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Abstract�� This work presents, demonstrates and 
analyzes a property that relates the transient 
response of stator and rotor currents to the speed of 
induction motors and their parameters. The 
straightforward application of this property allows 
determining the rotation speed of the motor and 
detecting a failure or variation of its parameters. 
This property is demonstrated analyzing the 
induction motor modeled by two parts: one linear 
and another non-linear. Based on the operating 
principles of induction machines and the theory of 
differential equations, a hypothesis is stated on the 
behavior of currents in the transient state. Then, by 
symbolically computing the eigenvalues, the 
hypothesis is verified so that it validates the stated 
property. 
Keywords��Electric motors model, Induction 
motors,  Speed estimation.

1. INTRODUCTION 
Electrical drives containing a squirrel cage induction 

motor (IM) are widely used in many industrial 
applications. In general, the accuracy level of the IM 
model strongly depends on the application. 
Consequently, several IM models can be found in the 
literature. For instance, in [1], IM radial and axial 
nonuniformity was taken into account for modeling 
inductances. In [2], a model specifically designed to 
study the machine-inverter interaction was introduced. 
A model built with finite elements techniques was used 
in [3] to study iron losses. 

However, the most widely used model in the 
electrical drives control field assumes that the stator 
windings are sinusoidally distributed, and the rotor as a 
three-phase lumped wound [4][5]. This model is 
accurate enough for describing the motor dynamics in 
sensorless speed control and fault detection applications 
when the IM is running at both medium and high speed. 
Although the model has been widely used, some of its 
properties are still unexplored. The goal of the paper is 
twofold. First, a new property of the conventional IM 
model is presented. Second, this property is used for 
estimating the rotor speed. It is worth noting that speed 
estimation is a widely studied topic in sensorless speed 
control of electrical drives ([6], [7] and references 
therein). In the cited bibliography several methods to 
estimate the speed of the IM are presented. Among 
these methods, maybe the most spread one is the one 

that uses observers to determine the speed. These 
observers are well known and simple to use tools but 
they need an updated model of the IM (see [8][9] and 
references therein). The parameters of the IM are very 
sensitive to the variation of temperature, especially the 
rotoric resistance [4]. It is clear that the obtained 
precision depends on the correlation of the parameters 
of the model with those of the observed motor. The 
presented property and the method proposed allows 
calculating speed of the IM from calculations on the 
results of an identification made by any method. It is 
presented and it is demonstrated by an identification of 
the model of the IM in states space. 
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Fig. 1: Induction motor model outline 

2.  THE INDUCTION MOTOR MODEL 
The model of the three-phase induction motor is 

multi-variable, with strong couplings, and non-linear. 
The first two characteristics stem from its physical 
structure and from its operating principle. The non-
linearity is due to the fact that the motor torque is a non-
linear function of the stator and rotor currents and, 
consequently, the speed is a nonlinear function of the 
currents.  

In this paper, an IM non-linear model breaks into 
two parts is considered. One part is linear, and the other 
one is nonlinear. The linear part, represented in state 
space, describes the behavior of the electrical variables 
for a given speed. This block is linear when the speed is 
regarded constant. The non-linear part is linked to the 
mechanical behavior. The speed is computed in the non-
linear part of the model, and it is updated in the linear 
part. 

This model splitting is made possible because there 
are two or three orders of magnitude in the ratio 
between the mechanical and electrical time constants. 
Therefore, this model is valid only if it is evaluated in a 
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time interval much smaller than the mechanical time 
constant of the motor. 

Fig. 1 shows the block diagram of the analyzed IM 
model. The linear block, composed of differential 
equations of the electrical circuits, has the stator voltage 
as the input, and the stator and rotor current as the 
outputs. Speed is a parameter of the linear system that is 
being steadily updated. Using the values of these two 
currents, the non-linear block computes the instant 
motor torque and, by means of a differential equation 
for the rotating motion, it also calculates the motor 
speed, which is then used to feed back the linear block.  

