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ABSTRACT: This paper presents a comprehensive risk-averse multistage
model for dealing with the design and planning problem of a closed-loop
supply chain (CLSC) considering adjustments in the supply chain structure
during the planning horizon as well as uncertainty in supply and customer
demands. The stochastic approach addresses a problem of a generic
multiperiod multiproduct CLSC with a general network structure of ten
types of entities, risk-averse objectives associated with both costs and
revenues, a flexible network structure, transport capacity, salvage grade of
returned products, CO2 emissions of the transport system, as well as
minimum and maximum storage and processing capacity limits for network
entities. A key aspect of the proposed work is to cope with a multiobjective
function where the maximization of the expected profit is combined with
the fundamental idea of risk management incorporated through the explicit
trade-off between risk associated with costs and revenues. To the authors’
knowledge, the joining of the considerations of risk management and aspects related to the opening/closing of entities during the
planning horizon in a multistage stochastic context has not yet been considered. With the objective of achieving more reliable
solutions, five objective functions that include risk-averse criteria are considered. A sensitivity analysis of the approach
performance considering changes in the parameters associated with the risk metrics is conducted. Variations in the relevance of
the risk quantification are carried out in order to show the trade-off between solution quality and handling of uncertainty.

1. INTRODUCTION

A closed-loop supply chain (CLSC) couples the traditional
concept of a forward network with the reverse logistic processes
where the path that follows products after being discarded by
customers is explicitly considered.1 The final aim of managing
product recovery, remanufacturing, disassembly, and parts
reusing with the flow of new products is to exploit the
economic and environmental opportunities provided by this
integration. The growing interest of researchers and practi-
tioners in the joint study of forward and reverse networks has
been recently observed to be justified by the need of dealing
with the increasing shortage of natural resources, the necessity
of reducing waste levels, and the emergence imposed by new
government regulations.2,3

Closed-loop supply chains generally lead to more complex
management problems than the traditional supply chains,4 as
they involve greater number of entities, flows of different types
of products with different rates of recovery, and diverse material
inventories. In addition, the coordinated management of such
systems is strongly affected by the business environment
volatility, and the need to account for uncertain parameters has
been widely recognized as an increasingly important issue in
supply chain and operations management research.5,6,1 This
increasing complexity requires decisions supporting tools to

support the decision process that span from strategic to
operational decisions.
In this context, the design problem of closed-loop supply

chains is a strategic issue that requires informed decisions, as its
effects will last for long periods, during which some parameters
can vary due to the business environment. Considering an
uncertain business environment where opening and closing
network entities are a long and expensive process, inappropriate
network entities selection is undesirable. Customers’ demands,
supply levels of raw material, as well as quantity and quality of
returned products are critical parameters with quite uncertain
values in such systems.
Given the previous mentioned issues, it is important to note

that the use of stochastic programming techniques is
unavoidable for CLSCs design and planning. In particular, the
two-stage stochastic programming7 appears as an appropriate
form of modeling this uncertain environment where design
decisions are considered as first stage variables and the planning
variables are the second stage variables, which are based on the
realization of the uncertain events. Nevertheless, most two-
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stage stochastic programming formulations consider expected
costs/profits as the objective function. Formulations of this
type are called risk-neutral approaches, because they consider
the weighted average of relevant magnitudes of problems
without paying explicit attention to particular uncertain events
whose statistical characteristics differ from the expected
values8,9 and their occurrences can produce significant negative
effects over particular magnitudes of the problems.
Risk-neutral formulations are not, however, the most

adequate form of addressing CLSC problems, and risk-averse
modeling approaches should be explored in order to search
“immunized” solutions10,11 against the possibility that, due to
particular events not considered in the risk-neutral formula-
tions, significant negative effects occur over certain magnitudes
of the problems. CLSCs should be reliable with respect to
certain events associated with the uncertain parameters in order
to control their impact during the time horizon. Risk-averse
approaches provide adequate solutions to such problems.7 In
these models the reliability of an optimization framework can
be associated with the suitable selection of a utility function or
risk measure, which can be incorporated into a given stochastic
formulation as an objective function and/or constraints. The
advantages of such models are both theoretical and practical.12

To this end, it is worth noting that there is a big diversity of risk
measures that show good characteristics in comparison with
objective functions based on expected values. Three of the most
employed measures in financial and management optimization
problems are Value at risk (VaR), Conditional value at risk
(CVaR), and Mean absolute deviation (MAD).12−16

MAD is a measure to overcome the computational
weaknesses of variance where not only the negative deviations
but also the positive deviations with respect to a mean point are
penalized. VaR is used to quantify and control the worst
expected loss over a given horizon under certain market
conditions at a given level of confidence. CVaR, introduced by
Rockafellar and Uryasev,17 is similar to VaR; however, CVaR
results by computing a weighted average between the value at
risk and losses exceeding the value at risk. VaR, CVaR, and
MAD have proved their advantages in financial areas and
disaster management.7,15 One of the most important features is
that these measures have acceptable practical implementation.
It is important to note that Rockafellar and Uryasev17,18 showed
that CVaR is superior to VaR in optimization applications. This
conclusion is based on the analysis of different features of the
measures, for example mathematical properties, stability of
statistical estimation, and simplicity of optimization procedures.
In this paper, the problem of design and planning CLSCs

under uncertainty is addressed with a multistage stochastic
approach. The formulation proposed in this paper has a
number of novel features. Adjustments in the network structure
during the planning horizon are considered representing the
dynamic nature of the closed-loop supply chain structure due to
volatile market conditions adopting corrective choices in the
planning period. The formulation determines an initial network
configuration at the beginning of the planning horizon, which is
effective for all uncertain conditions in the next periods, and it
takes reparative operational and structural decisions in each
time period, taking into account the uncertainty previously
realized. To the best of our knowledge, the design problem
considering a fix network structure determined at the beginning
of the first time period and a flexible network structure at the
start of subsequent periods has not been addressed in this
manner in other multistage approaches. Furthermore, since the

objective of the work is to avoid the profit risk given by the
uncertain supply levels of raw material and customers’
demands, five risk adversity measures are incorporated on the
multistage framework. While two of the objective functions are
based on the mean absolute deviation, the other three measures
are centered on the conditional value at risk (CVaR) concept.
So far, there is no previous research that includes, in a
comprehensive way, the dynamic nature of the closed-loop
supply chain structure and risk-averse metrics related to the
network profit. In addition, in the formulation, the risks of costs
and revenues are explicitly considered. With respect to other
approaches, in this work the risk measures are applied
separately to both revenues and costs in order to quantify the
risks associated with the decreasing of revenues and increasing
of costs. It is important to note that in the decision making
procedure of the CLSC design and planning, in addition to
considering the risk of profit, the trade-off between revenues
and costs must be taken into account. Finally, this paper
includes a comparative study of the proposed risk measures
when the multistage stochastic approach is applied to a case
study. The results obtained using the risk measures are
compared with a traditional risk-neutral measure: the expected
profit. The computational performance of the proposed
approach is evaluated. The advantages of using risk-averse
measures considering the quality of the solutions are explored.
Thus, extreme values for costs, revenues, and profit for the
solutions obtained with the different performance measures are
shown.
The remainder of this paper is organized as follows. Section 2

