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Resumo: Com base em alguns resultados de jogos TU não balanceados (jogos com utilidades 
transferíveis) propomos um novo procedimento para obter designações ótimas para o jogo 
de designação de Shapley and Shubik (1972). O método possui alguns aspectos particulares 
que permite obter um algoritmo comparável altamente competitivo. O elemento principal 
para desenvolver este esquema é a forte relação entre alguns ciclos de pré-imputação, os 
quais aparecem em conexão com jogos não balanceados e os casamentos associados a 
designações ótimas.  Nesta nota relacionamos as soluções de um jogo de designação com 
alguns tipos de ciclos utilizados previamente para caracterizar jogos TU não balanceados. 
Esta relação é logo utilizada para desenvolver um método prático para computar soluções 
de jogos de designação com um novo tratamento 

Palavras - chaves: Jogos não balanceados, ciclos.

Abstract: Based on some recent results about non-balanced -games (games with transfer-
able utilities) we propose a new procedure to get optimal assignments for the assignment 
game of Shapley and Shubik (1972). The method exhibits some particular features that 
could be exploited to obtain a highly parallelizable competitive algorithm. The key fact to 
develop the scheme is a strong relationship between some cycles of pre-imputation which 
appear in connection with non-balanced games, and the matching associated to optimal 
assignments. In this note we relate the solutions of an assignment game with some kind of 
cycles used previously to characterize non-balanced -games. This relationship is then 
used to develop a practical method to compute solutions of the assignment game with an 
approach which seems to be new.
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1. Introduction

The assignment game (Shapley and 
Shubik (1972)) is a two sided market where 
the agents are buyers and sellers and one 
good is present in indivisible units. Each 
seller owns a unit of the indivisible good 
and each buyer needs exactly one unit. 
Differentiation on the units is allowed and 
therefore a buyer might place different valua-
tions on the units of different sellers. Besides 
the original paper, the reader is referred to 
Roth and Sotomayor (1990) for a general 
presentation. 

Under the assumption that side 
payments among agents are allowed, and 
identifying utility with money, Shapley and 
Shubik (1972) proved that the core of the 
assignment game (that is to say the set of 
effi cient outcomes that no coalition can im-
prove upon, and which is a game-theoretic 
concept) is always non-empty and can be 
identifi ed with the set of stable outcomes, 
which is a solution set based upon a linear 
programing formulation of the model. Sev-
eral of the algorithm designed to compute 
points in the core of the assignment game 
have been developed from this latter ap-
proach. With a different auction flavor, 
Demange et al. (1986) presented another 
competitive procedure related to the as-
signment model embodied in the theory of 
general equilibrium theory. On the other 
hand, some very appealing transfer schemes 
has been introduced to compute point in the 
core of an -person game with transferable 
utility ( -game), for instance, those appear-
ing in Wu (1977), Sengupta and Sengupta 
(1996) and Cesco (1998). 

The main purpose of this paper is to 
lay down the fundamentals for developing 
an alternative procedure for computing 
optimal assignments by studying how a 
transfer scheme like that introduced in 
Cesco (1998) behaves in the framework 
of assignment games. That algorithm has 
proven to converge to a core imputation 
when the core of the game is non-empty 
(balanced game) and, in the case of non-bal-
anced games, it approximates limit cycles of 
pre-imputations. Furthermore, each of these 
limit cycles has always associated a family 
of balanced coalitions (Cesco (2003)). This 

observation is the key fact in developing 
our algorithm. For instance, it allows us to 
restrict ourselves to run the algorithm by 
considering only the 1-player coalitions and 
2-player coalitions containing one player of 
each type (buyer or seller), thus reducing the 
computational effort greatly, and making the 
proposal competitive. This is not a surprising 
fact however since the assignment game is 
a partitioning game (Kaneko and Wooders 
(1982)) in which the 2-person coalitions 
containing one player of each type, are 
the only playing an essential role. A graph 
theoretic approach to partitioning games is 
presented in Le Breton et al. (1992) and in 
Boros et al. (1995) among others. 

