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Abbreviations List 

ALCAM: Activated leukocyte cell adhesion molecule 

AP-1: Activating protein-1 

BCR: B-cell receptor 

C2GnT1: Core 2 β-1,6-N-acetylglucosaminyltransferase 1 

cHL: Classical Hodgkin lymphoma 

CLL: Chronic lymphocytic leukemia 

CTL: Cytotoxic T lymphocytes 

CTLA-4: Cytotoxic T-lymphocyte antigen 4 

CRD: Carbohydrate-recognition domain 

DCs: Dendritic cells 

EBV: Epstein-Barr virus 

EC: Endothelial cell 

EMT: Epithelial mesenchymal transition 

4-F-GlcNAc: 4-fluoro-glucosamine  

GlcNAc: N-acetilglucosamine 

HIF-1: Hypoxia-inducible factor-1  

HMGB1: High mobility group box 1 

IDO: Indoleamine 2,3-dioxygenase 

IL: Interleukin 

KSHV: Kaposi’s sarcoma-associated herpes virus 

LacNAc: N-acetyllactosamine 

LAG-3: Lymphocyte activation gene-3 

MDSCs: Myeloid-derived suppressor cells 

MHC: Mayor histocompatibility complex 

MICA: Major histocompatibility complex class I-related chain A 

NF-B: Nuclear factor-B 

NKT cells: Natural killer T cells 

NSCLC: Non-small-cell lung carcinoma 

PDAC: Pancreatic ductal adenocarcinoma 
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PD-1: Programmed cell death protein-1 

PD-L1: Programmed death ligand-1 

PGE2: Prostaglandin E2  

PTLD: Posttransplant lymphoproliferative disorders 

Siglecs: Sialic acid-binding immunoglobulin-type lectins 

STAT-3: Signal transducer and activator of transcription-3 

TCR: T-cell receptor 

TDG: thiodigalactoside 

TF antigen: Thomsen–Friedenreich antigen 

TGF-: Transforming growth factor- 

TIM-3: T-cell immunoglobulin and mucin-domain containing-3 

TNF: Tumor necrosis factor 

Tregs: T regulatory cells 

VEGF: Vascular endothelial growth factor 

VEGFR2: Vascular endothelial growth factor receptor-2 
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Abstract  

Along with the discovery of tumor-driven inflammatory pathways, there has been 

considerable progress over the past 10 years in understanding the mechanisms leading 

to cancer immunosurveillance and immunoediting. Several regulatory pathways, 

typically involved in immune cell homeostasis, are co-opted by cancer cells to thwart 

development of effective antitumor responses. These regulatory circuits include 

engagement of inhibitory checkpoint pathways (CTLA-4, PD-1/PD-L1, LAG-3 and TIM-

3), secretion of immunosuppressive cytokines (TGF-, IL-10) and expansion and/or 

recruitment of myeloid or lymphoid regulatory cell populations.  Elucidation of these 

pathways has inspired the design and implementation of novel immunotherapeutic 

modalities, which have already generated clinical benefits in an important number of 

cancer patients. Galectins, a family of glycan-binding proteins widely expressed in the 

tumor microenvironment (TME), have emerged as key players in immune evasion 

programs that differentially control the fate of effector and regulatory lymphoid and 

myeloid cell populations. How do galectins translate glycan-containing information 

into cellular programs that control immune regulatory cancer networks? Here we 

uncover the selective roles of individual members of the galectin family in cancer-

promoting inflammation, immunosuppression and angiogenesis. Moreover, we 

highlight the relevance of corresponding glycosylated ligands and counter-receptors 

and the emerging function of these lectins as biological liaisons connecting commensal 

microbiota, systemic inflammation and distal tumor growth. Understanding the  

molecular and cellular components of galectin-driven regulatory circuits, the 

implications of different glycosylation pathways in their functions and their clinical 

relevance in human cancer might lead to the development of new therapeutic 

approaches in a broad range of tumor types.  

 

Keywords: Cancer; Galectins; Glycans; Immunotherapy; Tumor Immunity; 

Inflammation  
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1. Galectin-glycan regulatory pathways in tumor-associated inflammation and 

immunity 

Inflammation is a hallmark of cancer [1]. Chronic inflammatory conditions such 

as ulcerative colitis or chronic infections are known to increase the risk of 

carcinogenesis. In addition, independently of the role of chronic inflammation in tumor 

initiation, an influx of inflammatory cells is a universal occurrence in the 

microenvironment of established tumors. Inflammation at tumor beds includes 

differentiated and immature hematopoietic cells (primarily of the myeloid lineage), 

cytokines produced by leukocytes, fibroblasts or tumor cells, and complement 

components. Overall, inflammation promotes, rather than blunting, malignant 

progression, at multiple levels [2-4]. Firstly, inflammation fuels the proliferation and 

survival of malignant cells by activating transcription factors such as nuclear factor-B 

(NF-B) and signal transducer and activator of transcription 3 (STAT3), which drive 

proliferative and anti-apoptotic pathways. Secondly, inflammatory cells, and in 

particular myeloid leukocytes, are required for the generation of new blood vessels 

that support further tumor growth. In addition, inflammatory cells contribute to the 

formation of pre-metastatic niches that promote malignant spreading. Inflammatory 

cells and their products also impair the effectiveness of chemotherapeutic agents, and 

therefore represent a major target to gain understanding on cancer initiation and 

malignant progression, as well as for the design of novel therapeutic interventions 

[1,2].  

