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Abstract. Inflation, a period of exponential expansion in the early Universe, is considered
an important part of the standard ΛCDM cosmological model, and plays a crucial role in
explaining a wide range of current observations. The standard inflationary model predicts
a primordial spectrum of fluctuations that is nearly scale-independent, fitting remarkably
well the latest observational data. Nevertheless, there is an ongoing discussion surrounding
the transition from an initial homogeneous and isotropic quantum state, characterizing the
matter fields during inflation, to a classical inhomogeneous/anisotropic one, which gives rise
to large-scale structure in the Universe. To tackle this issue, in the present work we explore
an inflationary scenario where quantum “collapse” (or reduction) occurs naturally during
the evolution of the system; this model is inspired in the so called Continuous Spontaneous
Localization (CSL) model. Our present work builds upon previous results by considering
the primordial power spectrum up to the second order in the Hubble Flow Functions, where
we perform an estimation of the model free parameters. By validating the predictions of
the model against observational data, we investigate whether this second-order calculation
can explain the slight departure from the power law observed in the scalar spectral running
index. We hope this research contributes to the understanding of the quantum-to-classical
transition and its implications for cosmology.
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1 Introduction

The cosmological model, according to which our Universe has been in a state of perpetual
expansion, is supported by observational evidence, and modeled within the theoretical frame-
work of General Relativity [1–3]. This evidence was first historically established by Hubble
[4] and Lemâıtre1 [5], the latter employed measurements of velocity spectra of extra-galactic
nebulae [6], which can be used to estimate distances using the relationship involving cepheids
[7]. Currently, the data supporting the expansion of the universe includes (among others):
distance ladder measurements of local type Ia supernovae (SNe) [8], measurements of the Cos-
mic Microwave Background (CMB) [9], and baryon acoustic oscillation (BAO) measurements
of angular-diameter distances [10]. On the other hand, inflation, a period characterized by
an exponential expansion in the early Universe (prior to the decoupling epoch) [11–13], has
become an integral part of modern cosmology, in great part due to its empirically success-
ful account of the primordial inhomogeneities that represent the origin of the cosmological
structure. All these features together give rise to what is known as the concordance ΛCDM
cosmological model. In fact, observational data is becoming increasingly abundant and un-
precedentedly accurate, consistently reaffirming the accepted status of the Big Bang model
+ inflation, within the combined framework of General Relativity and Quantum Theory.2

Observations from the CMB [14–17] provide compelling evidence for the highly isotropic
cosmic radiation that we observe today; this radiation represents a relic from the early stages

1If the Universe was expanding, then it should have been smaller in the past. This led Lemâıtre to propose
the primeval atom hypothesis, which laid the foundations for what we now call the Big Bang singularity.

2Here, we imply that at the fundamental level, the standard cosmological model treats spacetime as dictated
by the equations of General Relativity, and the matter fields as described by Quantum Field Theory.
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of the Universe. Additionally, recent CMB data [9, 17, 18] are consistent with the predictions
of standard inflation, which entail a primordial spectrum that is highly Gaussian, adiabatic,
and nearly scale-invariant. However, some aspects of the conventional inflationary paradigm,
particularly concerning a clear explanation for the generation of primordial homogeneities,
remain unsettled. Specifically, an open problem within standard inflation, initially mentioned
in [19] and subsequently analyzed in other works like [20–23], is as follows: The inflaton,
i.e. the scalar field responsible for driving the exponential expansion, initially exists in a
perfectly homogeneous and isotropic quantum state.3 However, none of the quantum me-
chanical equations used to evolve the state of the inflaton have the potential to break these
symmetries (homogeneity and isotropy). This raises the fundamental question: How do pri-
mordial inhomogeneities, which eventually give rise to large-scale structure, emerge from the
quantum state of the inflaton that characterizes the matter fields in the primordial Universe?
A further related question that ensues is: How is it possible for the Universe to contain
classical galaxies considering its quantum origin? Some may argue that decoherence has the
potential to address the latter question [24, 25]. However, we contend that it is insufficient
to answer the former question [20, 22].

This debate is not new, and a large amount of literature has been dedicated to these
concerns [20, 25–38]. The reason why it remains an open discussion lies in the fact that the
quantum treatment of the Universe inherits unresolved matters from quantum mechanics,
specifically the measurement problem [39, 40]. Concretely, when the entire Universe is the
subject of study, there is no transparent and global way to make a distinction between the
“observer”, or measurement apparatus, and the “observed object” or physical system. In fact,
when applying Quantum Theory to the early Universe, what we are trying to explain are the
primordial conditions that, eventually, led to our existence. Evidently, it is senseless to allow
for considerations regarding what we, humans, can or cannot in fact measure, to play a role
in such an explanation [23]. It also challenges the notion of constructing a “super-observer”
outside the Universe, which is clearly not a viable solution within any reasonable physical
theory.

The idea that the quantum wave function spontaneously“collapses”during its dynamical
evolution has been put forward as a possible solution to the measurement problem [41–44].
This proposal belongs to a broader class of models known as objective reduction models or
simply “collapse models” [45]. One of the most extensively studied and tested models in this
category is the Continuous Spontaneous Localization (CSL) model [46–49].

The CSL model introduces a modification to the Schrödinger equation by incorporating
a stochastic term, and provide also a Probability Rule, which gives the probability of a
particular realization of the stochastic term. All these elements leads to the collapse of the
state vector into a new state, which in principle does not share the same symmetries as the
initial state. The CSL model has also been subject to experimental testing as its predictions
differ from those of standard quantum mechanics for certain specific systems [50, 51].

Furthermore, the CSL model can be extended to the cosmological context, and in par-
ticular, has been successfully applied to the inflationary period, where it has demonstrated
its ability to fit actual observational data [26–29, 35–37, 52–56]. This demonstrates that the
aforementioned problem cannot be dismissed as merely philosophical in nature. Instead, the

3In the standard inflationary model, the initial state of the inflaton is commonly characterized as a highly
excited state for the zero mode of the field, and the so called Bunch-Davies vacuum for the rest of the field
modes.
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attempts to address this issue have tangible effects on the predictions of the model, which
can be tested against recent observational data.

On the other hand, several previous studies have examined the theoretical predictions
of the traditional inflationary paradigm when the primordial power spectrum was calculated
up to the first order in the Hubble Flow Functions (HFF), e.g. [18, 57, 58]. However, latest
data reveals certain features that cannot be overlooked when constructing an inflationary
cosmological model [59, 60]. Specifically, the data seem to indicate that a scale dependence
of the scalar spectral index ns is still allowed; this scale dependence of ns is known as the
running of the spectral index nrun. In other words, the data admits a slight deviation from the
power law behavior in the primordial power spectrum. As observed in [18, 61], the parameter
nrun is consistent with a value of zero, but it is not centered precisely at zero. There exists
a range of values that are equally probable such that |nrun| ≲ 10−3 [18], and the possibility
of a non-zero value must be taken into account in future experiments [62].

As a matter of fact, future observational constraints on nrun can be considered as a probe
of the traditional single-field slow-roll inflationary model [59, 62]. As is well known, to the
lowest order of the HFF, the predictions derived from slow roll inflation are as follows: ns−1 =
−2ϵ1⋄−ϵ2⋄, r = 16ϵ1⋄ (referred to as the tensor-to-scalar ratio), and nrun = −2ϵ1⋄ϵ2⋄−ϵ2⋄ϵ3⋄,
where ϵj⋄ denotes the evaluation of the HFF at the pivot scale. Consequently, in slow-roll
inflation all of the previous parameters are related as nrun = (ns − 1 + r/8)(r/8 + ϵ3⋄).

Recent data have narrowed the value of the scalar spectral index |ns − 1| ≃ 10−2 [18].
However, a plausible future scenario is that primordial gravitational waves remain undetected,
resulting in tighter bounds on r, which means lower values allowed by the data for ϵ1⋄. In
that case, ns and nrun, would be the main parameters used to discriminate among possible
inflationary models. Furthermore, if future experiments are consistent with a high value for
the running parameter, i.e. |nrun| ≃ 10−3, then it would imply |ϵ3⋄| > |ϵ2⋄| > |ϵ1⋄|. Thereby
contradicting the hierarchy of the HFF [63], and suggesting a potential inconsistency with
standard slow-roll inflation [64].