presents an analysis of the relevant literature related to the
CLSC design and planning problem under uncertainty where
risk considerations are taken into account. In Section 3, the
underlying problem description is stated. In Section 4, a
multistage mathematical framework able to represent the
dynamic nature of the network structure is proposed for the
multiperiod, multiproduct CLSC design and planning problem
with uncertain levels in the amount of raw material and
customer demands. Costs associated with production, storage,
transportation, and remanufacturing are considered. For the
transportation costs, not only operational costs are accounted
for but also CO2 emissions costs are modeled. In Section 5, an
example is presented in order to highlight the benefits of the
formulation introduced. In Section 6, an analysis of results is
performed to illustrate the advantages of using the presented
risk-averse formulation. Finally, concluding remarks are given in
Section 7.

2. LITERATURE REVIEW
In this section a summary of the most closely related papers to
the topic of this work is presented. For further details, the
authors suggest reading the review works by Guide and Van
Wassenhove,4 Souza19 and Govindan et al.20 As pointed out
before, a critical and necessary issue to be considered in CLSC
in a volatile market is the design and planning problem, so as to
avoid the definition of nonadequate structures that will last for
long time periods. In addition, since the effects of the
occurrence of given negative uncertain events can be magnified
and impact substantially on the CLSCs performance, the
handling of risk in these systems is always desirable.
In general, the handling of uncertainty in an optimization

context is associated with the development of frameworks that
select the best solution according to a given performance
measure among those solutions less affected by data variations.
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Thus, the necessity of frameworks to deal with the uncertain
market conditions in the design and planning of CLSCs is
unavoidable. Some of the most recent and relevant papers
associated with the design and planning of CLSCs with
uncertain parameters are by Salema et al.;21 Francas and
Minner;22 Pishvaee et al.;23 Lee and Dong;24 Pishvaee et al.;25

Zeballos et al.;26 Amin and Zhang;27 Cardoso et al.;1 Zeballos
et al.;28 as well as Khatami et al.29

The work of Salema et al.21 was one of the first works
addressing the design and planning of CLSC under uncertainty.
A generic reverse logistics network was modeled where capacity
limits, multiproduct management, and uncertainty on product
demands and returns were accounted for. The uncertainty was
considered while minimizing the CLSC cost. Francas and
Minner22 used a two-stage stochastic framework with the
objective of studying optimal capacity acquisition and expected
performance in a CLSC under uncertain demand and returns.
The approach was applied to two different fixed network
structures and two different market structures when new and
remanufactured returned products are flowing through the
network. The formulation objective is to maximize the expected
profit. Pishvaee et al.23 developed a scenario-based stochastic
approach for an integrated forward/reverse network design
with demands, quantity, and quality of returns as well as
variable costs as uncertain parameters. The network considered
in the paper includes production/recovery, distribution−
collection centers, customer, and disposal centers. The model
is developed for minimizing the expected costs. Lee and
Dong24 proposed a two-stage stochastic programming model
for the design of a multiperiod network. Uncertainty is
considered in the demand of forward products and in the
supply of returned products at customers. The authors
developed a heuristic algorithm based on simulated annealing
in order to solve real case studies. In addition, the formulation
considers as objective function the minimization of the sum of
current investment costs of building facilities and expected
future processing and transportation costs. Pishvaee et al.25

proposed a model based on robust theory (Ben-Tal and
Nemirovski30) for single-product, single-period forward and
reverse chains considering production/recovery, hybrid dis-
tribution/collection centers, customers, and disposal centers.
The formulation takes into account as uncertain parameters
demand, quantity of return flows, as well as transportation costs
while minimizing the total costs, which include fixed opening
costs and transportation costs. Zeballos et al.26 introduced a
two-stage scenario-based modeling approach in order to deal
with the design and planning decisions in multiperiod,
multiproduct CLSCs subject to uncertain conditions. In their
paper, uncertainty is associated with the quantity and quality of
the flow of products of the reverse network. The approach is
developed with the underlying objective of the expected profits
maximization. Amin and Zhang27 proposed a mathematical
stochastic programming approach based on scenarios for a
single-period multiproduct CLSC location problem considering
demand and return as uncertain parameters, and including
environmental factors on the objective function. The network
considered by Amin and Zhang27 takes into account multiple
plants, collection centers and demand markets. The model is
proposed to minimize the expected costs. Cardoso et al.1

developed an optimization framework for generic CLSCs under
an uncertain products demand context. The formulation
objective is to maximize the expected net present value while
the entity capacity expansion and dynamic transportation links

are considered. Zeballos et al.28 proposed a multistage
stochastic model for addressing the design and planning of a
general CLSC, structured as a 10-layer network with uncertain
levels in the amount of raw material supplies and customer
demands. The framework performance measure is to minimize
the expected cost minus the expected revenue due to the
amount of products returned, from repairing and decom-
position centers to the forward network. Khatami et al.29

introduced a two-stage mathematical formulation for designing
a multiperiod multicommodity CLSC network under un-
certainty. The model determines the initial capacity of new
facilities and the amount of capacity expansion for existing
ones. The formulation objective function is to minimize the
investment costs and the expected value of the operational
costs. In addition, to solve a real-life case, the authors applied a
Benders’ decomposition method.
The above papers consider as objective function expected

values of some relevant magnitudes (e.g., cost, revenue, and
profit), and the effect of risk is not taken into account.
Therefore, the approaches are risk neutral. Few papers have
been proposed including risk-averse formulations in SC
management. Some of the most recent and relevant works in
SC are by Soleimani et al.,12 Gebreslassie et al.,31 Cardoso et
al.,32 and Subulan et al.33 Soleimani et al.12 developed a two-
stage stochastic framework to deal with the single-period
location−allocation problem in a CLSC with demand and
prices of new and return products as uncertain parameters. The
authors used three types of risk measures as risk criteria: MAD,
VaR, and CVaR, when the total profits are considered as an
objective function. It is important to note that risk measures are
applied only to costs, and revenues are considered in the
performance measure as expected values. Gebreslassie et al.,31

proposed a bicriterion, multiperiod, two-stage stochastic
approach to address the optimal design of hydrocarbon
biorefinery supply chains under supply and demand un-
certainties. The model objective is the simultaneous mini-
mization of the expected annualized cost and the financial risk.
The authors applied CVaR and downside risk in order to
minimize the risk associated with scenarios whose costs exceed
certain limits. The formulation determines the optimal network
design, technology selection, capital investment, production
planning, and logistics management decisions. Cardoso et al.32

introduced a model for the design and planning of CLSCs
under only demand uncertainty that maximizes the expected
net present value (ENPV) and minimizes risk associated with
net present value (NPV). The authors implemented four risk
measures (variance, variability index, downside risk, and CVaR)
in order to compare their performances. In this work the risk
measures address the NPV as a global function where the trade-
off between the particular risks connected with the increment of
costs and decrease of revenues is not explicitly represented.
Subulan et al.33 introduced a multistage scenario based
stochastic and possibilistic approach for the optimal design
for the CLSC network of the lead/acid battery industry with
financial and collection risks. The authors included in the
approach different risk measures, such as variability index,
downside risk, and CVaR, in order to take into account the
total cost and the total collection coverage as general objective
functions.
From the analyzed works it can be concluded that few works

have addressed the design and planning of generic CLSCs
under uncertainty while simultaneously considering a risk-
averse objective related to profit. In addition, most of the