Along with the discovery of  tumor-driven inflammatory pathways, over the 

past 10 years there has been considerable progress in understanding cancer 

immunosurveillance and immunoediting based on the protection against development 

of spontaneous and chemically-induced tumors in animal models and the identification 

of targets for immune recognition in human cancer [5]. In fact, in the 

microenvironment of many established solid tumors, T cells can spontaneously exert 

clinically relevant pressure against malignant progression [5], and dramatically delay 

the progression of transplantable tumors [5].  Yet, in spite of these advances, a number 

of hurdles prevent the development of robust and durable antitumor responses. Thus, 

similar to inflammation, another independent although partially overlapping hallmark 

of cancer, is the ability of tumor cells to elude or thwart antitumor immunity [6]. The 
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mechanisms underlying these immune escape strategies involve: a) impairment of 

antigen presentation; b) activation of negative costimulatory signals- also called 

immune inhibitory checkpoints, including cytotoxic T-lymphocyte antigen 4  (CTLA-4), 

programmed death-ligand 1 (PD-L1), lymphocyte-activation gene 3 (LAG-3) and T-cell 

immunoglobulin and mucin-domain containing-3  (TIM-3);  and c) elaboration of a 

myriad of immunosuppressive factors such as transforming growth factor- (TGF-), 

interleukin (IL)-10 and indoleamine 2,3-dioxygenase (IDO). In addition, a number of 

regulatory cell populations, including Foxp3+ and Foxp3- regulatory T cells (Tregs), 

natural killer T (NKT) cells , myeloid-derived suppressor cells (MDSCs) and mature 

immunosuppressive dendritic cells (DCs), contribute to undermine T-cell mediated 

tumor immunity [6]. In fact, accumulating evidence highlights the clinical benefit of 

blocking immune inhibitory checkpoints, either as monotherapies (e.g. anti-CTLA-4 or 

anti-PD-1 mAb) or in synergism with other immunotherapeutic modalities, to induce 

durable cancer regression and improve overall survival in patients with various 

malignancies by overcoming cancer-induced immunosuppression [5].   

 

2.  Glycans and galectins in the tumor microenvironment (TME) 

Although the complex regulatory pathways leading to tumor inflammation and 

immunosuppression have been largely studied at the gene, mRNA and protein levels, 

the contribution of the glycome (the complete repertoire of cellular glycans) to these 

processes is poorly understood.  Because of the non-template nature of carbohydrate 

synthesis, the macro- and microheterogeneity of glycosylation patterns of cell surface 

receptors and the dynamic regulation of glycan structures in  different physiologic and 

pathologic processes, deciphering the information encoded by the cellular glycome has 

proven a difficult task [7,8]. However, in spite of these limitations, endogenous glycan-

binding proteins or lectins have been demonstrated to efficiently translate glycan-

containing information into functional cellular responses including cell cycle 

progression, chemotaxis, differentiation, cytokine synthesis and apoptosis by 

interacting with a discrete number of glycan structures [9,10].  In fact, lectins 

contribute to tumor growth and metastasis by influencing signaling thresholds of 

glycosylated receptors or by modulating cell-cell interactions in the TME, leading to 
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alterations of tumor cell migration, angiogenesis, inflammation and immune escape 

[11-13]. However, In this regard, changes in protein glycosylation profiles have been 

largely observed not only in cancer cells themselves, but also in tumor-associated 

fibroblasts, endothelial cells and immune cells [13,14].  Although the biological 

relevance of these changes is far from being completely understood, it has been 

demonstrated that inflammatory cytokines typically up-regulated in cancer, and in 

particular IL-6 and IL-1, can change the glycosylation pattern of pancreatic and 

hepatocellular carcinoma cells, which contributes to accelerate malignant progression 

[15-17]. In addition, O-glycan branching also regulates the trafficking and effector 

activity of T cells, which are the major drivers of spontaneous anti-tumor immunity 

against established tumors, as well as memory T-cell differentiation [18, 19]. The 

activity of enzymes that drive the elongation of branched structures on O-glycans is 

also influenced in T lymphocytes by a variety of cytokines such as IL-2, IL-4 or IL-15, 

with dissimilar activities [19].  

 Yet, what are the most prominent changes in glycosylation observed in the 

TME?  One of the most notable hallmarks observed during tumor progression is the 

increased frequency of β1–6 branching of complex N-glycans, resulting from enhanced 

expression of N-acetylglucosaminyltransferase 5 (GnT5; encoded by MGAT5) [20], as 

well as augmented expression of the bisecting GlcNAc branch generated by the  N-

acetylglucosaminyltransferase 3 (GnT3; encoded by MGAT3) in malignant compared to 

healthy tissues [21]. Moreover, incomplete glycosylation has been reported to be a 

common feature of cancer-associated mucins, including expression of the T antigen 

(Galβ1–3GalNAc-α1-O-Ser/Thr), also called Thomsen–Friedenreich (TF) antigen or 

expression of the Tn (GalNAc-α1-O-Ser/Thr) or sialyl-Tn antigens [22]. Furthermore, 

cancer cells may also display altered sialylation, as demonstrated by augmented 2,6-

linked sialic acid attached to external N‐acetyllactosamine (Gal-1-4GlcNAc) units [23]. 

These aberrantly expressed glycosylated structures can be specifically recognized by 

endogenous lectins, forming multivalent lectin-glycan complexes that positively or 

negatively influence malignant progression [8,24].  Although lectins can recognize 

complex glycan determinants with relatively high affinity in the submicromolar range 

[25], it has been demonstrated that the structure, number and density of glycan 
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epitopes in multivalent glycoproteins, as well as the density of glycosylated receptors 

expressed on the cell surface and the multivalent nature of some lectins, all together 

determine the avidity of lectin-glycan interactions and their signaling potency [24]. 