In this note we show that, given an as-
signment game, an appropriate modifi cation 
of the value of the grand coalition makes the 
modifi ed game non-balanced, and then, the 
transfer scheme developed in Cesco (1998) 
can be applied to get limit cycles of imputa-
tions whose associated family of coalitions 
are a minimal balanced. An iteration proce-
dure is used to reach a minimal balanced 
family having maximal worth, a key fact 
since such a family is always associated to 
an optimal assignment. 

The note is organized as follows. 
Preliminaries about cycles in -games 
and some notation are set forth in the next 
section. Assignment games and some well-
known facts about them are stated in Section 
2. In Section 3 we present the algorithm and 
prove several basic facts. In the last section 
we elaborate some conclusions and set forth 
some open issues. We include an Appendix 
with numerical examples showing different 
features of the procedure presented in this 
note. 
2. Preliminaries

A -game is a pair (N,v) where 

{ }1 2N n= , ,...,  represents the set of players and 
 the characteristic function. We assume 

that  is a real valued function defi ned on 
the family of subsets of N,P(N) satisfying 

 We will also assume that  
for each  (0-normalization) although 
this will represent no restriction at all since 
the concepts we study in this note are in-
variant under this type of transformations 
(invariance under strategic equivalence). The 
elements in  are called coalitions. 
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The  se t  o f  pre- imputat ions  i s 
 and the set 

of imputations is  
Given a coalition  and a pre-

imputation , the excess of the coalition 
 with respect to  is 

where  if  and 0 other-
wise. The excess of a coalition  represents 
the aggregate gain (or loss, if negative) of its 
members if they depart from an agreement 
that yields  in order to form their own 
coalition. The core of a game  is defi ned 
by . 

The core of a game may be an empty 
set. The Shapley-Bondareva theorem (Bonda-
reva (1963), Shapley (1967)) characterizes 
the subclass of -games with non-empty 
core. A central role is played by balanced 
families of coalitions. A family  
of non-empty coalitions is balanced if there 
exists a set of positive real numbers  
a set of balancing weights, satisfying , 
for all .  is minimal balanced if there 
is no proper balanced subfamily of it. In this 
case, the set of balancing weights is unique. 
A well-known result establishes that 

                        (2.1) 
for any balanced family of coalitions . 
Given a coalition   denotes its 
characteristic vector which is defi ned by 

 if  and  if  If  
is a minimal balanced family of coalitions, 
the set of characteristic vectors (  is 
linearly independent. 

A game  is called balanced if
                      (2.2)

for all balanced family  with balancing 
weights . Shapley- Bondareva’s theo-
rem states that a game  has non-empty 
core if and only if it is balanced. 

An objectionable family is a balanced 
family not satisfying (2.2). For a clear ex-
position of the concepts and results about 
cooperative -games used in this note, the 
reader is referred to the recent book of Peleg 
and Sudhölter (2003). 

In what follows, the notion of -
transfer will play a central role. Given  
and a proper coalition we say that  
results from  by the -transfer from  
to  (shortly,  is a -transfer from  if 

            (2.3)
with  Here  

if  is a proper coalition and the zero vector 
of  otherwise. As usual,  stands for 
the number of players in . The vector  
describes a uniform transfer of one unit 
of utility from the members of  to the 
members of  The -transfer is maximal if 

 for all .
We now introduce some kinds of 

cycles of pre-imputations and state, without 
proof, several results proved in Cesco and 
Aguirre (2002) and Cesco (2003). 

A cycle c in a -game  is a fi nite 
sequence of pre-imputations  
such that there exist associated sequences of 
positive real numbers  and  of 
non-empty, proper coalitions of  (not neces-
sarily all different) satisfying the neighboring 
transfer properties 

 (2.4)
and 

                               (2.5)
as well. 

