately
after the reset sequence.

93 IEEE Catalog Number: CFP1354E-CDR

2013 Argentine School of Micro-Nanoelectronics, Technology and Applications

The Order and Address Generator blocks process the in-
coming data and produce the addresses to fill the read buffer
memory constantly. Fig. 3 shows the pipeline stages and how
the incoming data are processed for the different blocks.

Clock

Gen. Gen.
| Mem. | Mem. Mem.IMem.j
Acc. | Acc. | Acc. A Acc.
Ger
Mult) - Mult| (Mult) (Mult
Add| {Add Add
1) 3 4 5 6 IFina Final

Fig. 3. Pipeline showing the different processes for every stage. The even and
odd incoming data are marked with different shapes in the graph. The “final”
labels mark the PWL data output which has a throughput which is half the
clock system frequency.

The data is captured at the first clock. Between the first and
second clock the crossbar produces its ordered output. At the
second clock, the memory control fetches the first and fourth
addresses. At the third clock the p parameters are ready. At the
fourth clock the following events occur: the ordered odd data
input are latched, the two intermediate addresses are fetched
and the first two multiplier results from the even data input are
obtained. Finally, during the fifth and sixth clock cycles the four
additions are done to get the first PWL calculation result, while,
at the same time, the process starts for the second input data.

The memory latency is one system clock. In this way we
obtain a higher PWL throughput than the one obtained in [8]
which was SMhz and 20MHz (based on a 75 Mhz system
clock) for the serial and parallel implementations. Regarding our
design system latency is bigger than the one presented in [2] for
the SPWL case this is a direct result of compromise between
throughput efficiency and system latency.

If the number of inputs is increased, the throughput can be
maintained at the expense of additional hardware. Notice that
two addresses are immediately generated at the beginning of
the algorithm, and the intermediate addresses must be generated
by the crossbar. Therefore, if throughput is to be maintained,
a multi-port memory device, multipliers and adders should be
added. For an n-dimensional PWL function it is necessary to use
an n-1 port device memory, n-1 multipliers and one adder of
appropriate size to perform the addition in one clock cycle. The
latency parameter is also kept at expense of this extra hardware.
As showed in Fig. 3 after the crossbar calculations end, the n-1
memory access could be done. One clock later the n-1 multiplier
are ready for activation and a final adder resolved the PWL
output results. The n-1 port memory device is achieved by a
custom integrated design. External memory device has a high
penalty in the latency response. Also memory duplication could
be done if the throughput is a main stream of the design target.

Figure 4 are simulations on Modelsim and Matlab using a

ISBN 978-987-1907-44-1

94

PWL owner tool [3] . The two models results are equal because

: :
—%¥— Matlab Model
160 —+&— HDL Simulation | |
140+ i
< 120f g
2
3
& 100f i
[}
3
£ 80 i
o
=
& eo0f i
40t i
20t i
0 : i i i i i
0 5 10 15 20 25 30 35
Fig. 4. Results from the HDL simulator and Matlab tool.

the quantization effects were not considered. The PWL inputs
as well the memory contents are extracted to Matlab from the
HDL simulator, thus the quantization effects are negligible. This
is to verify the correct HDL PWL engine design.

III. FPGA IMPLEMENTATION

This section shows the implementation of the PWL algorithm
in an FPGA. The FPGA device is a Virtex5 on a Xilinxs
evaluation board. The number of PWL inputs are three. A
Lecroy logic analyser capture (Fig. 5) was done of the PWL
algorithm output running at SOMHz.

Fig. 5. PWL output capture. The bottom part shows an output zoom.
We can see the output throughput is half the clock frequency.

The PWL output is marked with a Done signal which sets the
synchronism for the eventual next processing block. The sam-
ples in between are the effect of the high sampling frequency of
the logic analyser, 1GHz, that captures buffer transactions, due
to signal integrity problems, and shows them as output signals.
It can be clearly seen that the PWL architecture throughput is
the clock frequency divided by two. Fig. 6 shows the laboratory
environment.

ISite tool: http://uns.academia.edu/PedroJulian

IEEE Catalog Number: CFP1354E-CDR

2013 Argentine School of Micro-Nanoelectronics, Technology and Applications

Fig. 6. Laboratory set up. FPGA and Lecroy logic analyzer.

IV. CONCLUSIONS

In this paper we have presented a dedicate architecture design
to efficiently calculate a PWL function in minimum time. The
architecture does not depend on the number of PWL inputs.
The maximum output throughput is the system clock divided
by two, a situation that can be achieved at the expense of extra
hardware.

The system latency was shown to be six system clocks
independently of the number of PWL inputs. Thus an
improvement of the system speed of feedback implementations,
like the Nonlinear Output Error (NOE) is achieved.

REFERENCES

[1] A. Rodriguez, O. Lifschitz, V. Jiménez, P. Julidn, O. Agamennoni,
“Application-Specific Processor for Piecewise Linear Functions Computa-
tion”, IEEE Trans. Circuits Systems, vol. 58, no. 5, pp. 971-981, 2011.

F. Comaschi, B. A. G. Genuit, A. Oliveri, W. P. Maurice H. Heemels

and M. Storace, “FPGA implementations of piecewise affine functions

based on multi-resolution hyperrectangular partitions”, IEEE Transactions

on Circuits and Systems - I, vol. 59, no. 12, pp. 2920-2933, 2012

P. Julian Ph.D. Thesis: A high level canonical piecewise linear representa-

tion: Theory and applications, Universidad Nacional del Sur, Bahia Blanca,

Argentina, 1999

[4] M.J. Chien, E. Kuh, “Solving nonlinear resistive networks using piecewise-

linear analysis and simplicial subdivision”, IEEE Trans. Circuits Systems,

vol. 24, no. 6, pp. 305-317, 1977.

P. Julian, R. Dogaru, L.O. Chua “A piecewise-linear simplicial coupling

cell for CNN gray-level image processing”, IEEE Trans. Circuits Systems,

vol. 49, no. 7, pp. 904-913, 2002.

[6] R. Dogaru, P. Julian, L.O. Chua, M. Glesner “The simplicial neural cell
and its mixed-signal circuit implementation: an efficient neural-network
architecture for intelligent signal processing in portable multimedia appli-
cations”, IEEE Trans. Neural Networks, vol. 13 , no. 4 , pp. 995-1008,
2002.

[71 M. Di Federico, P. Julian T. Poggi, M. Storace, “A Simplicial PWL
Integrated Circuit Realization ”, IEEE Trans. Circuits Systems, pp. 685-688,
2007.

[8] M. Storace, T. Poggi “Digital architectures realizing piecewise-linear
multivariate functions: Two FPGA implementations”, Journal of Circuit
Theory and Applications, vol. 39, no. 1, pp. 1-15, 2011.

[9] O. Lifschitz, P. Julian, O. Agamennoni “Accuracy Analysis for on-chip
digital PWL realization” in Proc. RPIC Universidad Nacional de Entre
Rios, pp. 429-434, 2011

[10] O. Lifschitz, P. Julian, O. Agamennoni, “A Generic Nonlinear Output
Error Structure Implemented on a PWL ASIC”, in Proc. Arg. School of
Micro Nanoelectronics, pp. 11-16, 2012.

[11] O. Lifschitz, J. A. Rodriguez, P. Julidan, O. Agamennoni, ‘Post-silicon
Validation Procedure for a PWL ASIC Microprocessor Architecture”, /[EEE
Latin America Transactions, vol. 9, no. 4, pp. 492-497, 2011.

2

—

3

=

[5

[k}

ISBN 978-987-1907-44-1 95

IEEE Catalog Number: CFP1354E-CDR