In Ref. [65], we calculated the primordial power spectrum at the next leading order
in the HFF that results from applying a CSL (inspired) inflationary model within the semi-
classical gravity framework, which we dubbed CSLIM for simplicity. The CSLIM predicts
a strong suppression of primordial gravity waves generated by second-order scalar pertur-
bations [54, 66]. The estimated tensor-to-scalar ratio in the CSLIM is r ≃ 10−7ϵ21⋄, which
can be seen is decoupled from ns − 1 and nrun; this is a major difference with respect to
the standard prediction. Also, the spectrum in CSLIM exhibits an additional k dependence
through the function C(k), potentially acting as an additional “running effect” independent
of nrun. Therefore, such a feature may prove useful for the resolution of inconsistencies within
the slow-roll inflationary model, without violating the hierarchy of the HFF if future exper-
iments detect a value of |nrun| ≃ 10−3, which we repeat is not too unrealistic. Additionally,
this showcases that the CSLIM holds important observational consequences, hence the issue
mentioned previously cannot be dismissed as purely philosophical.

In this article we perform a statistical analysis to compare the predictions obtained
using the CSLIM with recent CMB data. In particular, we focus on the previously calculated
second-order primordial spectrum [65] and aim to investigate whether small deviations from
the conventional power law in the power spectrum are necessary or if they naturally arise as
a consequence of the CSLIM.

The paper is organized as follows: In Sec. 2, we present a summary of the CSL in-
spired model and its implementation in the inflationary epoch; here we also state the main
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assumptions adopted to obtain the primordial power spectrum at second order in the HFF.
In Sec. 3, we use the observational data from the CMB to constrain the cosmological pa-
rameters and estimate the free parameter of the CSL inflationary model. We also perform
a comparison between the standard ΛCDM model and our proposed model. In Sec. 4, we
conduct a secondary analysis using observational data to test our main hypothesis, which
is to determine whether the power spectrum obtained from the CSL inflationary model can
mimic the effects of the running of the spectral index. This investigation aims to address the
potential future tension in the standard slow roll inflationary scenario. Finally, in Sec. 5, we
present our conclusions. Regarding conventions and notation, we use the metric signature
(− + ++). We choose units such that c = ℏ = 1, but maintain the gravitational coupling
constant G. An overdot is used to denote derivatives w.r.t. cosmic time t, whereas a prime
is used for derivatives w.r.t conformal time η.

2 The CSL inflationary model

The purpose of this section is to provide a brief overview of the calculations developed in [65].
Therefore, most of the details are omitted and no original work is presented in this section.

We begin by establishing the foundation of our proposed model within the semiclassical
gravity framework, where gravity is treated classically while matter fields are analyzed from
a quantum field theory perspective. This approach can be regarded as an effective theory
that describes quantum matter fields in a classically curved spacetime. Consequently, the
semiclassical Einstein’s equations are given by

Gab = 8πG⟨T̂ab⟩, (2.1)

where Gab is Einstein’s tensor and ⟨T̂ab⟩ represents the quantum expectation value of the
energy-momentum tensor of the matter fields.

2.1 Slow roll model

The energy-momentum tensor on the right-hand side of (2.1) corresponds to the inflaton,
which in its simplest formulation is a single scalar field with canonical kinetic energy in some
initial state (the Bunch-Davies vacuum state). The standard action for the inflaton involves
a single scalar field minimally coupled to gravity:

S[ϕ, gab] =

∫
d4x

√
−g

[
1

16πG
R[g]− 1

2
∇aϕ∇bϕg

ab − V [ϕ]

]
. (2.2)

Here, V [ϕ] represents an appropriate potential that is determined empirically. Hence, the
matter sector consists of a scalar field ϕ(x, t), which will be treated perturbatively by decom-
posing it into a homogeneous part and a small perturbation: ϕ0(t)+ δϕ(x, t). The metric gab

is also split into a homogeneous and isotropic background g
(0)
ab , which corresponds to a flat

Friedman-Lemâıtre-Robertson-Walker (FLRW) spacetime with a scale factor a(t), and small
inhomogeneous perturbations δgab.

Slow-roll inflationary models rely on a set of parameters that determine the character-
istics of the inflationary period. These parameters can be defined in terms of the Hubble
parameter H ≡ ȧ/a (where the dot denotes the derivative with respect to cosmic time t) to
yield what we refer to as the Hubble flow functions (HFF) [67, 68]:

ϵn+1 ≡
d ln ϵn
dN

, ϵ0 ≡
Hini

H
, (2.3)

– 4 –



where N ≡ ln(a/aini) is the number of e-folds from the beginning of inflation.
The inflationary period occurs only if ϵ1 < 1, and the slow-roll approximation assumes

that |ϵn| ≪ 1, meaning that all HFF parameters remain small throughout the duration of
inflation.

The Friedmann equations for the background matter fields can be expressed in terms
of the first two HFFs:

H2 =
V

M2
P (3− ϵ1)

, (2.4)

3Hϕ̇
(
1− ϵ1

3
+

ϵ2
6

)
= −∂ϕV, (2.5)

where V = V (ϕ0) and M2
P ≡ 1/(8πG) is the reduced Planck’s mass. It is important to note

that these equations are exact.
Next, we turn our attention to the perturbations in the theory. Regarding the metric

perturbations, we opt to work in the Newtonian (or longitudinal) gauge. Additionally, we
introduce a change of the time coordinate by setting dt = a(η)dη, where η represents the
conformal time. Consequently, the line element associated with the metric at first order in
the perturbations can be expressed as:

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx

idxj
]
. (2.6)

In this equation i, j = 1, 2, 3; Φ and Ψ represent the scalar perturbations of the metric. In
fact, using Einstein’s Equations (EE) at linear order and assuming no anisotropic stress, one
finds that Φ = Ψ. We will refer to Ψ as the Newtonian potential, which represents the so
called curvature perturbation4 in the Newtonian gauge.

In Ref. [65], we have shown that, using the semiclassical EE at linear order in pertur-
bations and definitions (2.3), the main equation relating the metric and the inflaton pertur-
bations are given, in Fourier’s space, by

Ψk ≃
1

MP

√
ϵ1
2

⟨δ̂ϕk⟩
(1 + ϵ2)

, (2.7)

which is valid only up to second order in ϵn. The previous equation clearly demonstrates the
distinctive contribution of our proposal. When the initial state of the quantum field is taken
to be the traditional Bunch-Davies vacuum, which is perfectly isotropic and homogeneous,
the right-hand side of (2.7) becomes exactly zero. As a result, no perturbations of any specific
scale are present in the Universe. However, after the self-induced collapse of the wavefunction
has occurred (provided by the CSL mechanism), the final state no longer possesses the same
symmetries as the initial Bunch-Davies vacuum state. This implies that the right-hand side
of (2.7) is no longer zero, and thus Ψk ̸= 0, giving rise to the primordial perturbation.
For further discussions on this issue, Refs. [69–72] provide more extensive conceptual and
technical insights.

Lastly, it is important to recall that in our framework, the metric is considered a classical
variable, effectively describing the deeper fundamental degrees of freedom of an underlying
quantum gravity theory. Meanwhile, matter fields, specifically the inflaton perturbations,
receive a standard quantum field treatment in curved spacetime. These two aspects are
related through the semiclassical Einstein’s equations. In contrast, the standard approach

4Here, curvature perturbation means the intrinsic spatial curvature on hypersurfaces of constant conformal
time, for a spatially flat universe.
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in inflationary models involves the quantization of both Ψ and δϕ, which are then linearly
combined to form what is called the Mukhanov-Sasaki variable v [13, 73]. Subsequently, the
quantum field theory of v is analyzed.

The Newtonian gauge proves to be highly valuable within the semiclassical gravity
framework for conducting calculations. As illustrated in Eq. (2.7), this gauge explicitly
unveils the distinct fundamental basis of spacetime and matter fields in our approach. More-
over, once we establish this key equation, which relates the metric and matter perturbations
through the semiclassical gravity formalism (while utilizing the CSL mechanism), we can
seamlessly transition to any chosen gauge or use it to construct gauge-invariant quantities.
In the upcoming section, we will switch to the comoving gauge because it enables us to
compare our predictions with the standard ones, typically expressed in the comoving gauge.