A cycle is fundamental if  
for all  

A cycle is a -cycle if  
for all  

A -cycle  is maximal if for 
all  is a maximal -transfer 
from  namely, if  for all 

.
Given a cycle  we denote the 

vector of coalitions  by supp(c). {Let 
 for some entry of supp(c)}. 

Sometimes we will refer to supp(c) as the 
family of coalitions supporting c. Besides, 
we refer to the entries of the vector  
as the transfer amounts.

In Cesco (2003, Theorem 1) we proved 
that  the family supporting a cycle of pre-
imputations c, is a balanced family of coalitions 
for every fundamental cycle c. We also showed 
there that the existence of a fundamental cycle 
implies the non-balancedness of the game 
and that every non-balanced -game has a 
fundamental cycle (Cesco (2003, Theorem 3 
and Theorem 9)). These two results together 
provide a characterization for non-balanced 

-games (i.e., games with empty core) in 
terms of fundamental cycles. Later, in Cesco 
(2006, Theorem 6) that result was improved 
in the sense that a similar characterization was 
obtained in terms of the more restricted class 
of -cycles. Indeed, it holds the following 
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Proposition 1 Let  be a -game and 
 a minimal objectionable 

family of coalitions. Then there exists a 
-cycle of pre-imputations  such that

              (2.6)
for all  
Remark 1 Proposition 1 implies that, with 
every ordering of the coalitions in , there 
exists a -cycle whose pre-imputations share 
the same cyclic ordering as the coalitions in 

. These cycles are not, in general, maximal 
-cycles (see Cesco (2006, Appendix)). 

Related to the -transfers given by 
(2.3) there exists a transfer scheme originally 
designed to converge to a point in the core of 
a balanced -game. A maximal -transfer 
schemes (Cesco (1998)) is a sequence  
of pre-imputations such that, for all 
,  is a maximal -transfer from  A 
maximal transfer scheme converges if and 
only if the core of the game is non-empty 
(Cesco 1998, Proposition 3.1). An algorithm 
for computing maximal transfer schemes 
has been implemented and, when applied 
to non-balanced games, the sequences of 
pre-imputations generated always have had 
a maximal -cycle as a limit cycle. However, 
there is no general proof of this fact. 

-transfer schemes are strongly con-
nected to a class of transfer schemes studied 
in Wu (1977). It also has close similarities 
with the scheme developed in Sengupta and 
Sengupta (1996). However, while the latter 
reaches a point in the core of a balanced 
game in a fi nite number of steps (see also 
Koczy (2004)), Wu’s procedures and ours 
usually generate an infi nite sequence of point 
converging to an imputation in the core. The 
fact that Sengupta’s scheme always generates 
imputations and ours only pre-imputations 
establishes another important difference. 

3. The assignment game

Assignment games were fi rst intro-
duced in Shapley and Shubik (1972), and 
since then, they have been extensively 
studied. The book of Roth and Sotomayor 
(1990) contains a very good presentation of 
the main results related to this model. Here 
we give a very concise exposition of the facts 
which we are going to use later. 

An assignment game is an ( -person 
-game where the set of players is divided 

into two disjoint sets  and  with cardinal-
ity  and  respectively. We will consider 

 and  It is as-
sumed that, with each possible partnership 

 there is associated a non-nega-
tive number  Then, the characteristic 
function  for the game is given by 

 
                                                           (3.1)

          
(3.2)

For any other non-empty coalition  
      (3.3)

with the maximum to be taken over all sets 
 of  distinct pairs in 

 containing  distinct play-
ers. It is clear that  We 
will denote an assignment game by  
where  is an  matrix whose entries 
are  in the understanding 
that the characteristic function is constructed 
according to the rules stated in (3.1), (3.2) 
and (3.3).

