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A B S T R A C T 

The evolution of exoplanetary systems with a close-in planet is ruled by the tides mutually raised on the two bodies and by the 
magnetic braking of the host star. This paper deals with consequences of this evolution and some features that can be observed in 

the distribution of the systems’ two main periods: the orbital period and the stars rotational period. The results of the simulations 
are compared to plots showing both periods as determined from the light curves of a large number of Kepler objects of interest. 
These plots show important irregularities as a dearth of systems in some regions and accumulations of hot Jupiters in others. 
It is shown that the accumulation of short-period hot Jupiters around stars with rotation periods close to 25 d results from the 
evolution of the systems under the joint action of tides and braking, and requires a relaxation factor for Solar-type stars of around 

10 s −1 . 
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1

O  

s  

o  

b  

c  

V  

i  

e  

c  

i
 

t  

a  

o  

F  

p  

o  

m  

p  

i  

e  

a
 

fi  

o  

o  

p  

i  

w  

s  

�

s  

o  

s  

T  

f  

c
 

c  

l  

l  

d  

e
 

p  

R  

o  

o  

(  

w  

(  

t  

p  

c  

c  

p
 

P  

m  

w  

(  

c  

r  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/4/5220/7198123 by U
N

IVER
SID

AD
 D

E C
O

R
D

O
BA user on 27 June 2023
 I N T RO D U C T I O N  

ne difficulty faced by tidal evolution theories is the extremely
low time-scale of these phenomena and the almost impossibility
f observing them at work. So far, tidal infall rates have only
een estimated for two exoplanets: WASP-12b (29 ± 2 ms yr −1 ,
f. Yee et al. 2020 ) and Kepler-1658b (131 ± 20 ms yr −1 , cf.
issapragada et al. 2022 ), both obtained from analysing variations

n the orbital period of the planet. For all other systems, tidal
volution must be deduced indirectly from present-day dynami-
al structures that may have been generated or affected by tidal
nteractions. 

Together with magnetic braking, the transfer of angular momen-
um from the companion orbit to the rotation of the host star plays
n important role in defining the rotational and orbital evolution
f the system (e.g. Bolmont et al. 2012 ; Teitler & K ̈onigl 2014 ;
erraz-Mello et al. 2015 ). Key elements in this case are the physical
arameters of the star and of the planetary companion, and the age
f the system – one important datum of difficult determination. We
ay also use our knowledge of the distribution of some physical

arameters to infer some properties of the tidal models. One example
s the analysis done by Hansen ( 2010 ) using the distribution of
ccentricities, periods, and masses of the known planets, which
llowed him to constrain the dissipation values of stars and planets. 

The top left-hand frame of Fig. 1 is an excerpt of the full
gure published by McQuillan, Mazeh & Aigrain ( 2013 ) and based
n the three first years of public Kepler data. It shows the distribution
f stellar rotational periods P rot = 2 π / �0 and planetary orbital
eriods P orb = 2 π / n ; hereafter the P–P diagram. As shown in the
nset, the size of each circle is proportional to the planetary radius,
hile its colour is determined by the ef fecti ve temperature of the host

tar. We note an almost absence of systems with fast rotating host
 E-mail: cbeauge@unc.edu.ar 
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tars and T eff < 5800 K. This last characteristic is just due to the loss
f angular momentum of the colder stars due to stellar winds, the
o-called magnetic braking (see Bouvier, Forestini & Allain 1997 ).
he hottest stars do not have the outer convective layer responsible

or the winds and so do not migrate upwards in this figure as the
older stars. 

As indicated by McQuillan et al. ( 2013 ), the large majority of
lose-in planets ( P orb < 5 d) are located abo v e the continuous
ine drawn in all panels of Fig. 1 , while a few also appear to
ie close to a synchronous state ( P orb = P rot ) highlighted with a
ashed line. The region between both these lines appears surprisingly
mpty. 

The same feature is found when restricting the data to smaller
lanets, as seen in the middle left-hand frame, where only bodies with
 < 5 R ⊕ are sho wn. Se v eral e xplanations were proposed for the lack
f planets below the continuous line, including the combined effects
f tidal evolution, braking, and magnetic star–planet interactions
e.g. Teitler & K ̈onigl 2014 ; Ahuir, Mathis & Amard 2021 ) as
ell as tidal capture of near-parabolic bodies in multiplanet systems

Lanza & Shkolnik 2014 ). None of these works, ho we ver, focus on
he distribution of large planets, seen here in the lower left-hand
lot of Fig. 1 . Not counting the two Kepler objects of interest (KOIs)
lose to the synchronous line, most bodies seem to show a significant
orrelation, with larger stellar rotation associated to larger orbital
eriods and lower values of P rot for hot Jupiters closer to the star. 
The right-hand frames of Fig. 1 show the same distributions in the

–P diagram, but employing more recent data. Stellar rotations for
ain sequence M and K stars are taken from Santos et al. ( 2019 )
hile similar information for G and F stars are found in Santos et al.

 2021 ). These were then compared with the latest catalogue of Kepler
andidates, while the same data base also allowed to identify and
emo v e possible eclipsing binaries. The total number of data points
ncreased from 1079 to 1698. Even so, it is important to keep in mind
hat many correspond to Kepler candidates (KOI) and therefore do
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Left: Period of the stellar rotation as a function of the orbital period for confirmed planets and KOIs with measured rotation periods and orbital period 
less than 5 d (after McQuillan et al. 2013 ). In the middle and bottom frames, the data is restricted to relatively small ( R < 5 R ⊕) and large ( R > 10 R ⊕) planets, 
respectively. Dashed lines identify conditions for synchronous rotation ( P orb = P rot ) while continuous lines reproduce the lower envelope of points proposed by 
McQuillan et al. ( 2013 ). Right: Same as the left-hand column, but using updated planetary and stellar data from Santos et al. ( 2019 , 2021 ). 
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ot constitute confirmed planets. This explains why some data points 
n the left-hand column are absent in the latest catalogues. 