The electrical behavior of the stator and rotor 
circuits is described by (1) and (2), respectively. 
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where:  
S Sa Su j u� �u b  is the stator voltage, and 

j
R Ra Rbe i j i� � �i  and S Sa Si j i b� �i  are rotor and 

stator currents, respectively. RS, LS are the stator’s 
resistance and inductance; RR, LR are the same 
parameters but for the rotor. L0 is the mutual inductance 
between stator and rotor. The angular position of the 
rotor is � . The terms je �  and je �� represent the changes 
in the rotor-stator coordinate systems, respectively, that 
must be applied to the currents.  

The kinematics of the model is defined as: 
d
dt
�� �                                     (3) 

where: 
� : angular speed of the motor shaft 

The torque generated by induction motor [4] must 
balance the inertial torque, the load torque and the 
friction torque 

LT

fT . This fact is described by: 
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where:  
p : number of pole pairs of the electrical machine 
J : moment of inertia 
� : denotes imaginary part 

*() : denotes conjugate complex 
In (2), the rotor current is referred to the coordinate 

system fixed to the rotor. However, the system can be 
represented in a stationary reference frame (axes a and 
b) [4]. In such a case, and by separating the real from 
the imaginary part, the following description is 
obtained, 

0

0

0 0

0 0

0

0

Sa Ra
Sa S Sa S

Sb Rb
Sb S Sb S

Ra Sa
R Ra R R Rb Sb

Rb S
R Rb R Ra R Sa

di di
u R i L L

dt dt
di di

u R i L L
dt dt

di di
R i L L i L L i

dt dt
di di

R i L i L L i L
dt dt

b

� �

� �

� � � ��
�
� � � ���
�
� � � � � �
�
�
� � � � � �
��

(5) 

With similar substitutions into (4), expression (6) 
can be obtained.  
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Then, operating algebraically with (5) and (6), the 
following expressions are found, 
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For a three-phase IM, the input, output and state 
vectors are stated as:  

                           (9) 1 2 3[     ]Tu u u�u

                         (10) � 1 2 3   Ti i i�y �
                       (11) [    ]T

Sa Sb Ra Rbi i i i�x
Applying now the Clarke transformations to the 

inputs and outputs [4], expressions (12) and (13) are 
attained, which allows relating the voltages and currents 
on IM terminals with the ones of the previous model. 
Using these relations and substituting into (7), equation 
(14) is finally obtained.  
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2.1 Characteristics of the presented model 
On the model represented by (8) and (14), the 

following characteristics can be easily noted: 
� In steady state, or in a short period of time with 

respect to the IM mechanical time constant, speed �  is 
kept approximately constant. Therefore, state matrix 
(14) does not vary. Under these conditions, the model of 
the electrical part of the IM is linear.

� In Fig. 1, equation (14) corresponds to the block 
‘Linear Model of Electrical Part’, whereas equation (8) 
to the block ‘Non Linear Model of the 
Electromechanical Part’. 

� On the main diagonal of the state matrix in (14), 
the speed does not appear. Therefore, its trace depends 
only on the motor parameters.

Another important characteristic of the model 
expressed in (14) is that it is a minimal realization. This 
feature is not evident and, therefore, it requires the 
following demonstration: 

The simplified model of the IM can be represented 
by two electrical circuits that are magnetically coupled. 
One circuit corresponds to the stator, the other to the 
rotor and both have, as concentrated parameters, a 
resistance, an inductance and an EMF, all of them 
connected in series. The magnetic coupling is due to the 
mutual inductance and to the relative speed between the 
magnetic field of the stator and the rotor. 

For an IM working at a certain speed, the dynamic 
behavior of this model can be characterized by the 
current through each circuit mentioned above. These 
two currents are independent one from the other and, 
hence, one of them cannot be expressed as a function of 
the other. The only relation existing between both 

circuits is the mutual induced EMF. In this model, these 
currents are vectors, and they can be expressed by their 
components according to axis a ( ,Sai Rai ) and axis b 
( i ,Sb Rbi ). In the model described by (14), the space 
state variables vector is formed by the four components 
of these currents. The system’s dynamics can be 
described with four variables as a minimum. For this 
reason, the system defined in (14) is a minimal 
realization for a given speed. 