2.2 Primordial Power Spectrum

Once we have obtained the expression for the metric perturbation (2.7), our next objective is
to derive the scalar power spectrum in order to establish a connection between our theoretical
proposal and its observational predictions.

We begin by emphasizing that the Newtonian potential Ψ is a conserved quantity
for super-Hubble scales. Although its amplitude may change during different cosmologi-
cal epochs. For instance, during the transition from the radiation to the matter-dominated
era, this variation is proven to be negligible, but significant from inflation to the radiation
epoch (see [65, 74]).

Furthermore, there exists another conserved quantity for adiabatic perturbations on
super-Hubble scales that remains unaffected by the cosmological epoch:

R ≡ Ψ+

(
2ρ

3

)(
H−1Ψ′ +Ψ

ρ+ P

)
, (2.8)

where ρ and P are the energy and pressure densities associated to the type of matter driving
the expansion of the Universe; the prime denotes derivative with respect to η. This quantity
represents the curvature perturbation in the comoving gauge and is associated with the
primordial power spectrum in the standard approach. Specifically, in Fourier space, the
primordial power spectrum of the comoving curvature perturbation is:

RkR∗
q ≡

2π2

k3
Ps(k)δ(k− q), (2.9)

where Ps(k) is the dimensionless power spectrum and the bar denotes an ensemble average
over possible realizations of the stochastic field Rk.

By considering the exact relation (2.8) between Ψ and R, we can calculate the curvature
perturbation in the Newtonian gauge within the collapse picture, and subsequently switch to
the comoving gauge for comparison with the standard approach.

The scalar power spectrum associated with Rk, derived from the expressions (2.7) and
(2.8), is given by:

RkR∗
q =

1

2M2
P ϵ1

(1 + ϵ1 + ϵ2)
2

(1 + ϵ2)2
⟨δ̂ϕk⟩⟨δ̂ϕq⟩∗, (2.10)

where in the context of the CSLIM, each realization is associated with a particular realization
of the stochastic process that characterizes the collapse process.
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Comparing equations (2.9) and (2.10), the scalar power spectrum can be identified as

Ps(k)δ(k− q) =
k3

4π2M2
P ϵ1

(1 + ϵ1 + ϵ2)
2

(1 + ϵ2)2
⟨δ̂ϕk⟩⟨δ̂ϕq⟩∗. (2.11)

The next step is to employ the CSLIM to obtain

⟨δ̂ϕk⟩⟨δ̂ϕq⟩∗ in the super-Hubble regime kη → 0.

2.3 Quantization

We then proceed to quantize the perturbation δϕ(x, η) in a curved quasi-de Sitter spacetime
background. Detailed calculations can be found in [65], but for the sake of completeness, we
will summarize the major steps in this subsection.

We begin by expanding the action (2.2) up to second order in the perturbations δϕ
and Ψ. Since we are working within a semiclassical framework, only the matter degrees of
freedom will be quantized. By rescaling the field variable to y = aδϕ and considering that
S =

∫
d4xδ(2)L, we obtain:

δ(2)L =
1

2

[
y′2 − (∇y)2 − y2a2V,ϕϕ +

a′′

a
y2
]

+ a[4ϕ′
0Ψ

′y − 2a2V,ϕΨy], (2.12)

where V,ϕ indicates partial derivative with respect of the field ϕ.

According to our approach, Ψ = Ψ′ = 0 in the vacuum state. However, the CSL
mechanism implies a continuous process evolving the initial vacuum state |0⟩ into a different
state, e.g. |Ξ⟩. Consequently, the metric perturbations will also change from zero to a non-
vanishing value in a continuous manner. Therefore, the terms containing Ψ and Ψ′ in (2.12)
can be considered as a backreaction effect of the CSL mechanism, which is of second order
in HFF. In Fourier’s space, the action is S =

∫
dηL(2), with

L(2) ≡
∫
R3+ d3kL(2) can be written as:

L(2) ≡ y′ky
∗′
k − (k2 − a′′

a
+ a2V,ϕϕ)yky

∗
k

+ 4aϕ′
0(Ψ

′
ky

∗
k +Ψ∗′

k yk)

− 2a3V,ϕ(Ψky
∗
k +Ψ∗

kyk).

(2.13)

From the Lagrangian above, one can obtain the equation of motion for the field yk,

y′′k +

(
k2 − a′′

a
+ a2V,ϕϕ

)
yk − 4aϕ′

0Ψ
′
k + 2a3V,ϕΨk = 0. (2.14)

The CSL model is based on a non-unitary modification to the Schrödinger equation. In
this manner, it is convenient to proceed with the quantization in the Schrödinger picture,
where one of the relevant physical objects is the Hamiltonian.

The Hamiltonian associated to Lagrangian L(2), can be found asH(2) =
∫
R3+ d3k(y∗

′
k pk+

y
′
kp

∗
k) − L(2), where yk is pk ≡ ∂L(2)/∂y⋆

′
k , that is pk = y′k. Therefore, H(2) =

∫
R3+ d3kH(2),
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with

H(2) ≡ p∗kpk + y∗kyk

(
k2 − a′′

a
+ a2V,ϕϕ

)
− 4aϕ′

0(Ψ
′
ky

∗
k +Ψ∗′

k yk)

+ 2a3V,ϕ(Ψky
∗
k +Ψ∗

kyk).

(2.15)

Quantization is achieved by promoting yk and pk to quantum operators, ŷk and p̂k, and
by requiring the canonical commutation relations,

[ŷk, p̂q] = iδ(k− q). (2.16)

Furthermore, we choose to work with Hermitian operators; hence, we introduce the following
definitions:

ŷk ≡
1√
2
(ŷRk + iŷIk), p̂k ≡

1√
2
(p̂Rk + ip̂Ik). (2.17)

In the Schrödinger picture, the quantum state of the system is described by a wave
functional, Φ[y(x, η)], which in Fourier space can also be factorized into mode components as

Φ[y(x, η)] =
∏
k

Φk(y
R
k , y

I
k) =

∏
k

ΦR
k (y

R
k )Φ

I
k(y

I
k). (2.18)

Thus, the wave functional Φk obeys the Schrödinger equation:

i
∂ΦR,I

k

∂η
= ĤR,I

k ΦR,I
k , (2.19)

where the Hamiltonian densities ĤR,I
k , are related to the Hamiltonian as Ĥ(2) =

∫
R3+ d3k(ĤR

k +

ĤI
k), with the following definitions

ĤR,I
k =

(p̂R,I
k )2

2
+

(ŷR,I
k )2

2

(
k2 − a′′

a
+ a2V,ϕϕ

)
− 4aϕ′

0Ψ
′R,I
k ŷR,I

k + 2a3V,ϕΨ
R,I
k ŷR,I

k . (2.20)

The standard assumption is that, at an early conformal time τ → −∞, the modes are
in their adiabatic ground state, which is a Gaussian centered at zero with certain spread.
This ground state is commonly referred to as the Bunch-Davies (BD) vacuum. Therefore,
the wave functional

ΦR,I(η, yR,I
k ) = exp[−Ak(η)(y

R,I
k )2 +Bk(η)y

R,I
k + Ck(η)] (2.21)

evolves according to Schrödinger equation (2.19), with initial conditions given by

Ak(τ) =
k

2
, Bk(τ) = Ck(τ) = 0, (2.22)

which characterizes the BD vacuum.
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2.4 CSL in the inflationary context

The main physical idea of the CSL model is that an objective reduction of the wave func-
tion occurs all the time for all kind of particles. The reduction or collapse is spontaneous
and random, taking place whether the particles are isolated or interacting and whether the
particles constitute a macroscopic, mesoscopic or microscopic system [45, 46, 49].