Modeling of these interactions revealed the formation of two- and three-dimensional 

arrangements of multivalent lectins and glycans, often termed 'lattices' [26]. Although 

these high-ordered supramolecular complexes need further characterization at the 

cellular and molecular levels, lectin-glycan interactions have been proposed to serve as 

scaffolds for organizing plasma membrane domains and modulating the signaling 

threshold of relevant surface glycoproteins including the T cell receptor (TCR), B cell 

receptor (BCR), vascular endothelial growth factor receptor-2 (VEGFR2) and cytokine 

receptors [8, 27].   

 Whereas several lectins, including C-type lectins and sialic acid-binding 

immunoglobulin-type lectins (siglecs) may regulate signaling processes and control 

regulatory programs in the TME, we focus here on galectins, an evolutionarily 

conserved family of soluble glycan-binding proteins [12]. In spite of the wealth of 

information reporting the expression of individual members of the galectin family 

during tumor progression [28], there are only few attempts to dissect the complete 

galectin signature of individual cancers [28-34]. In general, galectin-1 overexpression 

was almost universally associated with poor outcome, while expression of galectins-3 

and -9 appeared to be tumor type-dependent [28]. Interestingly, galectins may 

function extracellularly by interacting with a myriad of glycosylated receptors on the 

cell surface and extracellular matrix and regulating several processes including 

homotypic and heterotypic tumor cell adhesion, migration, epithelial mesenchymal 

transition (EMT), angiogenesis and tumor-immune escape [28, 35-38]. On the other 

hand, galectins can control critical intracellular events including oncogenic (e.g. K-ras; 

H-ras) signaling, splicing and autophagy [39-41]. However, in contrast to their 

extracellular functions, most of the intracellular events mediated by galectins take 

place through glycan-independent pathways [39].  From a structural viewpoint, 

galectins are classified into three different families: a) ‘proto-type’ galectins (galectin-

1, 2, 5, 7, 10, 11, 13, 14 and 15) which display one carbohydrate recognition domain 

(CRD) and can dimerize; b) ‘tandem-repeat’ galectins (galectin-4, 6, 8, 9 and 12) which 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 9 

contain two homologous CRDs in tandem in a single polypeptide chain; and c) the 

chimera-type galectin-3 which displays a CRD connected to a non-lectin N-terminal 

region responsible for oligomerization [42]. Although galectins lack the typical signal 

sequence required for the classical secretory pathway, most of them are externalized 

through a non-classical mechanism that is still not clearly understood [43].  

 Galectins were originally identified by their capacity to bind glycoconjugates 

bearing the N-acetyllactosamine *Galβ(1–4)-GlcNAc; LacNAc] disaccharide; however 

compelling evidence indicates substantial differences in glycan-binding specificities of 

individual members of the galectin family, which might explain differences in their 

biological activitites [44-47]. For instance, galectin-1 can bind to 2,3-sialylated and 

non-sialylated complex N-glycans containing poly-N-LacNAc residues, but does not 

bind to 2,6-sialylated glycans, whereas galectin-3 recognizes both 2,3- and 2,6-

linked sialic acid [48, 49]. Furthermore, galectin-2 exhibits reduced binding to all 

sialylated carbohydrates [50] and galectin-8 shows higher affinity for 3’-O-sulfated or 

3’-O-sialylated glycans and Lewis X-containing glycans than for neutral complex N-

glycans [51]. Surprisingly, galectin-10 recognizes mannose-containing instead of -

galactoside-related saccharides [52]. Although these carbohydrate residues are widely 

distributed among different cells and tissues and are shared by a number of 

glycoproteins and glycolipids, individual members of the galectin family may co-opt a 

selected repertoire of glycosylated receptors on different cell types, suggesting that 

additional mechanisms including protein-protein interactions, conformational 

determinants and/or orientation of glycan motifs, may also determine galectin-binding 

preferences. To illustrate this concept, galectin-1 binds to CD45, CD43 and CD7 

glycoproteins as well as to the GM1 glycolipid, while galectin-3 preferentially cross-

links CD45, CD71 and LAG-3 on the surface of T cells [53-55]. On the other hand, 

galectin-8 interacts mainly with CD44 and 1 integrin [56, 57], whereas galectin-9 binds 

to TIM-3 and CD44 on effector T cells and Tregs respectively [58, 59]. Within the 

myeloid compartment, galectin-1 binds and cross-links CD43 on DCs [60-62] and CD45 

in macrophages/microglial cells [63]. Furthermore, at different stages of endothelial 

cell (EC) activation, VEGFR2, neuropilin-1 and CD146 have been proposed as candidate 

receptors for galectin-1 and galectin-3 [37, 64-66], whereas activated leukocyte cell 
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adhesion molecule (ALCAM/CD166) has been shown to serve as a preferential counter-

receptor for galectin-8 [67]. Thus, individual members of the galectin family may co-

opt a different set of glycosylated receptors on the surface of individual cell types. 

 Interestingly, while some galectins are widely expressed, either constitutively 

or in an inducible fashion in immune cells and tissues, others have a more limited 

cellular localization. For example, galectin-1 is considerably up-regulated in 

inflammatory macrophages and immunosuppressive DCs [61, 68, 69], activated T and B 

cells [70, 71],  CD4+CD25+ Tregs and uterine NK cells [72, 73], whereas galectin-10 

expression appears to be restricted to eosinophils and CD4+CD25+ Tregs [74, 75]. 

However, galectin expression is markedly deregulated in the TME including tumor cells 

themselves and tumor-associated stromal, endothelial and immune cells through 

mechanisms involving gene duplications and/or transcriptional or epigenetic 

regulation [28, 76]. How do galectins translate glycan-containing information into 

cellular programs that control immune regulatory networks in the TME? In the next 

sections we describe pioneering work and new findings that facilitate our 

understanding of the role of galectin-glycan interactions in tumor immunity. 