Related to an assignment game 
 there is the linear program  

  
subject to 

 for all  

 for all  

 for all  
In the sequel we will restrict ourselves 

to the case  

Remark 2 It is well-known that this linear 
program has extremal solutions involving 
only 0-1 entries (see Dantzig (1963)). It is 
well-known too that any extreme solution 

 of  and  can be identifi ed with a 
matching between the players in  and those 
in  Sometimes, some players can remain 
alone. We will denote by  the family of 
1 and 2-person coalitions representing that 
matching. Conversely, given a partition  
of  included in   will stand for 
the corresponding solution of  and  
given by:  if  and  
if  

A feasible assignment for  is an 
integer matrix  satisfying  
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and  above, while any solution of  is an 
optimal assignment. 

The dual linear program of  is  
defi ned as 

  
subject, for all  to 

 

 

Since the primal program  has a 
solution, so does  Moreover, the fun-
damental theorem of linear programming 
asserts that, if  is an optimal assign-
ment and  is a solution of , then 

The pair of vectors  
is a feasible payoff for the game  if 
there is a feasible assignment  such that 

. In this case we say 
that  and  are compatible, and we 
call  a feasible outcome. A feasible 
payoff is stable if it satisfi es  and  above. 
It is easy to see that the set of stable payoffs 
is a subset of the set  of imputations for 

 On the other side, the core of the 
assignment game is

The following result relating stable 
payoffs and points in the core of an assign-
ment game is due to Shapley and Shubik 
(1972, Theorem 2). 

Proposition 2 Let 
 
be an assign-

ment game. Then 
 the set of stable payoffs and the core 

of the game are the same. 
 The core of  is the (non-

empty) set of solutions of .
This result implies that  is a 

balanced game. 

4. A new computational approach

The core concept of solution has 
been studied in the framework of restricted 
games in many directions. One suitable for 
the purposes of this note is that presented in 
Boros et al. (1997) which we present briefl y 
here. Let  be a -game and  be a 
nonempty family of coalitions (the set of 

essential coalitions). For further references, 
any subfamily  will be called, a 
-family of coalitions. The -core of  is 
defi ned by 

(4.1)
A characterization theorem similar 

to Shapley-Bondareva’s result also holds for 
the  and it is due to Gurvich and 
Vasin (1977). 

Proposition 3 The core  is non-
empty if and only if for any (minimal) 
balanced -family of coalitions , the in-
equality (2.2) holds for any set of balancing 
weights  for  

In the case of an assignment game 
, let us consider the family 

 

(4.2)
 consists of the unitary coalitions, the 2-

player coalitions with one player of the type 
 and one of the type , and the grand 

coalition .
The following result states a strong 

relationship between the set of stable payoffs 
and the core  whose proof is in fact, 
included in the proof of Proposition 2. 

Theorem 4 Let  be an assignment 
game. Then, the set of stable payoffs coin-
cides with  
Proof Let  be a stable payoff. As we 
mentioned at the end of Section 3,  
should be an imputation and thus 

                   (4.3)
and 

                          (4.4)
for all 

 
Moreover, from the stabil-

ity conditions we get that 
                     (4.5)

for all  Relationships (4.3), (4.4) 
and (4.5) together imply that  
for all  with  as well. 
Therefore,  

To see the converse, if  
and since  then (4.3) holds. Thus, 
((u, v); x) is a feasible outcome for any op-
timal solution x of  and consequently, (u, 
w) is a feasible payoff. On the other side, the 
inequalitie ( ( )) 0e S u w, , ≤  for all  imply 
the stability conditions (4.4) and (4.5).
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We would like to stress on the 
fact that, whenever  is given by (4.2), 

 
We now defi ne a -maximal -trans-

fer scheme inductively by:  and, 
given ,

where  is chosen arbitrarily from the set 
 for all  

Then, the following convergence result has a 
proof similar to that of Cesco (1998, Proposi-
tion 3.1 and Theorem 3.5) .
Theorem 5 Let  and  the family 
of coalitions defi ned by (4.2). Then, a 
-maximal -transfer scheme converges to 
a point in  if and only if  is 
nonempty. 
Remark 3 If  is empty, then the al-
gorithm does not converge at all. However, it 
has been observed numerically, that it always 
approximates to a limit cycle c with  
being a minimal balanced -subfamily of 
coalitions. The -algorithm not only pro-
vides c and  but also the set of balancing 
weights  for .