In order to apply the CSL model to the inflationary setting, we will consider a version
of the CSL model adapted to inflation. In particular, we assume that the objective reduction
mechanism acts on each mode of the field independently. The model is thus characterized by
two equations:

|ΦR,I
k , η⟩ = T̂ exp

{
−
∫ η

τ
dη′

[
iĤR,I

k

+
1

4λk
(W(k, η′)− 2λkŷ

R,I
k )2

]}
|ΦR,I

k , τ⟩,

(2.23)

and

P (WR,I
k )dWR,I

k = ⟨ΦR,I
k , η|ΦR,I

k , η⟩
η−dη∏
η′=τ

dWk(η
′)R,I√

2πλk/dη
, (2.24)

where T̂ is the time-ordering operator, and recall that τ denotes the conformal time at the
beginning of inflation. The former equation is the evolution equation for the wave function,
while the latter is the probability law. The stochastic field Wk = WR

k + iWI
k depends on k

and the conformal time. In other words, we have introduced a stochastic function for each
independent degree of freedom, i.e. we are applying the CSL collapse dynamics to each mode
of the field. Therefore, the stochastic field Wk(η) corresponds to a Fourier transform on a
stochastic spacetime field W(x, η) with probability given by (2.24).

From equation (2.23), it is clear that the field variable ŷR,I
k has been chosen as the

collapse generating operator, which means that the CSL process will drive the initial state
vector towards an eigenstate of ŷR,I

k . This choice for the collapse operator is motivated by

the fact that in Eq. (2.7), the expectation value ⟨δ̂ϕk⟩ = ⟨ŷk⟩/a acts as the source for the
metric perturbation.

2.5 Parameterization of λk

Equation (2.23) is continuous in Fourier space, and given the assumption that the reduction
mechanism acts on each mode independently, the main CSL parameter λk will now depend
on the mode k. The parameter λk can also be considered as a phenomenological general-
ization of the universal CSL parameter λ0; this is, λ−1

0 provides us with a localization time
scale for the wave function associated to each mode of the field. From the point of view of
pure dimensional analysis, λk must have dimensions of [Length]−2. Therefore, the simplest
functional dependence is to choose

λk = λk, (2.25)

where λ can be related in principle to the universal CSL rate parameter, the latter denoted
as λ0 with units of [Time]−1. Other functional forms of λk could be considered, for instance:
λk = λ3/k, affecting directly the shape of the primordial power spectrum [28]. However, as
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we will see in the next section, it is notable that the functional form proposed in (2.25) is
not only the simplest one, but also compatible with the observational data.

Another important aspect worth mentioning is that extrapolating laboratory estimations
to the primordial Universe involves some caveats [36]. In particular, we can identify two
distinct regimes: the laboratory regime, where the CSL parameter λ0 has been empirically
constrained, and the inflationary era. Consequently, there are ample reasons to question any
straightforward connection between the value of λ, relevant for the inflationary regime (as it
appears in Eq. (2.25)), and the parameter value characterizing the theory in the laboratory.
In fact, very different choices of the value of λ could result in distinct predictions for the
amplitude of the primordial spectrum5 [28].

At this point, since we do not yet have a complete CSL theory, meaning a CSL-type
equation that can be applied across all physical scales, we are left with making educated
guesses. In Ref. [36], one of us analyzed the proposal that it is reasonable to consider
the incorporation of aspects tied to spacetime curvature into the collapse parameter for
cosmological systems, where the curvature is significant. Therefore, a potential extrapolation
of the collapse parameter λ, to more general regimes involves assuming an explicit dependence
of λ on the spacetime curvature characterized by the Ricci scalar R (although other choices
are also possible, e.g. RabR

ab or functions of the Weyl’s scalar). One possible functional
form6 for λ(R) is as follows:

λ(R) = λ0

(
1 +

R

µ

)
, (2.26)

where µ is a physical scale with dimension of [Length]−2, and λ0 is the universal CSL param-
eter. In the cosmological setting, if one wishes to avoid introducing fine-tuning aspects into
λ(R), there are essentially two natural options for µ. The first option is µ = ℓ−2

P , where ℓP
is Planck’s length. In this case, R/µ ≪ 1 because inflation involves energy scales less than
the Planck scale. The second reasonable choice is µ = H2. Here, R/µ ≃ 12 since R ≃ 12H2

during inflation. Consequently, in both cases, we find that λ(R) ≃ λ0 × O(10). Based on
this brief analysis, and for this particular CSL inflationary model, we are enabled to consider
λ ≃ λ0 during inflation, which implies that Eq. (2.25) is now expressed as

λk = λ0k. (2.27)

However, we acknowledge that the former expression relied on certain assumptions that are
far from unique.

For the purposes of this work, with an aim to align with astronomical considerations, we
will set the numerical value of the CSL parameter as λ0 = 10−14 s−1, or equivalently, 1.029
Mpc−1 in more convenient units for our analysis. This value is consistent with empirical
constraints obtained from experimental data, including spontaneous X-ray emission [77],
matter-wave interferometry [78], gravitational wave detectors [79], and neutron stars [80].

After setting this reference for the functional dependence of λk, we have checked that es-
timations for cosmological parameters from the CSLIM, including the running of the spectral
index, are statistically consistent with the ΛCDM+running model (see Sec. 3.2), providing a
meaningful consistency check. This was expected from the previous analysis in temperature

5However, for a detailed analysis about this point, we invite the reader to check Sec. IV A of Ref. [65]
6In fact the functional form (2.26) has been considered in Refs. [75, 76] where a possible resolution to the

black hole information loss paradox, based on the CSL mechanism, was analyzed.
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auto-correlation [65]. At this point, we can conclude that our model presents a novel expla-
nation for the emergence of primordial inhomogeneities, and it fits the data remarkably well,
in spite of not offering distinct predictions for observational comparison.

However, there is no a priori reason to assume that the form of λk shown in Eq. (2.27)
is the only possible one. Therefore, we propose new functional dependencies that introduce
a small departure from the original one, characterized by a new free parameter B, these are:

λk = λ0(k +B), [B] = Mpc−1 (2.28a)

λk = λ0(k +B/k), [B] = Mpc−2 (2.28b)

λk = λ0(k +B k2), [B] = Mpc. (2.28c)

These different forms of λk will introduce distinctive features in the angular anisotropy power
spectrum, which will be further analyzed in Sec. 3.3. Furthermore, these three different
functions of k parameterized by B, correspond to three different versions or “schemes” of the
CSLIM. Consequently, throughout the rest of this article, we refer to each of them (from top
to bottom) as scheme I, II, and III respectively.

In the next section, we will estimate cosmological parameters for each case and compare
them with a reference model.

Before concluding this subsection, we offer an alternative motivation for considering
the three schemes of (2.28). In Ref. [28], it was demonstrated that the simplest functional
dependence λk = λ0k can indeed be interpreted as a specific form of the collapse operator.
Specifically, when applying the inverse Fourier transform of the corresponding variables in
the CSL evolution equation (2.23), the resulting CSL equation in configuration space is as
follows:

|Φ, η⟩ = T̂ exp

{
−

∫ η

τ
dη′

[
iĤ

+
1

4λ0

∫
d3x(w(x, η′)− 2λ0Ŷ (x))2

]}
|Φ, τ⟩,

(2.29)

which is just the standard CSL evolution state vector with the universal parameter λ0, and
an effective collapse generating operator Ŷ defined as Ŷ (x) ≡ (−∇2)1/4ŷ(x).

In Ref. [28], it was also argued that no satisfactory answer exists for explaining the
fundamental reason determining the appearance of the operator (−∇2)1/4ŷ(x). Ultimately, a
sound justification will have to wait for a general theory that expresses, in all situations, from
particle physics to cosmology, the exact form of the CSL-type modification to the evolution
of quantum states. Therefore, the schemes proposed in (2.28) can be interpreted as the next
leading order modifications to the operator (−∇2)1/4ŷ(x). In particular, we are exploring
possible corrections of the effective collapse operator by expanding Ŷ (x) as a “Taylor series”
at the next leading order in ∇2. For example, scheme III can be interpreted as the effective
collapse operator

Ŷ (x) = [(−∇2)1/4 + (B/2)(−∇2)3/4]ŷ(x), (2.30)

provided B small. Similarly, for schemes I and II, we are considering the next leading or-
der terms of the collapse operator Ŷ (x), which are of the form (B/2)(−∇2)−1/4ŷ(x) and
(B/2)(−∇2)−3/4ŷ(x) respectively.