 

3. Galectins shape tumor immunity through different mechanisms 

Galectins can influence a broad spectrum of immune cell processes including 

maturation, activation, differentiation, polarization, trafficking, cytokine synthesis and 

viability [47, 77]. (Figure 1). These immunoregulatory effects and the marked up-

regulation of galectins in human and mouse tumors [76] prompted the investigation of 

their roles in tumor immunity and inflammation. Studies in a melanoma model initially 

demonstrated the role of galectin-1 in tumor-immune escape through modulation of T 

cell viability and cytokine production. Targeted inhibition of galectin-1 gene expression 

in melanoma cells unleashed otherwise repressed CD4+ and CD8+ T cell responses, 

resulting in inhibition of tumor growth in syngeneic mice [78]. Supporting these 

findings, Cedeno-Laurent and colleagues demonstrated that disruption of galectin-1 

ligands using peracetylated 4-fluoro-glucosamine (4-F-GlcNAc), a metabolic inhibitor of 

N-acetyllactosamine biosynthesis, decreased tumor growth in melanoma by boosting 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 11 

antitumor immunity [79], suggesting that a dynamic galectin-1-glycan axis controls 

immune responses in the TME. Mechanistic studies revealed that this lectin acts by 

selectively deleting Th1 and Th17 cells through glycosylation-dependent mechanisms; 

these cell subsets share the repertoire of glycans (particularly high frequency of core 2-

O-glycans and low amounts of 2,6-linked sialic acid) that are important for galectin-1 

binding and apoptosis [48]. Furthermore, galectin-1 can also act by triggering the 

differentiation of human and mouse tolerogenic DCs [61] and M2-type pro-resolving 

macrophages [63, 80] and is a potent inhibitor of T-cell adhesion and transendothelial 

migration [81, 82], suggesting that this protein functions as a pleiotropic 

immunosuppressive factor in the TME.  

 Further studies in classical Hodgkin lymphoma (cHL), demonstrated that 

galectin-1 conferred immune privilege to Reed Sternberg cells  by promoting a non-

productive inflammatory infiltrate and skewing the balance toward Th2 and Treg cell 

responses [83, 84]. Interestingly, expression of galectin-1 was found to be up-regulated 

via an enhancer dependent on the AP-1 transcription factor both in cHL and in 

posttransplant lymphoproliferative disorders (PTLD), Epstein Barr virus (EBV)-driven B-

cell  malignancies [83, 85], suggesting that oncogenic viruses may usurp the galectin-1 

pathway to promote tumor growth and immune escape. Similarly, Kaposi’s sarcoma-

associated herpes virus (KSHV) up-regulates galectin-1 to promote tumorigenesis in 

both human and mouse Kaposi's sarcoma cells [36]. These findings were further 

substantiated in models of lung cancer and neuroblastoma indicating that tumor-

derived galectin-1 contributes to tumor-immune escape by shaping T cell and DC 

compartments [86-88]. Expanding these findings to other tumor types, studies in the 

4T1 breast cancer model showed that galectin-1 also contributes to 

immunosuppression and metastasis by enhancing the number and function of Tregs 

[89]. Accordingly, intraperitoneal injection of thiodigalactoside (TDG), a galectin-

binding saccharide, raised the levels of CD8+ T cells in 4T1-bearing Balb/c mice [90].  

Moreover, genetic ablation of galectin-1 in a model of pancreatic ductal 

adenocarcinoma (PDAC; EIa-myc mice) dampened tumor progression by inhibiting 

proliferation, desmoplastic reaction and by stimulating a tumor-associated T-cell 

response, yielding a 20% increase in relative mice survival  [91]. Accordingly, in co-
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culture systems, human pancreatic stellate cells enhanced apoptosis and anergy of T 

cells through galectin-1-dependent mechanisms [92], sustaining the role of galectin-1 

in tumor-immune escape. Recently, this immune evasive program was elegantly 

demonstrated in models of glioblastoma, although in this particular tumor type, 

modulation of the functionality of macrophages [93] and NK cells [94] was observed. 

Thus, galectin-1 may de-activate both innate and adaptive components of antitumor 

immunity, leading to increased tumor progression. However, although galectin-1 is 

typically up-regulated in cancer cells, in some tumor types immune and/or stromal 

cells appear to be the main galectin-1 source. Particularly, in ovarian cancer models -

T lymphocytes were found to be major galectin-1 producers that contribute to 

systemic immunosuppression [95]. Also, in human chronic lymphocytic leukemia (CLL), 

galectin-1 was found to be predominantly secreted by accompanying myeloid cells 

(nurse-like cells, macrophages and DCs) and contributed to establish the appropriate 

microenvironmental conditions required for leukemic progression [96]. In contrast, in 

patients with advanced-stage cutaneous T-cell lymphoma, malignant cells were the 

predominant supply of this lectin which contributed to immunosuppression by 

blunting T cell proliferation and skewing the balance toward a Th2 profile [97]. 

Notably, lack of CD7 rendered leukemic cells themselves resistant to galectin-1-

induced cell death, particularly in mycosis fungoides and Sezary syndrome [98, 99]. 

Most recently, in the context of hematological malignancies, Lykken and colleagues 

reported a key role of galectin-1 as a mechanism of resistance to anti-CD20 

(Rituximab) therapy in non-Hodgkin lymphoma [100]. These results emphasize the 

common role of galectin-1 in conferring immune privilege to both solid and 

hematologic tumors. 