While some characteristics of the distribution in the P–P diagram 

emain, others have undergone noticeable changes. The diagonal 
ontinuous line now appears less decisive as a lower bound for orbital
eriods of small close-in planets, and the middle right-hand plot 
ho ws se veral ne w systems for a wider of range of stellar rotations.
n fact, more recent data from both Kepler and TESS (Messias et al.
022 ) suggest that the dearth of close-in small planets around rapidly
otating stars could be due to a lack of data and thus not statistically
ignificant. 
Conversely, the correlation between P orb and P rot in hot Jupiters 
lower right-hand plot) appears even more pronounced and better 
efined, and practically all bodies are located in a moraine-like 
ccumulation. The only exception is KOI 554, found very close to the
ynchronous line. This system appears as unconfirmed in NASA’s 
ists and is a probable false positive. 

In this paper we present a simple dynamical model to analyse the
rbital and rotational evolution of a single planet around a star, under
he combined effects of tidal interactions and magnetic braking. We 
ill show that the observed distribution of small planets as well as

he accumulation observed for giant planets can be well reproduced, 
MNRAS 523, 5220–5229 (2023) 
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M

Table 1. Hot exoplanets – adopted parameters. 

Planets Mass Radius α k f γ

( m Jup ) ( R Jup ) ( R Earth ) ( mR 

2 ) (s −1 ) 

Jupiters 1 1 11.2 0.254 0.38 20 
Saturns 0.3 0.843 9.5 0.21 0.34 20 
Mini-Saturns 0.15 0.54 4.7 0.21 0.34 20 
Neptunes 0.0598 0.346 3.9 0.23 0.12 10 
Mini-Neptunes 0.02 0.24 2.7 0.23 0.12 5 
Super-Earths 0.0126 0.1424 1.6 0.33 0.3 5 × 10 −7 

Earths 0.00315 0.089 1 0.33 0.3 5 × 10 −7 
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nd, at least for Solar-type stars, allow for a reliable estimation for
he stellar relaxation factor γ . 

 T H E  DY NA M I C A L  M O D E L  

e computed the evolution tracks of close-in planets taking into
ccount tidal effects and the magnetic braking of the star. Braking
f the stellar rotation was computed following Bouvier et al.
 1997 ) while the tidal evolution of both the planet and host star
ere calculated using the creep tide theory (Ferraz-Mello 2013 ,
015 ). Equations and details of the dynamical model are given in
ppendix A . 
The codes adopted for this paper differ slightly from those used in

he study of the interplay of tidal evolution and stellar wind braking
n the rotation of stars hosting massive close-in companions (Ferraz-

ello et al. 2015 ). The main impro v ements include the introduction
f the actual fluid Lo v e number k f so that the equations correspond
o the case of a differentiated body whose layers are aligned
omogeneous ellipsoidal shells, and the introduction of the effects
ue to the shortening of the polar axis by the tidal potential (Ferraz-
ello 2015 ). 
In all the simulations, the physical set-up was assumed frozen.

ertainly, some parameters involved in the calculations are expected
o vary during the whole simulated story. The mass of the star is
xpected to vary a small amount during the system lifetime. This
ariation could be included in the simulations, but would not be able
o change significantly the results. Large variations may be expected
n the planetary masses if the planet is too close to the star because
f e v aporation of its outer layers. Ho we ver, the influence of these
ariations in the simulation results is negligible. The variation in the
rbital parameters when masses are not constant is proportional to
he deri v ati ve of the sum of the two masses (Hadjidemetriou 1963 );
he planet has nothing but a tiny fraction of the total mass of the
ystem and so, the sum of the masses will be almost unaffected by
ariations in the mass of the planet even if they are large. 

Other parameters showing variation with the evolution of the star
re the fluid Lo v e number and the radius of the star. They are related
o the density profile of the star. The radius of the star may have
 significant variation, but it appears in the equations only through
 f R 

2 ; models of the evolution of the internal structure of the stars
Claret 2019 ) show that the product k 2 R 

2 and the moment of inertia
ave just a small variation during the time in which the stars remain
n the main sequence and variations can be neglected. More complex
odels taking into account the variations in the internal structure

f the star would introduce new non-universal unknown parameters
ithout introducing significant changes in the results. 
Table 1 summarizes the main physical parameters adopted for each

ype of planet, including nominal values for the relaxation factor γ .
e denote by α the multiplicative factor in the expression of the
NRAS 523, 5220–5229 (2023) 
ody’s moment of inertia, i.e. C = αmR 

2 . The adopted values of the
lanetary k f are based on those calculated for similar Solar system
lanets by Gavrilov & Zharkov ( 1977 ). Different choices for k f affect
he estimations of the relaxation factor γ since these two quantities
re entangled in the tidal model. In a first approximation, for gaseous
odies, the tidal variation of the elements is proportional to the ratio
 f / γ (see Appendix A ). Ho we ver, in the present case, the contribution
f the tides on the planet to the variation of the orbital period is
nsignificant and the planetary γ and k f are given only to complete
he information on the parameters used in the simulations. 