– 11 –



3 Observational Constraints

In this section we will constrain the ΛCDM parameters together with the free parameter B
introduced in (2.28), corresponding to the CSL inflationary model.

We proceeded to modify the camb [81] source code7 to include our calculations in
the primordial power spectrum. Afterwards, the modifications were incorporated to the
cosmomc [82] (which was adapted to include the new parameter of interest) an then analyzed
with getdist codes8.

Observational data used corresponds to the latest [83] data consisting in Planck tem-
perature and polarization correlations likelihood plikTT,TE,EE+lowE+lensing9. The latter
name follows the CMB likelihood naming convention adopted by the Planck papers10 [83]:
Planck TT labels the likelihood formed using only the temperature data, spanning the mul-
tipole range 2 ≤ ℓ ≤ 2500; Plank TE and Planck EE labels the likelihood formed using
exclusively the TE power spectrum from 30 ≤ ℓ ≤ 2000 and the EE power spectrum re-
spectively. Henceforth plik TT,TE,EE labels the combination of Planck TT, Planck TE and
Planck EE, taking into account correlations between the TT, TE, EE spectra at ℓ > 29. Ad-
ditionally lowE labels the likelihood formed using the EE power spectrum over 2 ≤ ℓ ≤ 30
and lensing labels the lensing likelihood which includes lensing effects.

3.1 Primordial Power Spectrum

Employing the CSL inflationary model described in Sec. 2, in Ref. [65] we have calculated
the scalar power spectrum up to second order in the HFF, which is given by

Ps(k) = As

(
k

k⋄

)ns−1+nrun
2

ln k
k⋄

C(k), (3.1)

where

As ≡
H2

⋄
π2M2

P ϵ1⋄
. (3.2)

In our notation, k⋄ represents a pivot scale, defined as k⋄|η⋄| = 1, indicating that the mode
has “crossed the horizon” at the time |η⋄|. Therefore, H⋄ and ϵi⋄ denotes that these variables
are being evaluated at the time of “horizon crossing” |η⋄|. We will fix the pivot scale k⋄ at
the usual value of 0.05 Mpc−1.

Furthermore, ns represents the scalar spectral index and nrun the running of the spectral
index. Theoretically, our prediction for those parameters at the lowest order in the HFF is:
ns = −2ϵ1⋄ − ϵ2⋄ and nrun = −2ϵ1⋄ϵ2⋄ − ϵ2⋄ϵ3⋄.

The function C(k) contains the effects of the CSL inflationary model, and is expressed
in terms of the aforementioned parameters. In Ref. [65], we have calculated C(k) in detail
up to the second order in the HFF. Subsequently, we have expressed the HFF as a function

7Original code is available at https://github.com/cmbant/CAMB.
8Original code can be obtained at https://github.com/cmbant/CosmoMC.
9Code available at https://pla.esac.esa.int.

10The information content of the CMB sky can be split into temperature (T ), plus two polarization com-
ponents, the E and B modes
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of the corresponding inflationary parameters, resulting in the following equation:

C(k) = 1 +
λk|kτ |
k2

+
λk

2k2
cos(2|kτ |)

− exp

{[
− 4 + ns + nrun ln

2k

k⋄

]
ln ζk −

nrun

2

(
ln2 ζk − θ2k

)}
×

[
cos

{[
−4 + ns + nrun ln

2k

k⋄

]
θk − nrun

(
−∆N⋄ + 1− ln 3 + ln

k

2k⋄

)
× θk ln ζk

}]−1

. (3.3)

In this expression ∆N⋄ is the number of e-foldings from the horizon crossing of the pivot
scale to the end of inflation; for the pivot scale k⋄ = 0.05 Mpc−1, this number corresponds to
∆N⋄ ≃ 55 [18]. We require that the localization (collapse) process is fast enough compared
to the total duration of inflation, in conformal time, this condition is expressed as λ0|τ | > 1.
In the following, we will provide a brief analysis of the calculation of |τ |.

We begin by invoking the definition of the total number of e-foldings during inflation,
denoted as Nend, this is aend ≡ eNenda(τ). Next, we substitute the functional form of the
scale factor during inflation a(η) ≃ −1/(Hη) (with H ≃ const.) in the right hand side of the
former expression, obtaining |τ | = eNend/(aendHend). Additionally, by employing Friedmann’s
equation, H2

end = ρend/(3M
2
P ), we can determine that

|τ | ≃ eNend
√
3MP

aend
√
ρend

. (3.4)

To estimate aend, we make the simplification that the reheating era is instantaneous. Also,
by taking into account that for pure radiation, the corresponding energy density satisfies
ρrada

4 = constant, we can write aend/a0 = (ρ0/ρend)
1/4. At the present epoch, radiation

primarily comprises CMB photons, which exhibit a blackbody radiation spectrum. Hence,
ρ0 = (π2/15)T 4

0 , where T0 represents the current temperature of the CMB. By normalizing
the scale factor today a0 = 1, and using the latter expression for ρ0, we obtain the following
equation:

aend =

(
π2

15ρend

)1/4

T0. (3.5)

Substituting (3.5) into (3.4), yields

|τ | ≃ eNend
√
3MP

(
15

π2ρend

)1/4 1

T0
. (3.6)

Here, we will make the following assumptions: inflation ends at an energy scale ρ
1/4
end ≃

10−3MP ; and the total duration of inflation is11 Nend = 67. Substituting these numerical
values of ρend and Nend in Eq. (3.6), and taking into account that the most recent data [17]
suggest T0 ≃ 2.4× 10−13 GeV, we ultimately obtain the value |τ | = 8× 106 Mpc by making
the appropriate units conversions; also we can check that λ0|τ | > 1.

11The approximated minimum number of e-foldings to solve the horizon problem is exp[Nmin] ≃ ρ
1/4
end/(0.037h

eV) [84]. Consequently, taking h ≃ 0.7 and ρ
1/4
end ≃ 10−3MP , implies Nmin ≃ 60. Thus, in our model we assume

7 e-foldings more than this minimum for the total duration of inflation.
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The quantities θk and ζk in Eq. (3.3) are defined as:

ζk ≡
(
1 +

4λ2
k

k4

)1/4

, θk ≡ −1

2
arctan

(
2λk

k2

)
. (3.7)

A few lines above we mentioned that C(k) encodes the effects of the CSL mechanism. As a
matter of fact, we note that if λk = 0, which means no collapse, then ζk = 1 and θk = 0,
giving C(k) = 0. That is to say, if there is no collapse of the wave function, then the vacuum
state remains unchanged, no perturbations are generated and hence P(k) = 0 at all scales;
in our model this is what we expected.

The main modification that needs to be incorporated into the camb code is given by
Eq. (3.1). This modification solely impacts the inflationary period; however, the behavior of
such a complex equation [see Eq. (3.3)] must be carefully monitored before migrating into
numerical calculations. When transitioning from analytical expressions to a programming
language (such as camb), it is crucial to ensure that the effects observed in the results are
attributed to the theoretical model itself and not to numerical representation issues.

To begin our analysis, we implemented the expression for the primordial power spec-
trum in the Fortran language, which is the same programing language used for camb and
cosmomc. We made appropriate adjustments to the equation to minimize numerical errors.
During execution, no “underflows” or “overflows” were reported [85]. Furthermore, we con-
ducted various consistency tests. At first, we ensured that the standard ΛCDM primordial
power spectrum shape was recovered in the appropriate conditions (i.e. B = 0). Afterwards,
we progressively explored a range of feasible values for the free parameter B. In all cases, no
errors arose, and the behavior of these tests met our expectations; there were no unexpected
features, such as jumps or discrepant values. These steps are crucial for instilling confidence
in future results, as more complex codes may inadvertently mask pre-existing numerical is-
sues. We followed a similar procedure when incorporating the expression (3.1) into the camb
code to ensure that the results obtained through cosmomc are reliable.

3.2 Reference model

As mentioned earlier, the simplest functional form λk = λ0k can be comparable to the stan-
dard cosmological model. Therefore, our first consistency check involves contrasting param-
eter estimations between the ΛCDM model12 and the CSLIM with B = 0, i.e. corresponding
to λk = λ0k. Table 1 shows the estimations at a 68% confidence level for the reference model
parameters plus nrun and the CSLIM estimations. Both models demonstrate statistically
identical results.