 However, in spite of the wealth of information linking galectin-1 and tumor-

immune escape, other members of the galectin family also play important roles in 

tumor immunity. Demotte and colleagues found that galectin-3 plays a key role in 

distancing the TCR from CD8 in effector T lymphocytes, thus providing an alternative 

explanation for T-cell anergy occurring after several rounds of antigen stimulation 

[101]. The authors further demonstrated that GCS-100, a polysaccharide currently in 

clinical development, can detach galectin-3 from tumor-infiltrating lymphocytes and 
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boost cytotoxicity and secretion of antitumor cytokines [102]. These results were 

further substantiated by other findings showing inhibitory effects of tumor-derived 

galectin-3 on T-cell activation and survival [103, 104]. Furthermore, in two elegant 

studies tumor-released galectin-3 has been shown to dampen tumor immunity 

through modulation of NK cell biology. First, Tsuboi and colleagues showed that 

galectin-3 can interfere with the binding of tumor-associated major histocompatibility 

complex class I-related chain A (MICA) and NKG2D through mechanisms involving 

extension of core 2-O-glycans by the core 2 β-1,6-N-acetylglucosaminyltransferase 1 

(C2GnT1) [105]. In a subsequent study, Wang et al showed that galectin-3 can serve as 

an inhibitory ligand for human NKp30, another cytotoxic NK cell receptor, thus 

impairing NK-cell mediated immunity [106]. More recent studies demonstrated that 

galectin-3 can also influence tumor immunity through binding to LAG-3, a negative 

regulatory checkpoint, on activated antigen-committed CD8+ T cells, leading to 

suppression of cytotoxic T lymphocyte (CTL) effector function; this effect was 

accompanied by inhibition of plasmacytoid DC expansion [55].  Thus, galectin-3 may 

impair antitumor responses through multiple mechanisms involving potentiation of T-

cell anergy, activation of inhibitory receptors such as LAG-3 and inhibition of NK 

cytotoxic receptors including NKG2D and NKp30. 

 Finally, galectin-9 can also influence the course of antitumor responses through 

activation of regulatory pathways. Galectin-9 became more popular after its 

identification as a candidate ligand for TIM-3, an inhibitory receptor and T-cell 

exhaustion marker [58]. Disruption of galectin-9-TIM-3 interactions in vivo resulted in 

abrogation of T-cell tolerance in several models of autoimmunity, infection, 

transplantation and cancer [107]. Accordingly, a number of studies showed that 

inhibition of the galectin-9-TIM-3 axis decreased apoptosis of CTLs and attenuated 

tumor growth [107-109]. Interestingly, these interactions also promoted expansion of 

myeloid regulatory cells which in turn suppressed CTL responses [110] (more details 

are provided in Section 4). In contrast, other studies revealed that galectin-9 can 

instead potentiate antitumor immunity via TIM-3-dependent interactions between DCs 

and CD8+ T cells [111]. To reconcile these findings, further studies are warranted to 

dissect the inhibitory or stimulatory effects of the TIM-3-galectin-9 pathway in tumor 
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immunity. In this regard, recent studies revealed TIM-3-independent effects of 

galectin-9 and galectin-9-independent TIM-3 activities in several pathologic contexts 

[112, 113]. Supporting this notion, tumor-associated DCs in tumor models and cancer 

patients showed high expression of TIM-3 which suppressed innate immune responses 

through recognition of nucleic acids by Toll-like receptors and cytosolic sensors via a 

galectin-9-independent mechanism. In this setting, TIM-3 interacted with the alarmin 

high mobility group box 1 (HMGB1), but not with galectin-9 to inhibit recruitment of 

nucleic acids into DC endosomes [114]. Thus, TIM-3 may play distinct roles in innate 

and adaptive tumor immunity through galectin-9-dependent or -independent 

mechanisms. Interestingly, galectin-9 may also trigger tolerogenic responses through 

TIM-3-independent pathways as binding of this lectin to CD44, in the presence of TGF-

β, induced Treg cell conversion and maintained their function and stability [59]. In 

addition, recent studies indicated that galectin-9 can also act as an agonist of 4-1BB 

(CD137), a member of the tumor necrosis factor (TNF) receptor superfamily by directly 

binding to a site different from 4-1BBL, promoting 4-1BB aggregation and signaling 

[115]. Collectively, these data suggest essential, although partially overlapping 

functions of individual members of the galectin family, in regulating antitumor 

immunity (Figure 1). 

 

4. Galectin-driven regulatory pathways in 'emergency' myelopoiesis, inflammation 

and DC-mediated immunosuppression 

Tumor-induced secretion of inflammatory cytokines such as IL-1, IL-6, and 

prostaglandin E2 (PGE2) elicits pathological myelopoiesis via signaling on bone marrow 

myeloid precursors [116-118]. Sterile expanded (‘emergency’) myelopiesis is a 

mechanism co-opted by tumors that takes place to fight pathogens [119]. Pathological 

myelopoiesis leads to the accumulation of myeloid cells retained at an immature stage 

of differentiation into the blood, lymph nodes, spleen, bone marrow and tumor sites in 

cancer-bearing hosts [120, 121]. Unlike other infectious inflammatory conditions, 

however, this heterogeneous assortment of myeloid cells at different stages of 

differentiation acquires the capacity to suppress anti-tumor T cell responses in cancer 
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through poorly investigated mechanisms, and therefore turn into a cell type termed 

MDSCs. Two main subsets of MDSCs therefore represent precursors of granulocytic vs. 

monocytic cells that become immunosuppressive upon the influence of cancer-driven 

factors. Among other tumor microenvironmental cell types, both subtypes of MDSCs 

produce galectin-1, which contributes to their immunosuppressive activities, at least in 

ovarian cancer [95]. In addition, granulocytic MDSCs, which outnumber monocytic 

MDSCs by a ratio of 3:1 [122], are more active at generating immunosuppressive 

adenosine. This is critical as adenosine signaling is sufficient to drive the up-regulation 

of galectin-1 in naïve -T cells [123]. These effects can be recapitulated by incubation 

of naïve -T cells with adenosine agonists, but not with other factors such as IL-6, 

PGE2, or TGF-. Interestingly, -T cells represent the major producers of galectin-1 on 

a per cell basis in the microenvironment of human ovarian carcinomas, while galectin-