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b03647
Ind. Eng. Chem. Res. 2016, 55, 6236−6249

6238

http://dx.doi.org/10.1021/acs.iecr.5b03647


mentioned works addressed only the risk associated with costs
without considering the network revenues. Thus, a key aspect
of the proposed work is the consideration of a multiobjective
function where the maximization of the expected profit is
combined with the fundamental idea of risk management
incorporated through the explicit trade-off between risk
associated with costs and revenues. On the other hand,
opening/closing entities during the planning horizon has
almost not been considered in a multistage stochastic approach.
Thus, based on the mentioned related papers and to the best of
our knowledge, a joint consideration of problem aspects, such
as (1) a generic multiperiod multiproduct CLSC with a general
network structure of ten types of entities, (2) risk-averse
objectives associated with both costs and revenues, (3) a
flexible network structure, (4) transport capacity, (5) salvage
grade of returned products, (6) CO2 emissions of the transport
system, as well as (7) minimum and maximum storage and
processing capacity limits for network entities, has not been
addressed in a comprehensive manner in a multistage stochastic
approach. Moreover, this paper presents a comprehensive
comparison of several risk metrics for the design and planning
problem under uncertainty in supply and customer demands.

3. PROBLEM STATEMENT

The problem addressed in this article deals with the design and
planning problem of CLSCs under uncertain conditions. The
proposed network structure is general, including 10 types of
entities: raw material suppliers, factories, warehouses, distribu-
tion centers, customers, collection centers, dismantlers,
repairing centers, final disposal locations, and decomposition
centers. Facilities can be opened/closed at the beginning of any
time period during the time horizon. Figure 1 illustrates the
studied network structure and the possible product flows
among the entities. The product types and quantities to be
manufactured, transported, stored, and recycled are determined
for each period, taking into account the decisions adopted in
the previous periods. The problem objective is to determine the
design and the planning of the network for each period while
network profits are maximized. A part of the problem is
intended to find the initial network design that copes with the
uncertain parameters, and guarantees the network performance

stability where changes to particular realizations of the scenarios
are allowed.
The problem features considered in this paper can be stated

as follows. The planning horizon is divided into several time
periods. Locations and capacities of possible network entities
are known in advance. The opening/closing of the network
entities is decided at the beginning of each period. Types and
capacities of possible transport system units, as well as the
distances between entities, are known and fixed. Products
flowing through the network are grouped according to their
salvage grade (e.g., nonreusable, partially reusable, fully
reusable). Customers are not able to distinguish between new
and recycled products. The unit costs of storage, transportation,
purchasing, and CO2 emissions are known and fixed. The
number of recycled products depends on the satisfied demand
level. Not all products are recovered after being purchased by
customers. Rates at which products discarded by end users flow
through the reverse network depend on their origin and
destination entities. The uncertainties arise from the customer
demand and raw material supply. Minimum and maximum
storage capacity limits for network entities are enforced. Plants
have maximum and minimum processing levels.

4. PROBLEM FORMULATION

A stochastic approach is employed to deal with different
uncertain levels of customer demand and raw material supply,
as well as to incorporate it in a multiperiod design-planning
model. Thus, among all feasible solutions to the design and
planning problem explicitly considering the measurement of
the risk associated with costs and revenues, the formulation is
oriented to find the solution that should remain almost
invariant in performance when the parameters adopt any of the
uncertain values. In order to address the risk, several popular
functions based on variance and CVaR are considered. Five
functions are considered with the objective of evaluating the
advantages/disadvantages of such measures when solving the
design and planning problem of CLSCs with a multistage
stochastic approach.
Owing to the fact that, in this paper, the design of the

network can change during the time horizon, design decisions
must be determined at the beginning of the first time period

Figure 1. Network structure.
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(t0), and reviewed at the start of subsequent periods (t1 to tf‑1),
so as to contribute to the maximization of the objective
function. Tactical decisions, such as those related to
production, transportation, distribution, and storage, are
determined at the beginning of the periods t1 to tf. Following
a multistage stochastic formulation structure, the approach
adopts the network design decisions of the first period (t0) as
the “first-stage variables”. That is, these variables are the ones
that must be determined before the resolution of the
underlying uncertainty and, therefore, the values taken by
these variables must be consistent with all possible uncertain
conditions. Oppositely, the design variables corresponding to
periods t1 to tf‑1 as well as the decisions related to operational
activities (production, transportation, distribution, and storage)
are variables subject to adjustment when specific realizations of
uncertain parameters occur. The last mentioned set of variables
is associated with different stages, and it is used to fix any
infeasibility taking place due to a given revelation of the
uncertain parameters. It is worth noting that, given the
multistage nature of the formulation, there is a subset of
variables in each time period. Thus, the approach is able to
represent the dynamic nature of the closed-loop supply chain
due to each subset of variables that allow adopting corrective
decisions considering the uncertainty previously realized and
the network configuration determined by the first stage
variables.
In the proposed formulation the uncertainty of the supply

and demand is represented by a finite number of scenarios due
to the assumption that the real probability distribution can be
approximated by discrete probability distributions. Given the
mentioned assumption and the Bmulti-stage nature of the
formulation, a multilayered scenario tree is used to address the
uncertainty since demand and supply are considered as
dynamic parameters varying through the time periods. Each
tree node represents the individual effects of two uncertain
parameters (demand and supply), since they are considered as
independent stochastic processes. Therefore, a given level of
demand and supply at a given time period is represented by a
node. A scenario is formed by the nodes located on the ensuing
branch tree, starting with the root node and ending with a
particular leaf node at the last time period. Each node in the
scenario tree represents a possible company operating state,
linked to specific levels of demand and supply.
4.1. Model. The general goal of the stochastic model is to

maximize the company profit, taking into account costs due to
raw material consumption, storage, transportation, CO2
emissions, as well as facility costs. The approach aims at
generating the CLSC design for the first period, while at the
same time evaluating possible changes in the network structure
as well as the planning activities (production, transportation,
distribution, and storage) at the next time periods. The network
structure variations and the planning decisions protect the
corporation against all the possible outcomes characterized in
the considered scenarios. In addition, the use of the framework
avoids minor alterations of the uncertain parameters that cause
significant changes in the network performance.
It is worth noting that the risk management can be

incorporated into the formulation by means of suitable utility
functions and/or into constraints. In this work, the risk is
mainly taken into account through the objective functions,
which have some associated constraints. Considering the
importance of the performance measure in stochastic
approaches, in this paper six performance measures are

considered: the expected profits and five types of measures
that include risk aversion. The expected profits do not consider
the effects of the variability of random outcomes, and it is
included for comparative purposes. Alternatively, the other five
measures are appropriate for quantifying the risk. In addition,
they can be included in mathematical approaches without
changing the linear condition of the formulation. It is important
to note that the incorporation of risk criteria in optimization
formulations allows coping with real volatile markets, by trying
to achieve solutions less affected by changes in the uncertain
parameters.
Having in consideration the problem description, the

mathematical formulation of the multistage stochastic linear
programming approach is presented next. The description
starts with the objective functions. Model nomenclature is
included in Appendix A.