Given a balanced family of coali-
tions  and a set of balancing weights 

 the worth of  with respect 
to  is  If  is minimal 
balanced, and thus having a unique set of 
balanced weights,  will be denoted 

 only. 
Theorem 5 is the key to develop a 

theoretic iterative algorithm to compute a 
point in  and therefore, a dual solu-
tion for . However, this approach has the 
drawback of requiring the value  
which should be obtained by solving an 
optimization problem of the form (3.3) 
providing a dual solution while we need a 
primal one. To overcome these diffi culties, 
we will modify slightly the approach tak-
ing into account the observation stated in 
Remark 3 and we will present our proposal 
in the form of a pseudo-code. For simplicity, 
we will assume that the diagonal of α has at 
least one non-zero entry. Given an assign-
ment game (P, Q, α) and a real number V, 
let us call the V-modifi ed assignment a game 
having the same characteristic function as (P, 
Q, α), but with V as the worth of the grand 

coalition .
Step 1 Set   

Step 2 Run the -algorithm for the 
modifi ed -modifi ed assignment game. If 
convergence is achieved,  if  
for all  and  otherwise, is an 
optimal solution for .If not, let  
be a limit cycle with supp

 
 

and  be the set of balancing 
weights. 

Step 3 Compute  
Step 4 Set   
Step 5 Run the -algorithm for the 

-modifi ed assignment game. If the algo-
rithm reaches a point in the core,  is 
a matching such that  is an optimal 
solution for  and  is the value of 
the original assignment game  Other-
wise, the algorithm provide a new limit cycle 

 with a new supporting family of 
coalitions and a new set of balancing weights 

. Then, go to Step 3. 
This algorithm ends in a fi nite number 

of iterations because the worth of the families 
generated in Step 5 (provided they are mini-
mal balanced) form an increasing sequence, 
and there is only a fi nite number of these 
families. The stopping rule in Steps 5 (and 
in Step 2 too) is based on Theorem 7 proved 
below, and the fact that, if convergence is 
achieved, the -modifi ed assignment auxil-
iary game is balanced with   (V = 

 which implies that the supporting 
family of c ({ }) is bal-
anced with maximal worth. 

Finding minimal balanced families of 
coalitions is a key point in the framework 
of assignment games, mainly because of the 
following results. 

Theorem 6 Let be an assignment game 
 Then there is a one-to-one corre-

spondence between the minimal balanced 
-subfamilies of coalitions different from    

{ } and the extreme assignments of 
 and . 

Proof In their seminal paper, Shapley and 
Shubik (1972) showed that any assignment 
game  has an optimal assignment and, 
furthermore, that its core is non-empty. This 
result along with Theorem 2.7 in Kaneko 
Wooders (1982) allows us to claim that the 
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only minimal balanced -families of coali-
tions are the -partitions of . Now, 
since the family  associated with an ex-
treme solution of the set of restriction 

 
and .for  defi nes an assignment,  is 

-partition of , which is always a minimal 
balanced -family of coalitions. On the other 
hand, given a minimal balanced -family of 
coalitions , different from  which is a 

-partition of  the vector  associated 
to  is clearly an extreme point of the set of 
restrictions  and . 
Remark 4 The aforementioned result of 
Shapley and Shubik was proven by using a 
well-known Birkoff’s result about the extre-
mal points of the set of doubly stochastic ma-
trices (see Remark 3). A graph theoretic proof 
of the claim that the only minimal balanced 

-subfamilies of  are the partitions is given 
in Le Breton et al. (1992). A direct proof of 
that claim is included in Cesco (2007) and 
will be presented elsewhere. 