1 production turns them into highly immunosuppressive cells in a variety of 

autochthonous and transplantable tumor models [95, 123, 124]. Therefore, MDSCs 

suppress anti-tumor immunity directly, through multiple mechanisms that include the 

secretion of galectin-1, and indirectly by rendering -T cells into regulatory 

lymphocytes that produce even higher levels of galectin-1. Besides galectin-1, 

production of immunosuppressive galectin-3 has been also identified in MDSCs, 

primarily of the monocytic lineage [125]. Furthermore, TIM-3-galectin-9 interactions 

have been associated with MDSCs proliferation in preclinical models [110]. Finally, 

both galectin-1 and galectin-3 have been found to be produced by activated M2-like 

macrophages [126], the predominant phenotype in the microenvironment of multiple 

tumors. However, only the secretion of galectin-3 was significantly up-regulated in 

macrophages differentiated in vitro under M2-skewing conditions, compared to 

classically activated M1-type macrophages [126].  Thus, galectins are actively involved 

in pathological myelopoiesis associated to cancer inflammation. 

Multiple tumor-derived factors progressively abrogate the capacity of DCs to 

activate T cell-mediated anti-tumor immunity in advanced tumors [69, 127, 128]. 

Interestingly, while macrophages represent the most abundant hematopoietic cell 

type in the microenvironment of most malignancies, bona fide (but inflammatory) DCs 

are prominent in ovarian cancer masses, but not in human tumor ascites [69, 128]. 
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Because a continuum of differentiation of myeloid precursors receiving conflicting 

signals in tumor-bearing hosts complicates the categorization of myeloid populations 

in the TME, differentiating macrophages from DCs in solid tumors is more complex 

than categorizing leukocyte subsets in the steady-state. However, CD1c+MHC-II+CD19-

CD11c+ leukocytes expressing ZBTB46 at significantly higher levels than splenic 

macrophages outnumber CD11c+CD1c- macrophages in dissociated ovarian tumor 

masses, while Zbtb46+Dngr1/Clec9a+CD11c+MHC-II+CCR7+FcRI+ (inflammatory) DCs 

represent the most abundant hematopoietic cell in different autochthonous and 

transplantable ovarian cancer models [69].   

Remarkably, at least in ovarian cancer, DCs not only become ineffective antigen 

presenting cells; they are also transformed into accomplices in tumor growth and 

immune evasion through the acquisition of immunosuppressive activities. Further 

investigation of the mechanisms whereby DCs inhibit anti-tumor immunity 

demonstrated that these regulatory functions rely on the secretion of galectin-1 by 

DCs at tumor beds [69]. Galectin-1 production is driven by unremitting expression of 

the genomic organizer Satb1 in tumor-associated DCs, which occurs in response to 

inflammatory microenvironmental signals such as overexpressed S100 proteins. 

Accordingly, in vivo silencing of Satb1 in tumor-associated DCs boosted protective 

immunity by decreasing galectin-1 production, leading to significant immunological 

impairment of malignant progression [69]. The relevance of Satb1-dependent up-

regulation of galectin-1 specifically in TME DCs was further supported by additional 

experiments ectopically overexpressing Satb1 in wild-type vs. galectin-1-deficient DCs, 

which were co-administered with tumor cells into different cohorts of naïve mice. 

These studies clearly showed that tumors progress significantly faster in the presence 

of Satb1-overexpressing wild-type DCs, compared to mock-transduced control DCs. 

However, Satb1-dependent acceleration of tumor growth was abrogated when tumor-

associated DCs lacked the capacity to synthesize galectin-1. Therefore, sustained 

overexpression of Satb1 in DCs, elicited by tumor cells, drives tumor-promoting 

activities in tumor-associated DCs through up-regulation of galectin-1 [69]. These 

results are in agreement with previous studies demonstrating that galectin-1-

expressing DCs contribute to the resolution of inflammation during the course of 

autoimmune diseases [61]. 
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5. Galectins link commensal microbiota, cancer-promoting inflammation and 

immunosuppression 

Humans are colonized by trillions of bacteria, viruses, fungi and protozoan that 

populate the intestine, skin, respiratory and genitourinary tracts in a symbiotic 

relationship. Although recent studies have questioned the ratio of bacteria vs. human 

cells in a typical human being, it is still clear that commensal microorganisms 

dramatically outnumber human nucleated cells. The normal flora of humans is 

accordingly quite complex, with up to 1,000 commensal bacterial species only in the 

intestine [129]. Commensal microorganisms maintain homeostasis at mucosal 

surfaces, and influence metabolic processes, including obesity. Most importantly, 

colonization by commensal microorganisms is required for the development of a 

robust immune system and a broad repertoire of T cell receptors [130-135].  

Despite the importance of the microbiota on broad protective immune 

responses, however, the relevance of commensal bacteria in anti-tumor immunity has 

only emerged in the last two years, with independent studies demonstrating that the 

effectiveness of different immunotherapeutic approaches requires the presence of 

commensal bacteria [136, 137]. This work has been followed by additional studies 

showing that individual bacterial species (rather than the overall microbiome) can be 

used to enhance the effectiveness of both CTLA-4 and PD-L1 blockade [138, 139]. 