4.1.1. Objective Functions. Different elemental terms
compose the objective functions presented below. Starting
with the term in eq 1, RVN, this represents the revenues
achieved by selling products to customers. It is computed for
each scenario s considering time periods t1 to tf, all
transportation modes and all products sent to customers (Ic)
from warehouses (Iw) and distribution centers (Idc). It is
important to note that each scenario s ∈ SC is defined by a
given sequence of events Ωnt from the root node until a
particular leaf node at the last time period. Ωnt denotes the
events es ∈ Es and ed ∈ Ed that occur for node n at time period
t.

∑ ∑ ∑ ∑ ∑
ϵ ϵ ∪ ′ϵ ϵ ϵ ϵ ∩

′pp xRVN :
t T t i I I i I p PR r TR n NS NT

pt ii prtns
/ ( ), { }w dc c s t0 (1)

Term 2, PRT, denotes the revenues obtained by introducing
recovered products/materials into the forward network. It is
computed for each scenario s considering time periods t1 to tf,
all transportation modes and all products that are returned
from the reverse network to the forward network (Arf).

∑ ∑ ∑ ∑ ∑
ϵ ′ϵ ϵ ϵ ϵ ∩

′pc xPRT :
t T t i i A p PR r TR n NS NT

pt ii prtns
/ , { }rf

s t0 (2)

Term 3, COF, symbolizes the costs for opening facilities at
the beginning of the planning horizon (t0). Time t0 corresponds
to the root node of the tree scenarios, and is common for all
scenarios s.

∑ ∑ ∑
ϵ ϵ ϵ

fcc yCOF:
i I t T t n N n

i itn
/ /0 0 (3)

Term 4, COCF, represents the costs for opening and closing
facilities for periods t1 to tf‑1, which is dependent on the
scenarios. It is computed for each scenario s considering all
entities available in the network.

∑ ∑ ∑

∑ ∑ ∑+

ϵ ϵ ∪ ϵ ∩

ϵ ϵ ∪ ϵ ∩

fco yc

fcc yo

COCF :
i I t T t t n NS NT

i itn

i I t T t t n NS NT
i itn

s
\{ } { }

\{ } { }

f s t

f s t

0

0 (4)

Term 5, TEC, denotes the transportation and CO2 emissions
costs of the forward and reverse networks, for each trans-
portation mode and product, considering time periods t1 to tf. It
is computed for each scenario s considering all products
transported between two entities (A).
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∑ ∑ ∑ ∑ ∑ +
ϵ ′ϵ ϵ ϵ ϵ ∩

′ ′ ′ ′dst c ee xTEC : ( )
t T t i i A p PR r TR n NS NT

ii ii rt ii rt ii prtns
\ , { }s t0

(5)

Term 6, PUC, represents the purchasing costs of raw
material transported from suppliers to plants. It is computed for
each scenario s considering all products, transportation modes,
and time periods t1 to tf.

∑ ∑ ∑ ∑ ∑
ϵ ′ϵ ϵ ϵ ϵ ∩

′u xPUC :
t T t i i A p PR r TR n NS NT

ipt ii prtns
\ , { }sf

s t0 (6)

Term 7, STC, denotes the storage costs over time periods t1
to tf and all entities as well as products.

∑ ∑ ∑ ∑
ϵ ϵ ϵ ϵ ∩

stc zSTC :
t T t i I p PR n NS NT

ipt iptns
\ { }s t0 (7)

4.1.1.1. Expected Profits. The performance measure (eq 8)
is included in the work for comparative purposes due to it being
the main objective function employed in risk-neutral
formulations.

= −

−

Maximize Expected Profits

Expected Revenues Expected Operational Costs

Supply Chain Structure Costs (8)

The expected profit is computed using terms 9 and 10. Term
9, ER, represents the expected revenues by selling new and
recycled products. On the other hand, term 10, EOC, denotes
the expected operational costs related to raw material
consumption, storage, transport, and emissions. Thus, terms
RVNs, PRTs, COCFs, TECs, PUCs, and STCs (eqs 1, 2, 4, 5, 6,
and 7), which depend on the scenario s∈SC and the occurrence
probability (Pbs), are employed to compute ER and EOC. The
supply chain structure costs (COF) were defined above in eq 3.
Finally, the expected profits (EP) (eq 11) include three
elements: the expected revenues (ER), the expected operational
costs (EOC), and the supply chain structure costs (COF). It is
worth noting that only the first two terms depend on the
scenarios. Thus, the objective function of the model (OFEP),
which is shown in term 12, is the maximization of the expected
profits (ER-EOC), minus the costs for opening facilities at the
beginning of the planning horizon (COF).

∑ +
ϵ

Pb RVN PRTER: ( )
s SC

s s s
(9)

∑ + + +
ϵ

Pb COCF TEC PUC STCEOC: ( )
s SC

s s s s s
(10)

− −ER EOC COFEP: (11)

EPOFEP: max (12)

4.1.1.2. General Form of the Objective Function with a
Risk Measure. In this section, five performance measures are
considered. The general form of the objective functions taking
into account the risk aversion is

λ

= −

− −

Maximize Profit Variability

Expected Revenues Expected Operational Costs

Supply Chain Structure Costs Risk Measure( )
(13)

The objective function regards the expected revenues and
costs as well as a risk measure. It is worth noting that the
general form of the proposed performance measure can be
considered as a mean-risk framework. The last term is affected
by a non-negative weighted factor (λ), which is a trade-off
coefficient representing the relationship between the risk and
the expected values.