Regarding observational constraints, both models yield the same parameter estimation
and are equivalent in this respect, with no distinctive features that set them apart. However,
as we mentioned in previous sections, there is no reason to favor this specific form of λk, so
we can proceed to test other three schemes.

Henceforth, we will refer to this scenario as the “reference model”, characterized by the
standard ΛCDM cosmological model, which will serve as a baseline for depicting the distinct
features of the CSLIM.

12This model was built with the same datasets and using an unmodified camb plus cosmomc code. The
reason to run our own ΛCDM is to assure the same input parameter configuration for all the models, so that
they could be compared on an equal footing.
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Table 1. Comparison of parameter estimation between the standard cosmological model and the
CSLIM with B = 0, i.e. λk = λ0k. From an observational point of view, they are indistinguishable.
The difference lies in the theoretical explanation of the origin of the primordial cosmic perturbations.

Parameter ΛCDM CSLIM

Ωbh
2 0.02239± 0.00015 0.02239± 0.00015

Ωch
2 0.1203± 0.0014 0.1204± 0.0014

100θMC 1.04089± 0.00031 1.04090± 0.00031

τd 0.0559+0.0075
−0.0083 0.0559± 0.0082

ln(1010As) 3.050+0.016
−0.018 3.050± 0.017

ns 0.9636± 0.0047 0.9635± 0.0047

nrun −0.0059± 0.0067 −0.0059± 0.0068

3.3 Primordial Power Spectrum Analysis

In the previous subsection we have established the reference model, i.e. by assuming λk = λ0k,
we have found that the CSLIM reproduces the standard predictions of inflation plus the
ΛCDM model, see Table 1. In the present subsection we move forward and include the B
parameter in our analysis.

We note first that the CSL mechanism introduces native oscillatory features in the
scalar power spectrum Ps(k) at low values of k (large angular scales); this effect is caused
by the third term in (3.3), i.e. by the cosine function. It is important to notice that these
oscillatory effects cannot be completely “turned off” even when λk = λ0k. In fact, these
oscillations reflect the characteristics of the initial quantum state, specifically the Bunch-
Davies vacuum at time τ –represented as plane waves ∼ e−ik|τ |/

√
2k– which subsequently

evolves in accordance with CSL dynamics (see Appendix A of Ref. [65]).

Next, we focus on the three schemes outlined in (2.28). These schemes manifest distinct
characteristics in the primordial power spectrum due to their varying functional dependen-
cies on k. Our analysis will primarily concentrate on the observational range, which is
10−6Mpc−1 ≤ k ≤ 10−1Mpc−1.

In the first scheme, as depicted in Fig. 1, it can be observed that as the value of B
decreases, the shape of Ps(k) in the CSL model increasingly resembles that of the reference
model. Some oscillations still persist for k < 10−4 Mpc−1, but they do not significantly affect
the spectrum at higher values of k.

A similar behavior is found for the second scheme. The predicted power spectrum,
normalized by its amplitude As, is plotted in Fig. 2. In this case, smaller values of B
are required to better match the shape of the reference model. However, it is important to
emphasize that the primary aim of the CSLIM is not to precisely replicate the power spectrum
of the standard inflationary model, but rather to fit the observed data while preserving unique
characteristics that might be able to distinguish it from the reference model (in particular
the features attributed to the running of the spectral index). In the range from B = 10−12 to
10−8Mpc−2, the plotted examples demonstrate that the effect of varying B can significantly
affect the spectrum at k ≤ 10−1k⋄.

Similar to the previous cases, oscillations remain prominent at low values of k in the
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Figure 1. The predicted power spectrum for scheme I, normalized by its amplitude As. The plot
illustrates the effect of varying B in the interval 10−6Mpc−1 ≤ k ≤ 10−1Mpc−1. As the value of B
increases, a progressive departure from the reference model is observed for lower k.
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Figure 2. The predicted power spectrum for scheme II, normalized by its amplitude As. We observe
a similar behavior to scheme I, but in this case the spectrum is more sensitive to the value adopted
for B.

third scheme. However, due to the quadratic dependence on k, the influence of B becomes
noticeable at larger values of k (small angular scales), see Fig. 3. The characteristic oscilla-
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tions persist at small values of k (large angular scales) in this case. Exploring values of B
ranging from 10−2 Mpc to 1 Mpc, we observe that as B increases, the deviation of the CSLIM
primordial power spectrum from the shape of the fiducial model becomes more pronounced.
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Figure 3. The predicted power spectrum for scheme III, normalized by its amplitude As. The
functional shape proposed for scheme III primarily impacts large values of k.

At this point of the analysis, we have identified the distinctive features that the CSLIM
introduces in the primordial power spectrum Ps(k), and examinated the effect of varying the
free parameter B in the three schemes. For the second part of our analysis, we proceed to
investigate whether these effects can in fact be observed. To achieve this task, we focus on
the CMB anisotropies angular power spectrum, which is one of the main observables at hand.
We will only present the analysis of the temperature autocorrelation (TT) spectrum, as the
E-mode autocorrelation (EE) and the temperature–E-mode cross-correlation (TE) spectra
exhibit the similar behavior.

As expected from the analysis of Figs. 1 and 2, schemes I and II display progressive
departures from the reference model as the value of B increases, see. Figs. 4 and 5. This
effect occurs for large angular scales (low values of l). In contrast, in scheme III the effect is
seen at small angular scales (large values of l), see Fig. 6, which is also consistent with the
behavior displayed in Fig. 3.

The oscillations observed in the primordial power spectrum for the three schemes, were
located at low values of k. Consequently, we would expect these oscillations to be located at
low values of l in the corresponding angular power spectrum, i.e. within the cosmic variance
region. However, from Figs. 4, 5 and 6, it is clear that the oscillatory features are largely
attenuated, but the net departure persists as discussed above.

Furthermore, it is evident that in schemes I and III (as depicted in Figs. 4 and 6), the
first peak of the spectrum, which position has been meticulously measured, is not reproduced
for specific values of the free parameter. This distinction accentuates the capability of our
model to depart from the standard model, making parameter B suceptible to be constrained
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by observational data. In summary, we can affirm that the novel features introduced by the
CSLIM model are indeed observable.
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Figure 4. The CMB TT anisotropy angular spectrum is presented for scheme I, together with the
reference model (dashed line) and Planck data points (with 1-σ error bars) in gray. Different values
of B are considered. For B ≃ 10−3 Mpc−1, the predicted spectrum at low multipoles and the height
of its first peak deviate significantly from the standard one. For values of the free parameter on the
order 10−5 Mpc−1, the CSLIM spectrum completely matches the reference model. An intermediate
value can be estimated to match observational data while preserving the unique features introduced
by the CSLIM.

3.4 Estimation of B parameter

We now propose to statistically estimate the value of the B parameter, introduced previously
in Eq. (2.28), in order to test whether the CSLIM model has the potential to raise any
observational feature that distinguishes it from the ΛCDM model.

Figure 7 shows how the CSLIM, with the B parameter, affects the scalar spectral index
ns, the amplitude ln(1010As) and nrun, which actually are the most affected parameters.
One of the schemes introduces also a slight deviation for Ωbh

2. In addition, the absolute
magnitude of the running of the spectral index |nrun| changes with respect to the reference
model. Table 2 depicts these differences quantitatively, and also shows the results of the
parameter estimation for B. The rest of the cosmological parameters yield similar results to
the reference model.

As seen in Fig. 7, the parameter space is constrained in various ways. Notably, different
k dependencies of λk can lead to correlations between parameters. For instance, in the case
where λk = λ0(k +Bk2), we observe correlations between ns and nrun.

From Fig. 7 and Table 2, we can partially conclude that the effect of adding the B
parameter of the CSLIM is to increase |nrun| in all three cases. Interestingly, scheme II, i.e.
λk = λ0(k+B/k) yields a very similar value of nrun as the reference model. This means that,
at least for this scheme of the CSLIM, the HFF could take the values ϵ1⋄ ≃ ϵ2⋄ ≃ 10−2 > ϵ3⋄,
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Figure 5. The CMB TT anisotropy angular spectrum is presented for scheme II, together with the
reference model (dashed line) and Planck data points (with 1-σ error bars) in gray. In this case,
significantly lower orders of magnitude for B are required to match the reference model. For the
values used in this example, a noticeable deviation is observed for l < 40. Although the variation of
parameter B in this scheme primarily influences the range in the spectrum that is measured with great
uncertainty, particularly within the cosmic variance region, it is still feasible to discern an impractical
range of values for the free parameter.