Fig. 2 shows the results of some preliminary simulations involving
 Jupiter-like planet orbiting a Solar-type star. While the planetary
arameters were taken from Table 1 , for the central mass we adopted
 moment of inertia, C 0 = 0 . 07 m 0 R 

2 
0 , similar to the present-day

un. Its fluid Lo v e number was chosen equal to k f 0 = 0 . 05, as
btained using the equations derived by Folonier, Ferraz-Mello &
holshevnikov ( 2015 ), and assuming a density profile equal to the

tandard solar model. The stellar relaxation factor was fixed at γ =
0 s −1 , in the middle of the range indicated by previous studies (see
erraz-Mello 2022 ), but corrected for the smaller value of k f 0 . 
The left-hand and center plots show, in blue, the time evolution

f the planet’s orbital period P orb for four different initial values:
 , 2 . 5 , 3, and 4 d. For each case we considered two different initial
ccentricities: e = 0 and e = 0.2, while the initial rotation frequency
f the planet was taken equal to 2 π / �1 = 10 d. This value is arbitrary,
ut we found no significant difference as long as the body was
nitially subsynchronous ( P orb < P rot ). Finally, both graphs differ in
he initial rotational period of the star, as indicated by the text on
op. Fast rotators are considered on the left while initial slow rotators
re considered for the center plot. The tidal evolution was followed
ccording to the equations described in the Appendix A, considering
oth the star and planet as extended bodies and including Cayley
unctions E 0, k and E 2, k up to order k = 7. 

The pink lines show the evolution of the planetary rotational
eriod. The orbital circularization, together with the synchronization
f the planetary spin ( �1 = n ), occurs early in the evolution of the
ystem, as indicated by the superposition of the pink and blue lines.
he longest time-scale is found for P orb ( t = 0) = 4 d, where the
ynchronization occurs after 1 Gyr. Ho we ver, the subsequent orbital
volution is almost negligible even after T = 10 Gyr. The stellar
otation period, ho we ver, fueled by magnetic braking, increases
onotonically, reaching values of the order of 30–40 d at the end

f the simulation. 
Planets closer to the star tell a different story. Synchronization

ccurs very early in the system’s history and most of the changes
n P orb occur in a scenario dominated by stellar tides and where
he planetary counterparts are negligible. Tidal evolution for these
nitial conditions are much stronger than those for P orb ( t = 0) =
 d, and the bodies are engulfed by the star in time-scales between
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Figure 2. Dynamical evolution of a Jupiter-size planet orbiting a Solar-type star under tidal interactions and magnetic braking. Green lines show the evolution 
of the stellar rotational period P rot while blue lines show the planet’s orbital period P orb . Broad pink curves in the left and center plots follow the change in the 
planet’s rotational period. Left & Center: Initial value of P rot fixed to 1 and 10 d, respectively, while four initial planet orbital periods were analysed ( P orb = 

2, 2.5, 3, 4 d). In each case we considered two initial values of e , identified in the center plot. Right: Thin continuous lines show the time evolution of both 
P rot and P orb for the same initial values (specified on top) but two different planetary eccentricities. Broad light coloured lines sho w the e volution of circular 
synchronized planets ( P orb = 2 π / n ) with initial orbital periods chosen to reproduce the orbital decay after circularization. See the text for details. 
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 and 10 Gyr. Conservation of angular momentum implies that the 
rbital infall of the planet also causes a decrease in the rotational
eriod of the star. Given the large planet mass adopted for these runs,
his effect is able to counteract the magnetic braking and at some
oint during the system’s evolution P rot peaks and starts to decrease 
n value. Although this behaviour is well known (e.g. Ferraz-Mello 
t al. 2015 ), its effect on the distribution of hot Jupiters in the P–P
lane has yet to be explored. 
A comparison between the left and center plots seem to indicate 

hat the evolution of the system is only weakly dependent on the star’s
nitial rotational period. The orbital evolution of the planet appears 
irtually identical in both cases, except for a change in the time-scale
f the order of 0.5 Gyr, The values of P rot are of course different,
ut both tend to very similar values after ∼5 Gyr. Ho we ver, a more
omplex dependence is noted with respect to the initial eccentricity. 

The thin continuous lines in the right-hand side plot of Fig. 2 shows
he results of two simulations with the same initial values for P orb and
 rot (indicated on top) but different initial eccentricities. While the 
eneral trend is similar in all cases, the time-scale and the maximum
alue attained by P rot varies significantly, even though the planet 
eaches a synchronous state with almost circular orbit before 0.2 Gyr. 
his result is interesting since it indicates very different outcomes 
nd time-scales even though most of the system’s evolution occurs 
n circular orbit and dominated by stellar tides. 

An explanation may be found precisely during the road towards 
ynchronization. Since the planet begins with P orb < P rot , the early
rbital decay rate is much stronger than that expected for �1 ∼
 . This may be observed in the behaviour of P orb during the first
tage of the system’s evolution. Once synchronization is reached, 
he orbital decay levels out and the subsequent decay is much 
hallower. The broad light-coloured lines show the evolution of 
equi v alent’ systems, characterized by e = 0, �1 = n and initial
emimajor axis a equiv chosen such that both the planet’s orbital 
nd star’s rotational evolution mimics the original system after 
ynchronization. For initial rotation rates such that �1 � n we 
ound a equiv � a ini 

(
1 − e 2 ini 

)
, compatible with the conservation of 

he orbital angular momentum. 
The o v erlap between the evolution of eccentric systems and their

qui v alent counterparts has far-reaching consequences. The most 
i
bvious is that we can simulate the tidal/braking interaction assuming 
ircular orbits and synchronized planets as long as we adopt a equiv 

s the initial semimajor axis. The tidal equations are thus simpler,
he number of differential equations are reduced and the numerical 
ntegrations run much faster. 