4.1.1.3. Linear Measure of the Profits Variability (LMPV).
LMPV is an absolute deviation, as proposed by Yu and Li,34

which is converted to a linear formulation by introducing non-
negative deviational variables (Wagner35). This measure is used
in this work with the objective of avoiding the quadratic term
that includes the traditional Markowitz mean-variance model.
The LMPV uses two deviational variables (dvrs and dvcs)
subject to original problem constraints and additional soft
constraints. While dvrs is used for quantifying the revenues
variability, dvcs is employed for computing the costs variability.
Thus, terms 14 and 15 denote the practical implementation of
the linear measure of the revenues variability (LMRV) and the
linear measure of the costs variability (LMCV), respectively.
On the other hand, constraints 16 and 17 are the additional soft
constraints in order to ensure positive values of the difference
inside the absolute function for revenues and costs. The
deviational variable dvrs is equal to zero (dvrs = 0) when (RVNs
+ PRTs) is greater than ER. On the other hand, if ER is greater
than (RVNs + PRTs), then dvrs = ER − (RVNs + PRTs). The
deviational variable dvcs is equal to zero (dvcs = 0) when EOC is
greater than (COCFs + TECs + PUCs + STCs). In contrast, if
(COCFs + TECs + PUCs + STCs) is greater than EOC, then dvcs
= (COCFs + TECs + PUCs + STCs) − EOC. Finally, the
objective function OFLMPV (eq 18) is to maximize a
combination of three terms, EP, LMRV, and LMCV, subject
to original problem constraints and terms 16 and 17

∑ + − +
ϵ

Pb RVN PRT ER dvrLMRV: [ (( ) ) 2 ]
s SC

s s s s
(14)

∑ − +

+ + +
ϵ

Pb EOC COCF TEC

PUC STC dvc

LMCV: [ ( (

)) 2 ]

s SC
s s s

s s s (15)

− + ≤ ∀ ∈ER RVN PRT dvr s SC( )s s s (16)

+ + + − ≤

∀ ∈

COCF TEC PUC STC EOC dvc

s SC

( )s s s s s

(17)

λ− +EP LMRV LMCVOFLMPV: max ( ) (18)

4.1.1.4. Modified Linear Measure of the Profits Variability
(MLMPV). In this case, the objective function OFMLMPV (eq
41) is a variation of OFLMPV, where constraints (eqs 16 and
17) as well as the deviational variables dvrs and dvcs are used to
compute only the revenues decrement as well as the costs
increment, respectively. While the term in eq 19 denotes the
practical implementation of MLMPV, constraints (eqs 16 and
17) are the additional soft constraints in order to determine the
difference between the expected values and the magnitudes of
each scenario for revenues and costs. Therefore, the use of
OFMLMPV includes also constraints (eqs 16, 17, and 19).
From a practical point of view, this objective function penalizes
the set of scenarios associated with the occurrences of uncertain
parameters that decrease the revenues and increase the costs of
the company.
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∑ +
ϵ

Pb dvr dvcMLMPV: [ ( )]
s SC

s s s
(19)

λ−EP MLMPVOFMLMPV: max (20)

4.1.1.5. Conditional Value at Risk. The following three
objective functions use the concept behind the mathematically
well-behaved risk measure conditional value at risk. CVaR is a
popular tool for managing risk, which has been shown to be
superior to VaR in optimization applications (Rockafellar and
Uryasev17,18). Since in the proposed work it is assumed that the
uncertain parameters are represented by a finite number of
scenarios, the three performance measures use the CVaR
function obtained by Noyan7 for the case of finite probability
space.
The first risk measure used in this paper is CVaRc (eq 21),

which is employed to reduce the likelihood that the design and
planning of a given CLSC incur large costs for certain scenarios.
When considering large confidence levels (small values of
parameter αc), more scenarios are taken into account during
the search process, and therefore, the solution becomes more
averse to incurring large costs. Thus, formally, the confidence
level is associated with the complement of parameter αc (1 −
αc). The practical implementation of the risk measure that
exceeds a given value at risk imposed by a confidence level
requires the soft constraint (eq 22) in order to determine the
difference between a given level of costs (ηc) and the costs of
the scenarios that are outside of the confidence interval. ηc is
determined during the optimization process as a function of the
selected confidence level. The deviational variable dvηcs is
greater than zero when (COCFs + TECs + PUCs + STCs) is
greater than ηc. Thus, the variable dvηcs quantifies the
increment of the costs of certain scenarios when their values
are greater than ηc.
The performance measure to be maximized is OFCVaRc (eq

23), which requires the inclusion of constraints 21 and 22. The
final form of the objective function is obtained after considering
simultaneously the expected profits and risk measurement
considering only the costs variability. In this case, OFCVaRc
includes three terms: the expected profits (ER-EOC), the cost
for opening facilities at the beginning of the planning horizon
(COF), and the term CVaRc. It is important to note that COF
does not depend on the stages and it is affected by the factor (1
+ λ) due to the application of the CVaR concept to the costs
variability. The steps for achieving the utility function (eq 23)
from a performance measure of the type Mean-CVaR was
proved by Noyan.7

∑η
α

η

η

+
−

∀ ∈
ϵ

c
c

Pb dv c

s SC c

CVaRC:
1

(1 )
[ ( )]

s SC
s s

(21)

η η+ + + − − ≤

∀ ∈

COCF TEC PUC STC c dv c

s SC

( ) 0s s s s s

(22)

λ λ− − + −ER EOC COF CVaRcOFCVaRc: (1 ) (23)

The second risk function (eq 24) is used to bound the
probability that the design and planning of a given CLSC incur
large decreases in revenues for certain scenarios. The solutions
become more averse to incur in small revenues when
considering large confidence levels. In this case, the comple-
ment of the parameter αr is associated with the confidence
level. It is important to note that terms 24 and 25 arise from the

application of the general definition of CVaR to the revenues
variability for the case of finite probability space. While term 24
denotes the practical implementation of a risk measure of the
revenues that decrease below a given value at risk imposed by
the confidence level, constraint 25 determines the difference
between a given level of revenues (ηr) and the sales of the
scenarios that are outside of the confidence interval. ηr is
determined during the optimization process as a function of the
selected confidence level. The deviational variable dvηrs is
greater than zero when (RVNs + PRTs) is less than ηr. The
variable dvηrs quantifies the reduction of sales of the scenario s
when its revenues are less than ηr.
It is worth noting that the objective function OFCVaRr (eq

26) requires the inclusion of constraints 24 and 25. In this case,
the performance measure structure is obtained taking into
account simultaneously the expected profits and risk measure-
ment considering the revenues variability. OFCVaRr includes
three terms: the expected profits (ER-EOC), the costs for
opening facilities at the beginning of the planning horizon
(COF), and the term CVaRr. Contrary to the case of
OFCVaRc, the application of the CVaR concept to the
revenues variability lead to a final performance measure
where the term COF is not affected by the factor (1 + λ).