Theorem 7 Let  be a minimal balanced 
-subfamily of coalitions different from { } 
having maximal worth. Then,  is a solution 
of the linear program . Conversely, if  is an 
extreme solution of  then  is a minimal 
balanced subfamily different from { } hav-
ing maximal worth. 
Proof Let  be a minimal subfam-
ily of  having maximal worth, and  its 
associated feasible solution of .We fi rst note 
that the worth of ,
 

If  has maximal worth, it follows that 
 for any other 

minimal balanced subfamily  
of  But this implies that , which is 
an extreme point of the polyhedron  
and  of restrictions for ,has a maximal 
objective value among all the other extreme 
points. So, it is an optimal solution for . 
Reversing the former arguments, we prove 
the converse. 

5. Conclusions

We close this note with several com-
ments. First we point out that we have not 
intended to write a completely formal math-

ematical paper but, instead, to put forward 
several facts and some experience gathered 
from numerical experiments in order to 
propose a potentially good procedure to 
compute optimal solutions in the assignment 
game, from a point of view which seem to be 
new. However, a lot of work has to be done 
yet to get a really competitive algorithm. In 
Step 5 (as well as in Step 2) there is no formal 
proof, in general, that the support of the limit 
cycle is a minimal balanced family. Certainly 
it is a balanced family of coalitions and by 
solving a reduced linear program it is pos-
sible to extract a minimal balanced subfamily. 
As we stated in Remark 3, we have always 
found out that the support of the limit cycle 
is a minimal balanced family and, in the 
some games having some strong symmetric 
characteristics, we have been able to prove 
this fact formally. We conjecture that this is 
always true, but until this result is gotten, 
a subroutine to detect if the support of the 
limit cycle is minimal balanced should be 
included to fi nd out if the routine to extract 
a minimal balanced subfamily has to be 
run or not. The main theoretic weakness of 
the algorithm described in Section 4 is that 
there is no general proof about the ending or 
’convergence’ of the  -algorithm to a limit 
cycle. As it, this is still an open question. 
However we mention two facts that encour-
age our research. It has been proved that the 
algorithm presented in Cesco (1998) and, in 
particular, the -algorithm, always generates 
bounded sequences of pre-imputations (see 
for instance, Cesco and Calí (2003)) which 
support the numerical approximation to the 
limit cycles observed in all the examples we 
have tried out. This result allows us to get 
-maximal -cycles in the sense that for every 

 we can fi nd a sequence of maximal 
-transfers  such that 

 For many of the practical 
needs, this -cycles seem to be appropri-
ate. Result regarding these cycles will be 
presented elsewhere. The second fact is that 
we have proved approximation results of the 

-algorithm to maximal limit cycles (Cesco 
and Calí 2004) although for a different class 

 of essential coalitions than that related to 
the assignment games. We expect to extend 
the proof to different or more general cases, 
including the one concerning us here. 
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Another point worth to be mentioned 
is that, if convergence is not achieved in Step 
2, the supporting family of the limit cycle 
obtained instead, not necessarily has to have 
maximal worth. However, if this were the 
case, there would be no need to perform the 
iterations between Steps 3 and 5. To get cycles 
with this desirable property, the initial value 

 (which we arbitrarily set as  
should be large enough. 

Finally, we would like to point out 
that, in each iteration of the -algorithm 
performed in Step 5, the main computational 
effort is done in making the, at most,  
comparisons between excesses; this number 
usually is reduced to, at most,  near the 
end of the iteration. On the other hand, this 
part of the algorithm is highly parallelizable. 
These two facts together could be the key 
facts to obtain very effi cient implementations 
for this procedure. 

6. Appendix

In this Appendix we wil l  use 

the ass ignment  game  wi th 

 a n d   

from Shapley and Shubik 

(1972) to illustrate some characteristics of 

the procedure developed here. 
Example 1: This fi rst example shows that if 
the initial value  in Step 1 of the algorithm 
of Section 4 is not set large enough, it may be 
necessary to run the iterations between Step 3 
and Step 5. Let us start with  instead 
of the suggested initial value  which 
could be, anyway, not large enough. 