The second consequence is more rele v ant to our study and,
erhaps, more debatable. Basically, we may say that when analysing 
he origin of the observed distribution of exoplanets in the P–P
iagram, we need not be concerned about the primordial distribution 
f semimajor axes and eccentricities, but solely the distribution of 
 equiv . We can thus approach our problem using the simplified tidal
quations as long as we keep in mind that the initial separation
etween star and planet must be considered as representative and not
qual to the true primordial value. 

 E VO L U T I O N  O F  SYSTEMS  WI TH  A  

LOSE-IN  G A S E O U S  G I A N T  

e can now proceed to analyse whether our simple dynamical 
odel can explain the distribution of planets in the P–P diagram,

nd see what tidal parameters are most suited for such a process.
e begin studying hot Jupiters around Solar-type stars. As shown 

n Fig. 1 , the distribution of large ( R > 10 R ⊕) KOIs taken from
antos et al. ( 2019 , 2021 ), defines a moraine-like accumulation with
 positive correlation between P orb and P rot , at least for close-in
lanets (or planetary candidates) with orbital periods up to 5 d.
he only exception is KOI 554 which, as discussed previously, is
robably a false positive. The same overall distribution is also found
n older data, such as McQuillan et al. ( 2013 ) although perhaps less
treamlined. 

There are currently four different mechanisms proposed to explain 
he origin of hot Jupiters. Tidal capture following eccentricity 
xcitation from planet–planet scattering (Beaug ́e & Nesvorn ́y 2012 )
r perturbations from a stellar companion (Naoz, Farr & Rasio 
012 ), disc-induced planetary migration (Crida & Batygin 2014 ), 
nd secular chaos (Wu & Lithwick 2011 ). The distribution of
isalignment angles and planet multiplicity seem to indicate that no 

ingle process acted alone and at least part of the known population
s a consequence of disc–planet interactions while the rest may 
MNRAS 523, 5220–5229 (2023) 
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Figure 3. Overlaid to the distribution of hot Jupiters in the P–P diagram, each 
plot shows the evolutionary tracks of 4000 initial conditions for Jupiter-size 
planets with e = 0, �1 = n and orbital periods in the interval P orb = 2 π / n 
∈ [0.5, 5] d, we assume a Solar-type star with initial rotation period P rot = 

1 d. Each frame considers a different stellar relaxation factor γ 0 highlighted 
in the top left-hand corner. The colour code is indicative of the age of the 
system T (in years) as it transverses the plane following the arrows. Orange 
curves show the evolution of four representative initial conditions. 
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e traced to orbital circularization after tidal capture (Dawson &
ohnson 2018 ). Among the different dynamical processes leading
o tidal capture, the distribution of misalignment angles seems to
a v or planet–planet scattering (Mart ́ı & Beaug ́e 2015 ) which may
ave occurred shortly after the dissipation of the gaseous disc (Lega,
orbidelli & Nesvorn ́y 2013 ; Izidoro et al. 2021 ). 
Both disc–planet interactions and post-dissipation instabilities

oint towards an early accumulation of hot Jupiters in their current
rbital distance and, consequently, we can assume that the central
tar was still a rapid rotator at that time. Although the slow process of
ecular chaos may not be ruled out, it is currently difficult to e v aluate
ow much it may have contributed to the observed distribution. Thus,
ven though we cannot rule out that some hot Jupiters may have
eached their current orbital distance after magnetic braking dro v e
he star to a slow rotation rate, there is little evidence to indicate that
heir number was substantial. 

The three frames of Fig. 3 show, for different values of the stellar
elaxation factor γ 0 , the evolution of 4000 initial conditions in the
–P diagram, all consisting of a Jupiter-size planet in circular orbit
nd initial orbital period in the range P orb ∈ [0.5, 5] d. The central
tar was assumed Solar-type with an initial stellar rotation P rot = 1 d.
he orange lines show the evolutionary tracks of four characteristic

nitial conditions; their starting orbital periods were chosen to be 2,
.5, 3, and 4 d, respectively. Since we are assuming initial circular
rbits and synchronous planets, the initial values of P orb correspond
o the equi v alent semimajor axes, as defined in the previous section.

The arrows indicate the flow of the system. The characteristic
volution time-scale for stellar rotation, driven by magnetic braking,
s much shorter than the evolution time-scale for the orbital period
f the planet that is driven by tides. Therefore, even for an initial
tellar rotation period shorter than the initial orbital periods, the
volutionary tracks begin as almost vertical straight lines. This stage,
o we ver, is temporary and after 10 8 −10 9 yr the system reaches the
omain of the accumulation highlighted in Fig. 1 . F or v ery small
emimajor axes the rotation of the star is then accelerated due to the
ransfer of orbital angular momentum to the rotation of the star by
eans of the tides raised by the planet on the star. The planet falls

n the star in a few Gyrs. 
For wider systems, the tidal effects are not strong enough to cause

he infall of the planet, but the evolution almost stops after ∼6 Gyr
nd the systems no longer shows a significant evolution in the P–P
iagram. These hot Jupiters accumulate in a moraine-like structure.
ike in the geological process with this name, big planets are carried
long with a flow to the domain where the flow becomes weaker and
ccumulate there. 