∑η
α

η

η

−
−

∀ ∈
ϵ

r
r

Pb dv r

s SC c

CVaRr:
1

(1 )
[ ( )]

s SC
s s

(24)

η η+ − + ≥ ∀ ∈RVN PRT r dv r s SC( ) 0s s s (25)

λ− − +ER EOC COF CVaRrOFCVaRr: (26)

Finally, a function that includes simultaneously measures of
the risk effects when considering costs and revenues is
presented. It is worth remarking that the practical implementa-
tion of the performance measure OFCVaR (eq 27) requires the
inclusion of constraints 21, 22, 24, and 25. The final form of the
performance measure is obtained after considering simulta-
neously the expected profits and risk measurement of costs and
revenues. Thus, the objective function (eq 27) is a performance
measure of the type Mean-CVaR that includes four terms: the
expected profit (ER-EOC), the costs for opening facilities at the
beginning of the planning horizon (COF) (affected by the
factor (1 + λ) due to application of the CVaR concept to the
costs variability), and the terms CVaRc and CVaRr.

λ λ

λ

− − + +

−

ER EOC COF CVaRr

CVaRc

OFCVaRrc: (1 )

(27)

4.1.2. Model Constraints. The model constraints are of
different types and describe the problem characteristics, as will
be detailed below:
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Constraints 28 and 29 allow a given entity to receive and
send products whether or not it was open at time period t − 1.
Constraint 30 determines the time at which a given network
entity goes from open to closed. On the other hand, constraint
31 specifies the time at which a given entity goes from closed to
open. Constraints 32 and 33 allow the existence of incoming
and outgoing transportation moves at time t if a given entity
belongs to the network at time period t − 1. Constraint 34
determines the minimum value of customer demand for a given
event ed ∈ Ed, which depends on time period t and scenario
node n ((ed, es)ϵΩnt). Constraints 35 and 36 set the maximum
and minimum bounds for the supply capacity of raw material
when the event es ∈ Es occurs at time period t of node n ((ed,
es) ϵ Ωnt). Equations 37 to 40 represent the material balance in
the closed-loop supply chain. Thus, while eqs 37 and 38 are
related to the forward network, eqs 39 and 40 are associated
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with the reverse network. Constraints 37 and 39 are the
material balance at time period t1. Constraints 38 and 40 are the
material balance at any time period greater than t1. It is
important to note that eq 11 considers the flow of products
sent by the reverse network entities to the forward network
facilities. The parameter rlipt is used in constraints 39 and 40,
and it represents the percentage of product p sent from entity i
to the subsequent entities in the reverse network at time t. This
parameter receives the value of η when the network arc
connecting customers to collection centers is considered.
Constraint 41 represents the way in which the products flow
through the reverse network. The parameter f f ipt takes different
values (ϵ, ε, δ, χ) depending on the entity i taken into account.
For example, the f f ipt parameter takes the value of ϵ when
considering the product flow from collection centers to
repairing centers. The rest of products (1 − f f ipt) are sent to
dismantlers by default. Constraints 42 and 43 limit the
maximum and minimum transportation capacity between two
entities i and i,́ at a particular time period and using a specific
transportation mode r. Constraints 44 and 45 bound the
minimum amount of products stored in the network entities.
Constraint 44 imposes the lower limit at time periods t1 to tf‑1
when a given entity belonging to the network at time t-1
remains open during the next period t. Constraint 45 is
formulated for enforcing the lower storage limit at the last time
period tf. Constraint 46 bound the maximum amount of
products stored in the network entities. Constraint 46 imposes
the upper limit at time periods t1 to tf. Constraints 47 and 48
apply the minimum and maximum processing capacity at time t
of entity i, belonging to the forward network at time t − 1.

5. CASE STUDY
The developed risk-averse stochastic approach is applied to a
CLSC with a superstructure composed of 3 suppliers (s), 3
factories (f), 2 warehouses (w), 2 distribution centers (dc), 8
customers (c), 3 collection centers (cc), 2 dismantlers (d), 2
repairing centers (rc), 2 final disposals (fd), and 2
decomposition centers (dp). The case study is based on the
example introduced by Paksoy et al.36 for the single-period
planning problem of a CLSC. The reference problem has been
modified in order to highlight the benefit of the formulation
and the risk measures considered in this work. The problem
involves a planning horizon of two periods (each equal to five
years). Products flowing through the network are grouped into
three types: products with a recycle rate of 0% (Nonreusable,
Nrcy), 50% (Partially recyclable, Prcy), and 100% (Fully
recyclable, Frcy). In the reverse network, the movement of
products is described by different rates of flows that depend on
the type of product. Thus, the product flow through the reverse
network entities is described by ϵ = 0.4, χ = 0.7, ε = 0.7, and δ =
{(δFrcy, δPrcy, δNrcy) = (1,0.7,0)}. Three possible levels for the
uncertain condition of raw material supply and customer

demand are considered. (es1, es2, es3) and (ed1, ed2, ed3) are the
outcomes for describing the uncertainty of the parameters. Two
types of trucks form the transportation system. Specific unit
CO2 emissions and transportation costs are associated with
each truck type. The problem addressed involves deciding the
design and planning of the network for each period considered
in the planning horizon, while at the same time the profit
maximization is pursued. Data used in the example problem are
included in Tables B.1 to B.13 in Appendix B.

6. RESULTS AND SOLUTION ANALYSIS
The proposed multistage framework with risk-averse consid-
erations was coded in GAMS (release 23.6.3) optimizer
software, and all computations were run with CPLEX 12.2,
on a HP Z800 workstation with Intel Xeon x5650 2.66 GHz
and 32 GB RAM memory for a 0.01 gap tolerance.
As the case study involves three possible levels for the

uncertain conditions of raw material supply and customer
demand, as well as a planning horizon with two time periods,
the multistage context considered in the formulation lead to a
multilayered tree with 91 nodes for 81 scenarios (1 root node, 9
nodes in the first layer, and 81 nodes in the second layer).
Consequently, the computational effort for solving the
stochastic approach based on a multilayered tree with 81
scenarios is huge. Thus, with the aim of addressing the
problem, from a practical point of view, a scenario reduction
algorithm is used. It is important to note that the idea behind
the use of the scenario reduction algorithm is to get a
reasonably good approximation of the original problem
(Dupacova et al.;37 Heitsch and Romisch;38 Growe-Kuska et
al.39). Several algorithms for reducing scenarios are available in
the library SCENRED of GAMS (GAMS/SCENRED Doc-
umentation40). A mix of fast backward and forward algorithms
is used with the objective of obtaining a reduced mathematical
formulation for the example. In this case, the reduced tree
maintains 70% of the original information contained in the tree.
It is important to note that, from a practical point of view and
for the case study considered, this level of information
represents a good balance between a reasonable representation
of the original tree and the computational effort to solve it. The
multilayered tree obtained after applying the reduction
algorithm is composed of 13 scenarios with 17 nodes (1 root
node, 3 nodes in the first layer, and 13 nodes in the second
layer).