3. TRANSIENT ANALYSIS OF THE INDUCTION 
MACHINE CURRENTS 

In steady state, the angular speed �  of the induction 
machine shaft operating as a motor is expressed as (15) 
and, when it operates as a generator, it is expressed as 
(16). These expressions respond to the operating 
principle of these machines 
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where: 

Sf : stator current frequency 

Rf : rotor current frequency 
In a linear system, the transient behavior is described 

by the homogeneous solution of the differential 
equations system of the model. The homogeneous 
solution describes the system response when it is let 
evolve from any operating point, with zero input. 
Physically, in an IM, the homogeneous solution 
describes the evolution of motor variables when it is 
working in any operative state, and a zero input is 
applied to it. In the model developed here, a zero input 
means that the stator voltage vector is zero as well. 
Hence, the motor changes its operation and starts 
working as a generator. Consequently, expression (16) 
must be complied as the relationship between the stator 
and rotor currents. In order to verify this hypothesis, the 
imaginary parts of the system eigenvalues are analyzed.  

By symbolically computing the eigenvalues of the 
state matrix of the model presented by (14), equations, 
(17), (18), (19) and (20) are obtained. 
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Eigenvalues  and are conjugated complexes 

that describe the rotor current in transient state. 
Likewise the case for eigenvalues  and  as regards 
the stator current is. The imaginary part of eigenvalues 

 and  is the angular pulsation of the transient rotor 
current, and the imaginary part of  and represents,
again, the angular pulsation but for the stator current.  
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3e 4e

From (17) and (19), it can be seen that the sum of 
the imaginary parts of the rotor and stator eigenvalues 
must be equal to the speed of the motor shaft, because 
the M terms are cancelled, as well as k. The result is 
equation (21). A similar procedure on (18) and (20) 
renders (22), thus verifying the hypothesis stated above.  

1 3( ) ( )e e �� �� �                        (21) 

2 4( ) ( )e e �� �� � �                     (22) 
Equations (21) and (22) represent a new property of 

the IM model, whose demonstration is the main purpose 
of this work. Physically, this means that for an IM 
operating at a given angular speed �  in transient state, 
the frequencies of rotor and stator currents meet the 
relation (16). This was already verified with the 
homogenous solution of system (14).  

 On the other hand, it is verified that the trace of the 
state matrix (14) does not depend on the motor speed, as 
shown in (23), and it can be evaluated using the real part 
of the eigenvalues. 
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The demonstration of the property expressed in (21), 
(22) and (23) can be extended to a model of the transfer 
function matrix type due to of the equivalence between 
poles and eigenvalues and given that the state space 
model is a minimal realization. A system expressed in 
state space, such as (24) can be expressed as a transfer 
function matrix , (25) when the matrix D is null. 
Applying this transformation to system (14), matrix 
equation (26) is obtained. 
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Transfer function matrix (26) is composed of nine 
transfer functions that relate inputs and outputs. The 
roots of polynomial  have the same properties 
expressed in (21) and (22).  

( )A s

4.  APPLICATIONS 

The direct application of the property expressed by 
(21) and (22) is the estimation of motor speed through 
on-line identification of the IM model. Identification, 
which can be made experimentally, is realized by 
processing the stator currents and voltages. If a state 
space model is identified, a state matrix is then obtained 
and, after calculating its eigenvalues, speed �  can be 
computed as well. 

Another way to estimate the speed is to identify any 
of the nine transference functions stated in (26) to 
calculate the poles and, with their imaginary part, 
calculate the speed. 

If the state matrix is obtained, its trace can be 
calculated and, applying (23), it is then possible to know 
whether the motor parameters have changed.        

5.  CONCLUSIONS 
A new property of the IMs models has been 

presented and analyzed. This property is due to the fact 
that IM is a reversible electrical machine and it was 
used to develop new methods for estimating rotor speed 
when it varies slowly. Note that for implementing the 
proposed estimation method, it is only needed to 
identify a linear system. In comparison with other 
approaches, the main advantage of our proposal is that a 
priori knowledge of IM parameters is not needed. In 
addition, it does not require any model adjustment 
because the parameter variations are straightforwardly 
reflected on the on-line identification. Another 
application of this property is to detect parameters 
variations and faults in the IMs.  
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