Since the evolutionary tracks of different initial conditions do not
ross, we may colour-code the P–P diagram indicating the age at
hich the system reached a given spot. Lighter tones correspond to

arly stages in the evolution, while the dark brown region highlights
he position attained by all initial conditions at times between 1
nd 10 Gyr, the estimated range of ages for these systems (Lanza &
hkolnik 2014 ). To further aid in following the time evolution of the
ystems, the black lines show the isochrones for log 10 ( T ) = 7, 8, 9,
0, where the time is given in years. 
These results show that our simple dynamical model (tidal evolu-

ion + magnetic braking) lead to a distribution of Jupiter-size planets
n the P–P plane that strongly resembles the observed distribution
f hot Jupiters. The moraine shape is a natural consequence of the
nterplay between both phenomena on the stellar rotation, and may
e used to estimate the value of the stellar relaxation factor γ 0 that
ppears to lead to a better correlation. As shown in the top frame
f Fig. 3 , a value of γ 0 = 2 s −1 generates an e xcessiv ely efficient
NRAS 523, 5220–5229 (2023) 
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of the orbital period of the planet. Different coloured lines correspond to 
different planet types. Continuous lines show result assuming γ 0 = 10 s −1 , 
while for dashed lines we used γ 0 = 50 s −1 . 
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idal decay and a significant portion of the observed hot Jupiters lie
bo v e the isochrone associated to log 10 ( T ) = 10. The larger relaxation
actor considered in the middle frame leads to a much better fit, with
ractically all the population embedded in the region between T = 

0 9 yr and T = 10 10 yr. A similar conclusion may be drawn from the
ower plot where an even larger value of γ 0 is considered. 

We may thus deduce from these graphs that the observed distribu-
ion of hot Jupiters is consistent with a tidal evolution dominated 
y stellar tides with a relaxation factor between 10 and 50 s −1 .
s the orbital distance of the planet decreases, so does the stellar

otation, leading to a moraine-type accumulation in the P–P diagram. 
onsequently, for massive close-in planets the stellar rotational 
eriod does not necessarily grow monotonically with time and care 
ust be taken when using P rot as a direct proxy for stellar age. 
As we mentioned at the beginning of this analysis, most of the hot

upiters are expected to have reached their present location before 
he stellar rotation slowed significantly. Even if this was not the case,
e have found that the initial rotational period of the star exerts

lmost no influence on the evolution. As shown in the simulations
arried out in Fig. 2 , even a relatively slow initial rotation of 10 d led
o the same evolutionary tracks in the P–P plane after ∼1 Gyr. Even
he final system ages for a gi ven v alue of P orb or P rot only varied by

0.5 Gyr at the end of the simulations. We therefore believe that the
bo v e analysis should be fairly robust and independent of the initial
onditions. 

 E VO L U T I O N  O F  SYSTEMS  WITH  A  

LOSE-IN  SUB-JOVIAN  PLANET  

egardless of which stellar relaxation factor better fits the data, it
eems that the moraine is (at least partially) caused by a funneling of
he dark-toned region as P orb → 0. In turn, this effect is associated
o a change in sign of the time deri v ati ve of the star rotation P rot .
egardless of the age of the system when this occurs, as soon as the

idally induced speed-up of the stellar rotation surpasses the slow- 
own caused by magnetic braking, the evolutionary tracks converge 
nd lead to an orbital infall of the planets in a tight formation. 

To understand when this phenomena occurs and under what system 

arameters, we look for solutions of the equation: 

d �0 

d t 

∣∣∣∣
tid 

+ 

d �0 

d t 

∣∣∣∣
mag 

= 0 , (1) 

here the first term is the deri v ati ve of the stellar spin �0 due to stellar
ides and the second is the contribution from magnetic braking. Full 
xpressions for both are given in Appendix A . Assuming | ν| / γ 0 =
 | n − �0 | / γ 0 � 1 and n � �0 , we can approximate the tidal term
y 

d �0 

d t 

∣∣∣∣
tid 

� 

3 

γ0 

k f 0 

α0 

(
m 1 

m 0 

)2 (
R 0 

a 

)3 

n 3 . (2) 

imilarly, since we expect the moraine to occur for slow rotators
here the magnetic braking is not so efficient, for this region we can

pproximate the second term by: 

d �0 

d t 

∣∣∣∣
mag 

= −B w �
3 
0 . (3) 

ntroducing both expressions into (equation 1 ) we obtain that the 
aximum stellar rotational period P 

(max) 
rot , before tidal effects begin 

o dominate, is approximately given by: 

(
P 

(max) 
rot 

)3 
� 

B w γ0 

3 

α0 

k f 

(
m 0 

m 1 

)2 (
a 

R 0 

)3 

P 

3 
orb . (4) 
0 
elating a and P orb through Kepler’s third law, and taking base 10
og on both sides, we finally obtain 

log 10 P 

(max) 
rot � 

5 

3 
log 10 P orb + 

1 

3 
log 10 �, (5) 

here � is a constant that depends only on the physical properties
f the system, and is approximately given by 

 � 

B w γ0 

3 

α0 

k f 0 

Gm 0 

R 0 

(
m 0 

m 1 

)2 

. (6) 

e thus obtain a linear relation between both periods in a log–log
cale; moreo v er for any gi ven v alue of P orb the critical value of the
tellar rotation period should increase for smaller planetary masses 
nd larger stellar relaxation factors. 

Fig. 4 shows the critical value of P rot as a function of the orbital
eriod, for four different planet types; each is identified by the text
longside the colour line. Masses were taken from Table 1 while
he star was assumed Solar-type with α0 = 0.07 and k f 0 = 0 . 05.
ontinuous lines correspond to γ 0 = 10 s −1 , while their dashed
ounterparts were obtained assuming γ 0 = 50 s −1 . 