6.1. Risk-Averse Measures. The advantages of the
proposed stochastic programming approach using different
utility functions are analyzed. The solutions obtained with the
stochastic approach considering the existence of risk are
compared with the features of the solution obtained
considering expected values.
Table 1 presents the results obtained when solving the

formulation with six objective functions: the expected profits

Table 1. Results for Different Performance Measures

Case αc αr λ Objective Function [c.u.]a Expected Profit [c.u.] CPU Time [s]

OFEP 759540380 759540380 1314
OFLMPV 1 742569630 746104649 683898
OFMLMPV 1 745607978 749585839 19995
OFCVaRc 0.1 1 220177690 726721888 18574
OFCVaRr 0.1 1 2068362269 756843536 12707
OFCVaRcr 0.1 0.1 1 1513818875 759440183 19142

a[c.u.] currency units.
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(risk neutral, OFEP) and five measures that include risk
criteria: OFLMPV, OFMLMPV, OFCVaRc, OFCVaRr, and
OFCVaRcr. In all cases, the scenario tree with 13 scenarios was
used. The CVaR parameters, αc and αr, adopt the value 0.1, as
this value represents a high level of risk aversion.10

As the objective functions values are not a proper criterion to
compare the results due to the terms of the performance
measures, Table 1 also includes the expected profits obtained
with each objective function. Considering the computational
performance, OFEP presents the biggest expected profit and
the lowest CPU time. Nevertheless, the solution obtained with
OFEP does not take into account the risk associated with the
occurrence of given uncertain events. These are accounted for
when using the risk measures, and from the results it can be
easily observed that OFCVaRcr achieves the best expected
profits. It is important to note that OFCVaRcr involves the
simultaneous application of the CVaR concept, which has
proved its advantages in several subjects (Noyan;7 McNeil et
al.15), to costs and revenues.
Figures 2, 3, and 4 show the lowest, expected, and highest

costs, revenues, and profits obtained for each of the six utility

functions. The lowest and highest values are obtained for the
most favorable and critical scenarios considering that the initial
design of the network is determined at time t0 and the structure
network can be adapted at time period t1.
As can be seen in Figures 2−4, the solution achieved with

OFEP presents the highest difference between the extreme
values of the costs, revenues, and profits. Considering all the
utility functions, it can be seen that the solution obtained with
OFCVaRcr is a compromise solution, which allows better

expected revenues than the results achieved with all the
objective functions, with the exception of OFCVaRr. Never-
theless, considering the lowest and expected profits, the
solution achieved with OFCVaRcr is better than the one
obtained with OFCVaRr. In addition, while OFCVaRcr
presents expected costs greater than those obtained with
OFEP (0.42%), expected revenues are 0.13% greater than those
achieved with OFEP. On the other hand, it is important to
remark that the solution obtained with OFCVaRc presents the
smallest values for lowest, expected, and highest magnitudes of
costs, revenues, and profits.
Figure 5 shows the costs connected with the network

structures. While the rhombuses represent the costs associated

with the initial structure of the supply chain, triangles and
squares correspond to the costs related to the entities that are
opened and closed after starting the network operation. Thus,
triangles and squares correspond to the different cost levels
associated with the resulting network structure for time period
t1. While the initial structure is equal for all utility functions,
performance measures associated with risk (with the exception
of OFCVaRc) perform more structural changes than OFEP in
order to deal with the alterations of the market conditions. For
example, while OFEP and OFCVaRc decrease the number of
entities eliminating a repairing center during the time period t1,
OFLMPV, OFMLMPV, OFCVaRr, and OFCVaRcr change the
structure of the supply chain opening and closing entities.
Table 2 lists the network structures for the different objective

functions. It illustrates the initial network structure (root node

Figure 2. Lowest, expected, and highest costs.

Figure 3. Lowest, expected, and highest revenues.

Figure 4. Lowest, expected, and highest profits.

Figure 5. Costs for initial, closing, and opening network structures.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b03647
Ind. Eng. Chem. Res. 2016, 55, 6236−6249

6245

http://dx.doi.org/10.1021/acs.iecr.5b03647


of the scenarios tree at time period t0), which is common for all
scenarios, and the structure that can be adopted by the supply
chain at time period t1 depending on the occurrence of certain
events in the nodes. As can be seen from Table 2, the objective
functions OFEP and OFCVaRc lead to an initial network
structure with 16 entities, which is contracted during the
planning of the supply chain. Nevertheless, the solutions
obtained using OFLMPV, OFMLMPV, OFCVaRr, and
OFCVaRcr follow a different behavior. They start the network
structure with 16 entities, and then, the number of entities is
preserved considering that when an entity is open, another is
closed. When comparing the structure obtained with OFLMPV,
OFMLMPV, OFCVaRr, and OFCVaRcr, with the one achieved
with OFEP and OFCVaRc, it can be observed that the
inclusion of decomposition center 2 (dp2) and the removal of
decomposition center 1 (dp1), at time period t1 of nodes n5 and
n6, are key aspects to obtain a more reliable solution. The use of
dp2 allows increasing or maintaining the flow of products that
are sent to plants and suppliers, as the minimal storage capacity
of dp2 is less than the capacity of dp1. Therefore, it is
important to note that the objective functions OFLMPV,
OFMLMPV, OFCVaRr, and OFCVaRcr take greater advantage
of the potential adjustments in the structure of the supply chain
than the other two objective functions.
6.2. Sensitivity Analysis Study. First, a sensitivity analysis

study is conducted considering the results obtained with the
performance measures where the CVaR concept is applied to
costs, revenues, and both simultaneously (OFCVaRc, OFC-
VaRr, and OFCVaRcr). The study aims to show the importance
of considering at the same time the application of the CVaR
concept to costs and revenues. Three cases for λ (0.5, 1, 2) and
three cases for αc and αr (0.1, 0.5, 0.9) are considered. While a
small value of α, for example 0.1, implies a large confidence
level of 0.9, a big value of α, for example 0.9, denotes a reduced
confidence level of 0.1.
Figures 6 and 7 illustrate the results obtained considering

different utility functions and values of αc and αr. It can be seen
from Figure 6 that the utility function OFCVaRc, which is
centered in reducing the likelihood that the design and
planning of a given CLSC incur large costs for different
confidence intervals, shows the smallest values for the highest,
expected, and lowest costs. Similarly, OFCVaRc presents the
smallest values for the highest, expected, and lowest revenues.
Considering the different values of αc for OFCVaRc, it can be
observed that αc = 0.1 is associated with the widest confidence
interval, which generates a largest search space that allows
selection of a solution with the best expected costs, but with
extreme values further separated from the expected value. On
the other hand, for the other two cases (αc = 0.5 and 0.9), it
should be mentioned that their confidence intervals generate
smaller search spaces than the case with αc = 0.1. Thus, αc =