The auxiliary -algorithm used in Step 
2 also requires an initial pre-imputation to 
start. For some starting points, like 
 

for instance, which was a random selection, 
the limit cycle c obtained as a result has 

which defi nes an op-

timal assignment with . But, if 

which is another random selection for the 
starting point of the -algorithm, the limit 
cycle c obtained has  
with  and thus, it does not 
defi ne an optimal assignment. Now, mod-
ifying the value  to 14 as indicated 
in Step 4 and running the -algorithm 
again, we always obtain limit cycles c with 

 defi ning the unique 
optimal assignment for the game. 
Example 2: Here we illustrate the algorithm 
whenever it converges to a core point of the 
assignment game just in Step 2. This happens 
when the initial value  coincides with the 
value of the grand coalition  in the 
assignment game . Thus, let us put 

 in Step 1. Starting the -algorithm in 
Step 2 from the initial pre-imputation 

 
,

it converges to the imputation 

 

which is a core point. This core point defi nes 
an optimal solution for the linear program 

 and in this case it is easy to fi nd out the 
optimal assignment that it defi nes since, 
given an imputation  in the core of the 
assignment game  each coalition 

 defi ning the optimal assignment related 
to  must have  Here, the only 
coalitions with zero excess are  and 

 But, in general, given a core point for 
the assignment game, other coalitions aside 
from those in an optimal assignment may 
have zero excess with respect to that imputa-
tion as well. This is the case if, in the example 
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we are working here, the starting point for 
the -algorithm is, for instance 

 
.

Then, the core point reached is 
 

and besides  and , coalitions 
 and  also have zero excess with re-

spect to .Thus, an additional procedure has 
to be designed to construct the assignment 
related to a core imputation. However, this 
is avoided if the starting value  
is chosen as indicated in Step 1 whenever 
it is possible.This selection, as well as any 
other of the form   being a 
permutation of the set  guarantees that 

 and in the case that the equality 
holds, it also guarantees that the -algorithm 
converges to a core point in Step 2 and that 
the family of coalitions  
( ) has maximal 
worth and that it defi nes an optimal assign-
ment, although it may be not the only one. 

We close by showing some statistics re-
garding the claim made at the end of Section 
5. We run a very preliminary version of the 

-algorithm on 30 problems with  
with data randomly generated. We recorded 
the number of iterations for the -algorithm 
up to convergence is achieved, with an ap-
proximation error of  as well as the 
type of limit found (cycle or core point). 
We also recorded the iteration number from 
which a set of coalitions start to appear in 
a cyclic order up to convergence to a limit 
cycle or, in the case that the convergence is 
to a core point, when a reduced group of 
coalitions repeat itself up to convergence. 
The next table shows the averages for these 
quantities. Maximum and minimum values 
are also showed in parenthesis. 

Conv.to a
No. Iter. (Max/

Min)

Cyclic rep-
etition (Max/

Min)

Cycle 24 31.33 (34/18) 3.75 (11/1)

Core point 6 111.83 (337/18) 11 (45/1)

Although this is a very small numerical 
experience, some conclusions can be gath-
ered from it. Convergence to a limit cycle 
is much faster than to a core point, and the 
number of iterations is consistently almost 
the same. We believe that a rate of conver-
gence could be derived, depending only on 
the number of players, from a geometric 
point of view, in a similar way than it was 
done for the general case of three person 
games in Cesco and Cali (2008). It is also 
interesting to note that the cyclic behavior 
of the coalitions in the limit cycle appears 
at the very early stages of the -algorithm. 
Thus, effi cient techniques to detect cycles of 
coalitions as well as to approximate the worth 
of the families that they determine could 
improve substantially the performance of this 
auxiliary step of the method. In the case that 
the convergence is to a core point, we note 
that, since the -algorithm is an alternanting 
projection method, techniques to accelerate 
the convergence could be employed to take 
advantage of the reduced number of coali-
tions that appears in the tail of the sequences 
of coalitions related generated by each run of 
the -algorithm. 
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