Jupiter-type planets, characterized by large masses, generate 
trong tidal interactions with the star, thus leading to relatively small
 alues of P 

(max) 
rot e ven for large relaxation factors. This is consistent

ith the existence of the moraine-like distribution of hot Jupiters in
he P–P diagram, especially noticeable for orbital periods below P orb 

3 d. 
The case of smaller gaseous/icy planets (Saturn and Neptune) is 

ess clear. Although the results of Fig. 4 seem to predict a moraine-
ype distribution, at least for Saturn-size bodies and for very small
rbital periods, the observability also depends on the distribution of 
lanets. This is analysed in Fig. 5 for two dif ferent v alues of γ 0 .
s was done in Fig. 3 for hot Jupiters, the orange curves show the

volutionary curves of six initial conditions with different P orb and 
MNRAS 523, 5220–5229 (2023) 
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M

Figure 5. Same as Fig. 3 , but considering planets with radius R ∈ [3, 10] R ⊕. Since most of these planets orbit cool stars, especially for P orb � 3, the tidal 
evolution was simulated assuming m 0 = 0.8 m 	, R 0 = 0.77 R 	, and α0 = k f 0 = 0 . 05 (Claret 2019 ). 

t  

a
 

a  

e  

r  

N  

I  

d  

s  

w  

 

d  

l  

H  

f  

w  

i
 

p  

t  

d  

h  

t  

J  

t  

d  

t  

s
 

m  

P  

1
 

r  

i  

d  

s  

q  

s  

1  

a  

r  

f

5

I  

d  

5  

a  

t  

d  

J  

a
 

e  

l  

w  

n
 

c  

d  

p  

d  

f  

f
 

o  

i  

A

Q

W
a
t  

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/4/5220/7198123 by U
N

IVER
SID

AD
 D

E C
O

R
D

O
BA user on 27 June 2023
he same stellar rotation period P rot = 1 d. Orbits are assumed circular
nd with n = �1 . 

The distribution of confirmed planets and Kepler candidates is
gain shown with filled circles whose colours are indicative of the
f fecti ve temperature of the star. The paucity of bodies in this size
ange with orbital period less than 2–3 d is well known (Beaug ́e &
esvorn ́y 2013 ) and usually referred to as the sub-Jovian desert.

t is interesting to note that most of the candidates at this orbital
istance belong to cool stars with T eff � 5500 K. Consequently, in our
imulations of tidal + braking evolutions we assumed a central star
ith m 0 = 0.8 m 	, R 0 = 0.77 R 	, and α0 = k f 0 = 0 . 05 (Claret 2019 ).
Given the lack of sub-Jovian planets very close to the star, it is

ifficult to correlate their distribution with our dynamical model,
et alone discuss which tidal relaxation factor better fits the data.
o we v er, e xcept for a single system with P orb � 1 d and orbiting a

ast rotator, the rest of the population does not show any inconsistency
ith the expected evolutionary tracks, nor does it seem necessary to

nclude additional phenomena into the model. 
Finally, Fig. 6 shows analogous results, but now focusing on small

lanets ( R ≤ 3 R ⊕). Since the known population is large, we restricted
he analysis to Solar-type stars. We verified that there is no significant
ifference with the results obtained from bodies around cooler or
otter stars. Again we assume that the close-in planets reached
his region when the star was still a fast rotator. As with the hot
upiters described previously, the main scenarios for the origin of
hese systems is planetary migration and planet-scattering following
isc dispersal (e.g. Izidoro et al. 2021 ). Both processes are believed
o have occurred before magnetic braking had the opportunity to
low the stellar rotation significantly. 

As expected from the values of P 

(max) 
rot predicted from Fig. 4 , no

oraine-type structure is observ ed; moreo v er the distribution in the
–P diagram appears almost flat for time-scales between 10 9 and
0 10 yr. 
As discussed recently by Messias et al. ( 2022 ), we also find no

ele v ant e vidence of the lo wer bound for orbital periods, at least
n the form suggested by McQuillan et al. ( 2013 ). The rapid slow-
own of P rot due to magnetic braking and the tidal decay for very
hort period planets seems to account for the observed distribution
uite well. Both values of γ 0 lead to similar outcomes, although the
NRAS 523, 5220–5229 (2023) 
hape of the tracer orange curves seems like a better fit for γ 0 =
0 s −1 . For orbital periods P orb � 3 d, tidal effects are negligible
nd the rotation of the corresponding stars evolve following only the
otational braking due to stellar winds. The time-scale in this case
ollows closely the Skumanich law (Skumanich 1972 ). 

 T H E  STAR’S  R E L A X AT I O N  FAC TO R  

n our simulations for Jupiter-size planets, we considered three
if ferent v alues for the stellar relaxation factor γ 0 : 2, 10, and
0 s −1 (see Fig. 3 ). They show that, at least for Solar-type stars,
 value of γ 0 between ∼10 and ∼50 s −1 appears to better represent
he possible evolution of these systems to reach the moraine-like
omain. Smaller values lead to evolutionary tracks in which the hot
upiter falls on the star before the system reaches the moraine-like
ccumulation. 

This result may be compared to those obtained by Ferraz-Mello
t al. ( 2015 ) for the rotation of the host stars in several systems with
arge companions (exoplanets or brown dwarfs). There, the result
as rather centered on γ 0 = 50 s −1 due to a value for the fluid Lo v e
umber k f 0 some five times larger than the value adopted here. 
While the distribution of smaller planets did not allow to further

onstrain γ 0 , the observed structures are consistent with the values
erived from hot Jupiters. Similarly, the distribution of sub-Jovian
lanets around cooler stars do not appear to show any significant
ifference with respect to that expected for Solar-type stars. We thus
ound no evidence that the relaxation factor of stars could be a strong
unction of the stellar type. 