Parameter ΛCDM CSLIM I CSLIM II CSLIM III

ln(1010As) 3.050+0.016
−0.018 3.045± 0.017 3.047± 0.017 3.023+0.026

−0.023

ns 0.9636± 0.0047 0.9655± 0.0051 0.9633± 0.0047 0.931+0.027
−0.016

nrun −0.0059± 0.0067 −0.0108+0.0089
−0.0073 −0.0079± 0.0070 −0.025± 0.013

B – 8.6× 10−5 +1.8×10−5

−9.3×10−5 2.75× 10−8 +5.5×10−9

−2.8×10−8 < 0.766

Table 2. Estimation for nrun, ns and ln(1010As) in ΛCDM and the CSLIM using the three schemes
of Eq. (2.28), along with the B (in the appropriate units) parameter for each scheme. Mean value
estimations are reported together with an error corresponding to 68% confidence levels.

which is consistent with the hierarchy of the HFF. On the other hand, as we have mentioned
in the Introduction, these same values for the HFF could not be achieved in the standard
ΛCDM model because of the relations between ns, nrun and the tensor-to-scalar ratio r.

Finally, it is important to mention that the analysis we have presented included one
additional parameter than the ΛCDM model with running, that is, the B parameter of the
CSLIM. In the next section, we will consider a slightly different version of the analysis in
which the number of inflationary parameters will be the same in both models.
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Figure 6. The CMB TT anisotropy angular spectrum is presented for scheme III, together with the
reference model (dashed line) and Planck data points (with 1-σ error bars) in gray. Similar to the other
two schemes, the oscillatory features that were initially present in the primordial power spectrum are
lost. However, the deviation from the reference model at large l becomes crucial when constraining
the value of B with observational data.

4 Singling out the effects of the CSL inflationary model

In the introduction we have mentioned that a confirmed detection of the running of the
spectral index of order |nrun| ≃ 10−3, and lower bounds on the tensor-to-scalar ratio, e.g.
r ≲ 10−3 may jeopardize slow roll inflation due to a possible violation of the hierarchy of the
HFF. However, we argued that the CSLIM may introduce a similar effect as the running, in
the primordial power spectrum, through C(k) because of the B parameter.

In order to test our hypothesis further, we will perform a comparison between the
reference model (with and without running) and the CSLIM with nrun = 0. The motivation
for this analysis is twofold: first, we isolate the effect of nrun and C(k) in each model, and
second, we will have the same number of inflationary parameters in the reference model with
running and in the CSLIM with no running.

4.1 The effect of C(k)

In Eq. (3.1), we have obtained the modification of the standard prediction of Ps(k) up
to the second order in the HFF due to the incorporation of the CSL mechanism during
inflation. Therefore, to analyze the effect of the CSLIM, without considering the running of
the scalar spectral index, we compare a reference model with the three schemes in (2.28),
fixing nrun = 0. In Fig. 8, we display the parameters affected the most as a result of the
CSLIM. This demonstrates that the CSLIM introduces unique observational features, and
the magnitude of the effect, becomes influenced by the functional dependence of λk.

Next, we aim to explore whether the CSLIM without running, i.e., nrun = 0, can
reproduce the parameter estimations of the ΛCDM + running model. Figure 9 illustrates
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Figure 7. Comparison between parameter estimation in the reference model and the CSLIM using
the three schemes in Eq. (2.28). The 68% and 95% confidence level contours are plotted together
with the posterior probability. There is a difference in ns, As and nrun between the CSLIM and the
reference model, the rest of the cosmological parameters yield the same results as the reference model.

that schemes I and II are perfectly compatible with observational data. However, scheme III
exhibits a slightly different behavior in the estimation of ns, but we think that this variation
does not fundamentally invalidate our initial premise. These results seem to indicate that
the CSLIM can successfully fit the CMB data with nrun = 0, and simultaneously preserve
the hierarchy of the HFF. Additionally, in this case, we have employed the same number
of parameters as in the standard ΛCDM inflationary model. This latter described by the
usual set of parameters (Ωbh

2, Ωch
2, 100θMC , τ , ln(10

10As) and ns) plus the running of the
scalar spectral index, while our CSLIM model fixes nrun = 0 and includes B, which is direcly
associated to the collapse parameter λk.
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Figure 8. The effect of turning off the running of the scalar spectral index in both the reference
and the CSLIM. The 68% and 95% confidence level contours are plotted together with the posterior
probability. The three schemes presented in (2.28) are used.

The estimations for the parameter B in each case are shown in Table 3. The rest of the
cosmological parameters show a very slight difference with no statistical significance (which
is the case of τ and Ωbh

2) or no difference at all.

In order to intuitively understand the results in Table 3, we introduce the following
definitions: For scheme I, we define β1 ≡ B/k⋄; for scheme II, β2 ≡ B/k2⋄; and for scheme
III, β3 ≡ Bk⋄. We note that, unlike the B parameter, which has different dimensions in
each scheme, the βi’s (where i = 1, 2, 3) are completely dimensionless. Additionally, we have
introduced the pivot scale k⋄ in the definitions as a reference scale. We have shown in Sec. 3.2
that the form λk = λ0k possesses no distinguishable observational features from the standard
ΛCDM model. Therefore, the parameters βi quantitatively represent the departure from the
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Figure 9. Comparison between the three different schemes characterizing λk, all with nrun = 0, and
the reference ΛCDM model with non-vanishing running. The plot displays the posteriori probability
with 68% and 95% confidence level contours for Ωbh

2, τ , ln(1010As), and ns, which exhibit slight but
compatible deviations from the reference model. Other parameters that complement the cosmological
model show no difference at all.

simplest functional dependence. Using the values from Table 3, we find that β1 ≃ 7.3×10−4,
β2 ≃ 8× 10−6, and β3 < 6.5× 10−3. Consequently, scheme III allows for a larger departure
from λk = λ0k compared to the other two schemes, while scheme II is the most restrictive.

5 Conclusions

In this work, we have analyzed the previous theoretical calculations obtained from applying
the Continuous Spontaneous Localization (CSL) model (or simply collapse mechanism) to the
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Schemes B

λk = λ0(k +B) 3.67× 10−5 +9.2×10−6

−4.4×10−5

λk = λ0(k +B/k) 2.02× 10−8 +3.5×10−9

−2.0×10−8

λk = λ0(k +Bk2) < 0.131

Table 3. Mean and 68% limits for the estimation of B employing the three schemes characterizing λk

in (2.28). The free parameter of the CSLIM is estimated while considering no running of the spectral
index, along with the usual set of parameters in the ΛCDM cosmological model.

inflationary stage of the early Universe. For this purpose we have used the latest available
CMB observational data. The primary aim of the CSL inflationary model is to explain
the emergence of the cosmic seeds of large-scale structures. This is achieved purely by the
dynamics of the collapse mechanism, which modifies the initial state of the inflaton, namely,
the perfectly homogeneous and isotropic Bunch-Davies vacuum state. The breakdown of the
initial symmetries of the vacuum state occurs due to the evolution dictated by the modified
Schrödigner’s equation that is a central part of the CSL model. Thereby, addressing the
measurement problem of quantum mechanics in the cosmological context.

The primary motivation of this article was to investigate whether the predictions of
the CSL inflationary model, specifically concerning the primordial power spectrum at second
order in the Hubble Flow Functions (HFF), can offer potential solutions to emerging obser-
vational challenges that the standard cosmological model might not address adequately. In
particular, when considering the traditional slow roll inflationary model.

From the latest data of the Cosmic Microwave Background (CMB) provided by the
Planck collaboration, recent estimations suggest that the first logarithmic derivative of the
scalar spectral index ns (with respect to k), or “running” of the spectral index nrun, is con-
sistent with a value of zero. However, the estimated value of the running is not precisely
centered around zero, indicating that non-zero values might be favored in the future as more
precise measurements and experiments become available.