Besides the role of the microbiome on immunotherapeutic effectiveness, our 

studies demonstrated that commensal bacteria spontaneously modulate the 

progression of non-mucosal tumors at places that are distal from locations of bacterial 

colonization [95]. Specifically, the microbiota regulates systemic tumor-promoting 

inflammation in cancer-bearing hosts: In tumors dominated by systemic up-regulation 

of IL-6 (e.g., ovarian cancer), commensal microorganisms, in the absence of 

measurable bacterial translocation, spontaneously accelerate malignant progression 

by driving higher levels of serum IL-6. Accordingly, depletion of commensal bacteria 

with a cocktail of antibiotics results in systemic down-regulation of IL-6 and, 

subsequently delayed tumor growth, in the absence of any additional therapeutic 

intervention or any effect on the tumor cell cycle. In contrast, in tumors where IL-6 is 
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only mildly up-regulated (e.g., luminal breast cancer), IL-17 dominates tumor-

promoting inflammation through interactions with the microbiota, and depletion of 

commensal bacteria accelerates, rather than delaying, malignant progression [95].   

Remarkably, these studies demonstrate that IL-6 up-regulation driven by 

dysbiosis (changes in the equilibrium between commensal microbial communities) in 

cancer-bearing hosts leads to over-production of immunosuppressive galectins by 

multiple cell types in the microenvironment of various tumors, including ovarian 

cancer [95]. Mechanistically, IL-6 up-regulation drives MDSC mobilization in cancer-

bearing individuals. As aforementioned, MDSCs themselves, along with myeloid cells 

differentiated from them (macrophages and DCs) produce galectin-1, both at 

lymphatic (antigen priming) locations and tumor beds. Most interestingly, granulocytic 

MDSCs induce -T cells to produce galectin-1, thus rendering them into 

immunosuppressive cells that abrogate protective anti-tumor immunity (Figure 2). 

Although under-investigated, -T cells outnumber Tregs in microenvironments of 

human tumors such as ovarian and breast cancer and, as major producers of galectin-

1, could represent major therapeutic targets to restore the protective activity of 

tumor-reactive -T cells. Overall, these studies underscore the potential relevance of 

the microbiota in the glycobiology of cancer microenvironments and the effectiveness 

of anti-cancer interventions, which could differ in individual tumor types. 

Understanding how the repertoire of commensal microbes can be specifically 

manipulated to boost the benefit of immunotherapies and how galectin-glycan 

regulatory pathways could mediate these processes could open new avenues for more 

effective combinatorial interventions. Although translating the success of preclinical 

models to humans with less homogeneous repertoires of commensal bacteria, larger 

volumes of dilution and heterogeneous diets, ages and genetic backgrounds could 

bring major challenges, several lines of evidence suggest that mouse models could 

reflect the biology of human tumors with regards to the effects of the microbiota. 

Firstly, higher expression of galectin-1 is also obvious in tumors from TLR5-competent 

ovarian cancer patients, which exhibit stronger tumor-promoting inflammation, 

compared to 7% of patients carrying a heterozygous polymorphism that abrogates 

TLR5 signaling and dampens IL-6-driven tumor-promoting inflammation [95]. Secondly, 

elegant studies by Vetizou and colleagues [139] demonstrated that reconstitution of 
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germ-free mice with the particular repertoire of commensal bacteria generated in 

melanoma patients upon the administration of CTLA-4 inhibitors was sufficient to 

enhance therapeutic effectiveness after tumor challenge. Future studies on the role of 

the microbiome in forging spontaneous or immunotherapeutically driven anti-tumor 

immunity should provide further insight into the role of galectins and glycans in both 

mucosal and distal tumors. 

  

6. Galectin-glycan regulatory pathways at the interface of tumor immunity and 

angiogenesis 

Notwithstanding this article focuses on the role of galectin-glycan pathways in tumor 

immunity, the effects of these regulatory lectins in EC biology are relevant in terms of 

the intimate connections between immunosuppression and angiogenesis and the 

importance of blood and lymphatic vessels in immune and tumor cell dissemination. In 

this regard, distinct members of the galectin family, including galectins-1-, -3-, -8 and -

9 have been shown to play key roles in tumor vascularization by engaging a distinct 

repertoire of EC receptors, activating EC signaling pathways and/or regulating different 

events in the angiogenic process [13, 140-143]. We demonstrated that galectin-1 

interactions with complex N-glycans couple tumor hypoxia to angiogenesis in models 

of Kaposi's sarcoma, melanoma, lung adenocarcinoma and T-cell lymphoma [36, 37]. 

Exposure to hypoxic microenvironments up-regulated galectin-1 expression in 

different tumor types through hypoxia-inducible factor-1 (HIF-1)-dependent [144, 

145] or  NF-B-dependent [36] mechanisms. Moreover, hypoxia also favored exposure 

of galectin-1-specific ligands, as it increased the amounts of 1-6GlcNAc-branched N-

glycans and poly-LacNAc structures and reduced the levels of 2,6 sialylation on ECs 

[37]. Targeting galectin-1 suppressed vascularization in several tumor types including 

melanoma [35, 37, 146], Kaposi’s sarcoma [36], prostate carcinoma [32], lung 

adenocarcinoma [37], T-cell lymphoma [37], pancreatic adenocarcinoma [91]  and 

glioblastoma [93]. Moreover, analysis of human tumor biopsies revealed a marked 

correlation between the number of blood vessels and galectin-1 expression in prostate 

carcinoma [32], non-small-cell lung carcinoma (NSCLC) [147] and Kaposi’s sarcoma 

[36]. More recently, we identified a glycosylation-based mechanism mediated by 
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galectin-1-N-glycan interactions that serves to preserve angiogenesis in vascular 

endothelial growth factor (VEGF)-targeted therapies [37]. We found that galectin-1 

bound directly to non-sialylated N-glycans on VEGFR2, promoted segregation and 

retention of this glycosylated receptor on the surface of ECs and recapitulated VEGF-

like signaling, including VEGFR2, Erk1/2 and Akt phosphorylation. Remarkably, tumors 

that were refractory to VEGF blockade produced high amounts of galectin-1 in 

response to hypoxia or anti-VEGF treatment and their associated vasculature displayed 

glycosylation patterns that facilitated galectin-1 binding and signaling. Targeting 

galectin-1 eliminated resistance to anti-VEGF treatment, suppressed the formation of 

aberrant tumor vascular networks and augmented anti-tumor immune responses in 

several tumor models [37]. Interestingly, antibody-mediated galectin-1 blockade 

promoted transient normalization of tumor-associated vessels, which facilitated access 

of effector T cells to TME [37],  thus emphasizing the critical role of galectin-glycan 

regulatory pathways in the control of tumor vascularization and immunity.  