It is interesting to see how the abo v e results are translated in terms
f the stellar quality factor Q 0 (or its variant Q 

′ 
0 = 1 . 5 Q 0 /k f 0 ) used

n some current tidal friction theories. Using the relation given in
ppendix A2 and supposing | ν| � γ 0 , we may write 

 0 = 

γ

| ν| = 

γ0 

2 | n − �0 | . (7) 

e obtain the curves shown in Fig. 7 . We note the big variation of Q 0 

long the path in all solutions making evident that the choice of Q 0 

o parametrize the dissipation in evolving systems is not a good one.
he definition of Q 0 mixes a property of the body, the relaxation,
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Figure 6. Same as Fig. 4 , but now focusing on small-size planets R < 3 R ⊕ around Solar-type stars. Adopted values for the stellar relaxation factor γ 0 are 
indicated on the top left-hand corner of each plot. 

Figure 7. Variation of the stellar quality factor Q 0 along the evolutionary 
paths of Fig. 3 , calculated with γ 0 = 10 s −1 . Only the parts of the paths in 
which �0 < n are shown. Because of the adopted value k f 0 = 0 . 05, the often 
used alternative quantity Q 

′ 
0 is 30 times larger than Q 0 . 
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ith two frequencies of the system, �0 and n . Finally, we omitted in
ig. 7 the parts of the paths in which �0 < n and the neighbourhood
f the synchronization where the definition of Q 0 becomes singular. 

 C O N C L U S I O N  

his paper shows that the distribution of the points representing the 
hort period Kepler systems and KOIs ( P < 5 d), for which the period
f rotation of the star and the orbital period could be determined,
resents some features that may be explained by the joint action of
he tidal evolution of the system and the magnetic braking of the
tar. The main features in the two periods (P–P) diagram are: (1) The
xistence of a moraine-like accumulation of systems hosting a hot 
upiter with orbital period in the range 1.5 −5 d, all in an inclined
one around the stellar rotation period 25 d. (2) The absence of any
orrelation between orbital period and stellar rotation in the case of
mall ( R � 3 R ⊕) planets. 

The creep tide theory allowed us to calculate the evolution of
ystems with one exoplanet in orbit around a Sun-like star showing 
hat systems hosting a hot Jupiter with orbital period shorter than 5 d
ave a fast evolution upwards in the P–P diagram and stops evolving
xactly in the moraine-like accumulation seen in the diagram or, if
he initial orbital period is much shorter, fall on the star. In the case
f systems hosting small planets, tidal evolution quickly pulls down 
lanets with orbital periods initially smaller than 1.5–2 d; those with
eriods slightly larger first evolve upwards thanks to the magnetic 
raking and then slowly fall towards the star. The distribution of
hese systems in the P–P diagram is consistent with a flow ruled by
idal evolution and magnetic braking. 

The boundaries of distributions seen in the P–P diagram are 
etermined by the intensities of these two agents. In the case of the
idal evolution, we have found that the most probable relaxation factor
f the Sun-like star lies between 10 and 50 s −1 . If the dissipation is
uch larger or much smaller than these values, the accumulation 
ould not be located in the place where they are observed in the
–P diagram constructed with either the results of McQuillan et al.
 2013 ) or those of Santos et al. ( 2019 ) and Santos et al. ( 2021 ). This
esult is in agreement with the values obtained for the stars relaxation
actor by Ferraz-Mello et al. ( 2015 ), if we take into account that the
uid Lo v e number used there (0.26) was some five times larger than

he value used in this paper (0.05) and that, for gaseous bodies,
he variation of the orbital elements is proportional to k f / γ . In this
aper, we used a determination of the Sun’s k f obtained with the
ensity profile of the standard solar model and the formulas given by
olonier et al. ( 2015 ) to compute the fluid Love number of layered
on-homogeneous bodies. 
The use of so-called equi v alent initial semimajor axis a equiv in our

imulations allowed us to a v oid the lack of information regarding
he primordial eccentricities of the planets as they arrived to the
egion close to the star. Finally, the lack of a moraine-like structure
r any significant correlation between P rot and P orb for low-mass 
lanets is also in accordance with our model, and seems additional
nd strong evidence that tidal interactions, together with magnetic 
raking, have probably been the driving forces behind many of the
bserved dynamical features of close-in planets and their host stars. 
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PPENDIX:  T H E  E QUAT I O N S  O F  MOTION  

1 Tidal variation of the elements 

he equations used to calculate the tidal variations of the orbital
lements: semimajor axis and eccentricity, consider the density
rofile of the bodies, but imposes some constraints in order to
 v oid a huge number of free parameters. They assume that the
NRAS 523, 5220–5229 (2023) 
ody is formed by co-rotating homogeneous layers (Ferraz-Mello,
olonier & Gomes 2022 ). They are 

 ̇a 〉 = −k f nR 

2 ερ

15 a 

∑ 

k∈ Z 

(
3( k − 2) E 

2 
2 ,k sin 2 σk + kE 

2 
0 ,k sin 2 σ ′′ 

k 

)
(A1) 

nd 

 ̇e 〉 = −k f nR 

2 ερ

30 a 2 e 
(1 − e 2 ) 

×
∑ 

k∈ Z 

[ 
3 
( 2 √ 

1 − e 2 
+ ( k − 2) 