At first glance, this may seem to imply that an additional parameter, nrun, needs to be
added to the ΛCDM model. However, if the absence of a confirmed detection of primordial
gravitational waves persists and the bounds on the tensor-to-scalar ratio r are lowered, then
it could also indicate that the hierarchy of the HFF would be disrupted, which could pose
a potential challenge for the standard slow roll inflationary paradigm [64]. This is mainly
because in traditional slow-roll inflation, the spectral index ns = 1− 2ϵ1⋄ − ϵ2⋄, the running
of the spectral index nrun = −2ϵ1⋄ϵ2⋄ − ϵ2⋄ϵ3⋄, and the tensor-to-scalar ratio r = 16ϵ1⋄ are
related in a very specific manner: nrun = (ns− 1+ r/8)(r/8+ ϵ3⋄). Currently, measurements
of the spectral index are narrowly constrained [18], yielding |ns − 1| ≃ 10−2. Therefore, if r
remains low enough to be undetected and future measurements of the running spectral index
establish |nrun| ≃ 10−3 [60, 62], it would constrain ϵ3⋄ ≃ 10−1. This, in turn, implies that
|ϵ1⋄| < |ϵ2⋄| < |ϵ3⋄|, hence disrupting the hieararchy of the HFF.

On the other hand, in the CSL inflationary model, the predicted value of r is generically
small13, approximately r ≃ 10−7ϵ21⋄ [54, 66]. This means that a value of ϵ1⋄ ≃ 10−2 is

13This prediction is derived from the CSL collapse mechanism combined with the semiclassical gravity
framework. Physically, the model requires a source for the so-called tensor modes; this source is at the second
order in the scalar perturbations of the inflaton. This contrasts with the standard paradigm in which the
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compatible with a very small r (in contrast with the traditional picture). The predictions for
the other two inflationary parameters, ns and nrun, remain the same as in standard slow-roll
inflation but are decoupled from r, unlike the standard prediction. Additionally, in our model,
current observational bounds on ns are also consistent with ϵ2⋄ ≲ ϵ1⋄. Another important
feature of our model is that the familiar form of the primordial power spectrum is modified by
an additional factor C(k), which encodes information about the collapse mechanism through
the parameter λk, as seen in Eq. (3.3). The main goal of this article was to analyze whether
all these elements of the CSL inflationary model can be useful in addressing the potential
challenges described in the previous paragraph. Specifically, we investigated whether the
effect of the “running” of the spectral index could be mimicked by the function C(k) while
maintaining the hierarchy of the HFF, namely |ϵ1⋄| > |ϵ2⋄| > |ϵ3⋄|.

To achieve our objective, we conducted a comprehensive analysis by comparing the the-
oretical predictions of our model with observational data. To do this, we performed a series of
Markov–Monte Carlo chains for cosmological parameter estimation, adapting the cosmomc
and camb source codes accordingly. Moreover, we considered three different functional forms
of λk, which we called “schemes”, see Eq. (2.28). We have also considered a reference model
based on the standard ΛCDM cosmological model. The results of this comparison between
the reference and our modified model, which includes the nrun parameter, demonstrate a
high degree of compatibility with current observational data, see Fig. 7.

In the last part of our analysis, we conducted a comparison between the reference
ΛCDM cosmological model, which includes the nrun parameter, and our CSL inflationary
model with nrun = 0. By setting nrun = 0 in our model, we isolated the effects of the collapse
mechanism that could mimic a “running”, while also ensuring that both models have an
equal number of inflationary parameters. Specifically, the reference model includes a running
index nrun in addition to the spectrum’s amplitude As and spectral index ns to characterize
the primordial power spectra. In contrast, our CSL inflationary model –with no running–
achieves an equally good fit to observations using the same number of parameters, but in
this case, we have As, ns, and B, where the latter is directly associated with the collapse
parameter λk. We performed this analysis for the three schemes characterizing λk shown in
Eq. (2.28). The results obtained suggest that the CSL inflationary model can successfully
accommodate the CMB data with nrun = 0, while maintaining the hierarchy of HFF, see Fig
9. Future measurements of the CMB with increased precision will be crucial in strengthening
the validity of our results. Furthermore, our study demonstrates that addressing the quantum
measurement problem in cosmology leads to direct observational consequences.
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tensor modes are directly quantized, and no source is needed for their generation[54, 66].
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[1] A. Friedmann, Über die Krümmung des Raumes, Zeitschrift fur Physik 10 (Jan., 1922) 377–386.

[2] A. Einstein and W. de Sitter, On the relation between the expansion and the mean density of
the universe, Proceedings of the National Academy of Sciences 18 (1932), no. 3 213–214,
[https://www.pnas.org/doi/pdf/10.1073/pnas.18.3.213].

[3] W. de Sitter, Some further computations regarding nonstatic universes, ”Bull. Astron. Inst.
Netherlands” 6 (Aug., 1931) 141.

[4] E. Hubble, A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae,
Proceedings of the National Academy of Science 15 (Mar., 1929) 168–173.
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[70] P. Cañate, E. Ramirez, and D. Sudarsky, Semiclassical Self Consistent Treatment of the
Emergence of Seeds of Cosmic Structure. The second order construction, JCAP 1808 (2018)
043, [arXiv:1802.0223].
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[78] M. Toroš and A. Bassi, Bounds on quantum collapse models from matter-wave interferometry:
calculational details, J. Phys. A 51 (2018), no. 11 115302, [arXiv:1601.0293].

– 29 –

http://arxiv.org/abs/2112.1092
http://arxiv.org/abs/1502.0211
http://arxiv.org/abs/2212.0411
http://arxiv.org/abs/astro-ph/9408015
http://arxiv.org/abs/1710.0840
http://arxiv.org/abs/2006.0309
http://arxiv.org/abs/1509.0839
http://arxiv.org/abs/astro-ph/0106020
http://arxiv.org/abs/hep-ph/0403129
http://arxiv.org/abs/1108.4928
http://arxiv.org/abs/1802.0223
http://arxiv.org/abs/1708.0937
http://arxiv.org/abs/1907.0996
http://arxiv.org/abs/1003.5950
http://arxiv.org/abs/1406.4898
http://arxiv.org/abs/1408.3062
http://arxiv.org/abs/1710.0197
http://arxiv.org/abs/1601.0293


[79] M. Carlesso, A. Bassi, P. Falferi, and A. Vinante, Experimental bounds on collapse models from
gravitational wave detectors, Phys. Rev. D 94 (2016), no. 12 124036, [arXiv:1606.0458].

[80] A. Tilloy and T. M. Stace, Neutron star heating constraints on wave-function collapse models,
Phys. Rev. Lett. 123 (2019), no. 8 080402, [arXiv:1901.0547].

[81] A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed
FRW models, Astrophys. J. 538 (2000) 473–476, [astro-ph/9911177].

[82] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo
approach, Physical Review D 66 (Nov., 2002) 103511, [astro-ph/0205436].

[83] Planck Collaboration, Planck 2018 results. V. CMB power spectra and likelihoods, ”A&A” 641
(Sept., 2020) A5, [arXiv:1907.1287].

[84] S. Weinberg, Cosmology. New York: Oxford University Press, 2008.

[85] D. Goldberg, What every computer scientist should know about floating-point arithmetic., ACM
Comput. Surv. 23 (1991), no. 1 5–48. corrigendum: ACM Computing Surveys 23(3): 413
(1991), comments: ACM Computing Surveys 24(2): 319 (1992).

– 30 –

http://arxiv.org/abs/1606.0458
http://arxiv.org/abs/1901.0547
http://arxiv.org/abs/astro-ph/9911177
http://arxiv.org/abs/astro-ph/0205436
http://arxiv.org/abs/1907.1287

	Introduction
	The CSL inflationary model
	Slow roll model
	Primordial Power Spectrum
	Quantization
	CSL in the inflationary context
	Parameterization of k

	Observational Constraints
	Primordial Power Spectrum
	Reference model
	Primordial Power Spectrum Analysis
	Estimation of B parameter

	Singling out the effects of the CSL inflationary model
	The effect of C(k)

	Conclusions