 

7. Conclusions and Perspectives 

In the present article, we highlight the multifunctional roles of galectins (particularly 

galectin-1, -3, and -9) in the TME with particularly emphasis on their ability to govern 

the immunological landscape of  different tumors, their involvement in vascularization 

programs and their regulatory roles in linking commensal microbiota, systemic 

inflammation and cancer immunosuppression. Because of their immune inhibitory and 

pro-angiogenic activities, targeting galectin-glycan interactions has emerged as a 

promising therapeutic approach, either alone or in combination with other treatment 

modalities, to restore anti-tumor immunity and to attenuate abnormal vascularization 

of established tumors. In this regard, a number of galectin blocking strategies with 

different degrees of selectivity for individual members of the family have been 

considered, including glycan-based inhibitors [102, 148-152], allosteric antagonists or 

peptidomimetics such as anginex, 6DBF7, 0118 or OTX008 [153-156], natural or 

modified polysaccharides such as citrus pectin [157] and anti-galectin specific 

neutralizing antibodies [36, 37, 85]. Some of these inhibitory agents have recently 
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been designed or purified, whereas others are being tested in preclinical models or are 

already undergoing clinical trials. However, before galectin-based therapeutic agents 

can be embraced in clinical settings, a more thorough understanding of the 

mechanisms involved in galectins functions is required. In this regard, a number of 

questions remain to be addressed: a) To what extent is there functional redundancy 

and specificity of action within the galectin family in the TME?; b) Are there 

therapeutic advantages in using less selective glycan inhibitors that simultaneously 

target several members of the galectin family or is it preferable to use specific 

antagonist of individual galectins?;  c) Do galectins interact with other immune evasion 

programs or do they play hierarchical independent roles in tumor-immune escape? 

Further studies are warranted to further understand the role of galectin-glycan 

regulatory pathways in the TME and their relevance in cancer immunity and 

immunotherapy. 
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Legends to Figures 

Figure 1. Galectin-driven regulatory pathways in the TME.  Galectins-1, -3- and -9 fuel 

immune evasive programs in different tumor types through activation of multiple 

tolerogenic mechanisms. Galectin-1 tilts the balance of the immune response toward a 

Th2 profile by selectively deleting Th1, Th17 and CD8+ T cells. Moreover, it drives the 

differentiation of T regulatory cells (Tregs), endows dendritic cells (DCs) with 

tolerogenic potential, polarizes macrophages toward an anti-inflammatory M2-type 

profile, inhibits NK cell recruitment and limits transendothelial T-cell migration. In 

addition, this lectin is a key player of a regulatory circuit that links commensal 

microbiota, systemic inflammation and tumor growth through mechanisms involving 

expansion of myeloid-derived suppressor cells (MDSCs) and -T cells. Interestingly, 

galectin-1-glycan interactions can also couple tumor hypoxia to vascularization and 

preserve angiogenesis in tumors refractory to anti-vascular endothelial growth factor 

(VEGF) treatment.  On the other hand, galectin-3 acts by restricting T cell receptor 

(TCR)-mediated signaling and promoting T-cell anergy and exhaustion by distancing the 

TCR from CD8 and engaging LAG-3 on the surface of CD8+ T cells. In addition, this lectin 

impairs the antitumor activity of NK cells by inhibiting NKp30-mediated cytotoxicity 

and interrupting NKG2D-MICA interactions. In addition, galectin-3 may also control the 

expansion of tumor-associated plasmacytoid DCs. Finally, galectin-9 confers immune 

privilege to tumor cells through TIM-3-dependent or -independent mechanisms. While 

it selectively kills terminally-differentiated TIM-3+ Th1 and CD8+ T cells, it also binds to 

CD44 and cooperates with TGF-1 to promote Treg cell differentiation and favors 

expansion of immunosuppressive MDSCs. Galectin-1 (green) is indicated as a non-

covalent homodimer each containing one carbohydrate-recognition domain (CRD), 

galectin-3 (light blue) is indicated in its pentameric structure and galectin-9 (purple and 

blue) is depicted as two CRDs in tandem connected by a linker peptide. 

 

Figure 2. Galectin-1 links commensal microbiota, tumor-promoting inflammation and 

immunosuppression. In the presence of a tumor, TLR5-dependent crosstalk between 

commensal bacteria (purple and brown) and hematopoietic cells at mucosal surfaces 
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boosts the up-regulation of IL-6 in the blood stream. Systemic up-regulation of IL-6 

promotes pathological myelopiesis, leading to the mobilization of galectin-1-producing 

myeloid-derived suppressor cells (MDSCs). Granulocytic MDSCs, to a greater degree 

than their monocytic counterparts, render -T cells with anti-tumor potential into 

galectin-1-secreting immunosuppressive players, representing 6% of total T cells in 

the TME. By producing galectin-1, -T cells dramatically impair the anti-tumor activity 

of effector T cells at tumor beds, thus fueling malignant progression in a microbiota-

dependent manner.  
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Highlights 

 

*Galectins are key players in immune evasion programs in cancer 

 

*Galectins-glycan interactions control immune and endothelial cell compartments 

 

*Galectin-1 links commensal microbiota, systemic inflammation and tumor-immune escape 

 

*Targeting galectin-glycan interactions may contribute to unleashing antitumor immunity 