)
E 

2 
2 ,k sin 2 σk + kE 

2 
0 ,k sin 2 σ ′′ 

k 

] 
,

(A2)

here ερ is the mean flattening of the equi v alent Jeans homogeneous
pheroid: 

ρ = 

15 MR 

3 

4 ma 3 
. (A3) 

n this expression m is the mass of the tidally deformed body, M
s the mass of the companion whose attraction is creating the tidal
otential, R is the radius of the deformed body, and a is the semimajor
xis of the relative orbit of the two bodies. No hypothesis is done on
he relative size of the tw o masses. In f act, in the general case, we
ave to consider the tides raised in the star by the planet and also
he tides raised in the planet by the star, so m � M and M � m .
n both cases we use the same equations and we have added their
ontributions to the variations of the orbital elements to get the total
ffect. 

In the applications described in this paper, both were considered,
ut the contribution of the tides on the exoplanet are too small to be
ignificant. The role of the tides on the exoplanet is to quickly drive
he rotation of the planet to the stationary almost synchronous state
here it remains trapped for the rest of the time (see Fig. 2 ). 
The tidal equations involve some known functions: 

(i) The Cayley functions of the orbital eccentricity e : 

 q,p ( e) = 

1 

2 π

∫ 2 π

0 

(a 

r 

)3 
cos ( qv + ( p − q) � ) d � , (A4) 

here r is the modulus of the position vector, � is the mean anomaly,
nd v is the true anomaly. For small eccentricities, we may use
he polynomial approximations published by Cayley ( 1861 ) or,
qui v alently, the Hansen coefficients (Hughes 1981 ). 

(ii) The other functions are 

sin 2 σk = 

2 γ ( ν + kn ) 

γ 2 + ( ν + kn ) 2 
; 

in 2 σ ′′ 
k = 

2 γ kn 

γ 2 + k 2 n 2 
; (A5) 

here γ is the relaxation factor and ν = 2 � − − − 2 n is the mean
emidiurnal frequency ( � is the rotational velocity of the deformed
ody and n is the orbital mean motion). 

The other parameter appearing in the variation equations is
he fluid Lo v e number, k f . This parameter is related to the mass
oncentration of the body and may be determined from a model of
he density profile of the body (Folonier et al. 2015 ). It is equal to
wice the apsidal motion constant introduced in the study of close
inary stars (see Kopal 1953 ). In the case of the present-day Sun,
he standard solar model leads to a value close to 0.05. In previous
pplications, a rule using the relationship between the fluid Lo v e
umber and the moment of inertia ( k f = 15 C /4 mR 

2 ) was used;
o we ver, this relation, valid for homogeneous bodies, o v erestimates
he value of k f in the cases under study in this paper. 
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when we introduce the quality factor Q through 

Q = 

2 

sin 2 σ0 
= 

γ

| ν| + 

| ν| 
γ

, (A9) 

as discussed, for example, in Efroimsky & Lainey ( 2007 ). 

A3 Braking of the star rotation due to stellar activity 

The magnetic braking of the star rotation was computed using the 
results of Bouvier et al. ( 1997 ) for stars with masses in the range 
0.5 M 	 < M s < 1.1 M 	: 

�̇s = 

{−B W 

�3 
s when �s ≤ ω sat 

−B W 

ω 

2 
sat �s when �s > ω sat 

(A10) 

where ω sat is the value at which the angular momentum loss 
saturates (fixed at ω sat = 3 , 8 , 14 �	 for 0.5, 0.8, and 1.0 M 	 stars, 
respectively) and B W 

is a factor depending on the star moment of 
inertia, mass, and radius through the relation 

B W 

= 2 . 7 × 10 47 1 

C s 

√ ( R s 

R 	

M 	
M s 

)
( cgs units ) , (A11) 

(Bouvier et al. 1997 ). The subscript s is used to stress the fact that 
the star parameters are being considered. 

The abo v e form of the la w is valid after the star has completed 
its contraction (the stellar moment of inertia C s no longer changes 
significantly) and is fully decoupled from its prime v al disc. F-type 
stars are not expected to be affected by the magnetic braking. 
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The variation of the angular velocity of rotation of the deformed 
ody is given by 

 ̇�〉 = −GMmR 

2 k f ερ

5 Ca 3 

∑ 

k∈ Z 
E 

2 
2 ,k sin 2 σk , (A6) 

here C is the moment of inertia of the deformed body and G the
ravitation constant. 

2 Tidal dissipation 

he tidal energy released inside the star is negligible when compared 
o the thermal energy produced by the hydrogen burning near the 
enter of the star. Ho we v er, man y authors use the quality factor Q
o parameterize the tidal effects and the equation giving the tidal 
issipation is necessary to allow the comparison of the relaxation 
actor of the creep tide theory to the quality factor used in several
urrent tidal friction theories. 

In the creep tide theory, the variation of the mechanical energy is 

 Ẇ 〉 = −GMmR 

2 k f ερ

30 a 3 
×∑ 

k∈ Z 

[ (
6( � − n ) + 3 kn 

)
E 

2 
2 ,k sin 2 σk + knE 

2 
0 ,k sin 2 σ ′′ 

k 

] 
. (A7) 

r, in a first approximation, 

 Ẇ 〉 = −GMmR 

2 k f ερ

5 a 3 
( � − n ) sin 2 σ0 + O ( e 2 ) (A8) 

N.B. E 2, 0 � 1) (see Ferraz-Mello et al. 2022 ). This equation is the
ame used in other theories for motions far from the synchronization 
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