0.5 and 0.9 lead to solutions with worse expected costs, but
with extreme values for costs and revenues more adjusted to
the expected values. Importantly, from the point of view of the
objective function considered, the main quantity to be taken
into account is the difference between the expected costs and
the worst costs that occur in each case. While the difference is
zero for αc = 0.5 and 0.9, the discrepancy represents 3.1% of
the expected costs for αc = 0.1. Since OFCVaRc takes into
account only the risk associated with the costs, Figure 7 shows
the values indirectly obtained for the highest, expected, and
lowest revenues when using OFCVaRc.
OFCVaRr is used to reduce the likelihood that the design

and planning of a given CLSC incur a large reduction of
revenues. The highest, expected, and lowest revenues, when
using OFCVaRr, are shown in Figure 7 and the indirect values
for highest, expected, and lowest costs are illustrated in Figure
6. When OFCVaRr is taken into account, αr = 0.1 is associated
with the largest search space that allows selection of a solution
with a wider range between the highest and lowest revenues
than the cases with αr = 0.5 and 0.9. Nevertheless, the solutions
do not significantly changes due to the parametric character-

Table 2. Network Structures

Entity s1 s2 s3 f1 f2 f3 w1 w2 dc1 dc2 cc1 cc2 cc3 rc1 rc2 d1 d2 dp1 dp2 fd1 fd2

OFEP OFCVaRc n0 t0 * * * * * * * * * * * * * * * *
n4 t1 * * * * * * * * * * * * * * *
n5 t1 * * * * * * * * * * * * * * *
n6 t1 * * * * * * * * * * * * * * *

OFLMPV, OFMLMPV,
OFCVaRr, and OFCVaRcr

n0 t0 * * * * * * * * * * * * * * * *
n4 t1 * * * * * * * * * * * * * * *
n5 t1 * * * * * * * * * * * * * * *
n6 t1 * * * * * * * * * * * * * * *

Figure 6. Lowest, expected, and highest costs for different values of αc
and αr.

Figure 7. Lowest, expected, and highest revenues for different values
of αc and αr.
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istics of the problem. While the expected revenues remain
almost the same for the three values of αr, the differences
between the expected returns and the lowest revenues for αr =
0.5 and 0.9 are about 96% and 89% of the difference obtained
with αr = 0.1.
Finally, the results obtained with OFCVaRcr also can be seen

in Figures 6 and 7. This utility function pursues a trade-off
between the negative effects on the overall network perform-
ance due to possible increase of costs and the decline of
revenues. When considering αc = αr = 0.1 in OFCVaRcr, the
expected costs and revenues are the highest of the three cases
(αc = αr = 0.1, 0.5, and 0.9). Moreover, the difference between
the expected costs and the highest costs, as well as the
difference between the expected revenues and the lowest
revenues for αc = αr = 0.1, are also greater than in the other
cases.
Considering the expected profit for the different utility

functions (see Figure 8), it can be seen that OFCVaRcr with αc

= αr = 0.1 obtains the best expected profits of all cases.
Moreover, taking into account the solutions obtained with αc =
αr = 0.9, it is important to note that the expected profit for
OFCVaRcr is 2.9% higher than the solution obtained with
OFCVaRc and only 0.7% smaller than the result achieved with
OFCVaRr.
The relevance of the risk criterion increases with respect to

the expected terms of the objective function when the value of
λ is increased. Figures 9 and 10 show the results obtained with

OFCVaRcr when αc = αr = 0.5 and with λ from 0.5 to 1.5. As
can be seen from Figures 9 and 10, while the highest and
expected costs and revenues follow a decreasing tendency when
λ increases, the lowest costs and revenues almost do not
change. Therefore, in both cases, costs and revenues, the
difference between the highest and lowest values decreases
when λ increases, due to mainly to the decreasing tendency of
the highest values.

Figure 11 illustrates the expected profits obtained with
different values of λ. The expected profits decrease as the

parameter λ goes from 0.5 to 1.5. It is worth remarking that the
cases with parameters λ = 1 and 1.5 show an important
decreasing of the expected profit with respect to the case with λ
= 0.5.
Finally, in order to compare the effectiveness of performance

metrics, OFLMPV, OFMLMPV, and OFCVaRcr, to obtain
solutions with less risk without a large decrease of expected
profits, Figure 12 illustrates the expected profit versus the risk
quantification performed in each objective function (terms
LMPV, MLMPV, and CVaRcr) while different values of λ are
considered (λ from 0.5 to 1.5). Squares, triangles, and
rhombuses represent the results obtained with OFCVaRcr,
OFLMPV, and OFMLMPV, respectively. From Figure 12, it
can be seen that while the value of λ increases, the expected
profits obtained with OFLMPV decrease faster than the
expected profits achieved with OFMLMPV and OFCVaRcr.
On the other hand, the expected profits obtained with
OFCVaRcr are greater than the expected profits achieved
with OFLMPV and OFMLMPV for λ = 1 and 1.5.
As conclusions, the sensitivity analysis leads to some

interesting points:

• Given the different values for the confidence levels, it can
be observed that a confidence level equal to 0.1 is
associated with a wide confidence interval, which
generates large search spaces allowing select solutions
with high quality expected values, but with extreme
magnitudes separated from the expected values.

• Given the characteristics of the problem addressed and
considering any objective function, it should be noted
that a change of the confidence level from 0.5 to 0.9 does
not have much impact on the solutions. In addition,

Figure 8. Expected profits for different values of αc and αr.

Figure 9. Lowest, expected, and highest costs for different values of λ.

Figure 10. Lowest, expected, and highest revenues for different values
of λ.

Figure 11. Expected profits for different values of λ.
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when OFCVaRr is taken into account, the confidence
level variations do not generate significant changes of the
solutions.

• Taking into account the solutions obtained with
OFCVaRr and OFCVaRcr, the performance of OFC-
VaRc is unsatisfactory in values of expected profits.

• OFCVaRcr gets trade-off solutions between costs and
revenues, which are of good quality considering as
reference the expected profit. In addition, taking into
account the expected profit, the solutions obtained with
OFCVaRcr are close to the solutions obtained using
OFCVaRr.

• Considering the effects of λ on the objective function
OFCVaRcr, it should be noted that when λ is increased,
the solutions have more risk-averse behavior since the
relevance of the risk criterion increases with respect to
expected terms of the objective function.

• Given the characteristics of the problem addressed, when
the parameter λ (on the objective function OFCVaRcr)
goes from 1 to 1.5, the solutions are similar.

• Comparing the effectiveness of performance metrics
OFLMPV, OFMLMPV, and OFCVaRcr, it is important
to note that when the parameter λ is equal to 1 and 1.5,
OFCVaRcr obtains solutions with less risk and better
expected profits than OFLMPV and OFMLMPV.

7. CONCLUDING REMARKS

A comprehensive risk-averse stochastic framework is presented
in this paper in order to deal with the design and planning
problem of multiperiod, multiproduct closed-loop supply
chains with supply and customer demands as uncertain
parameters. The approach is the type multistage that considers
adjustments in the supply chain structure during the planning
horizon. Thus, the formulation adopts design decisions of the
first period as the variables that must be determined before the
resolution of the underlying uncertainty, and the design
variables corresponding to the next time periods as well as
the decisions related to production, transportation, distribution,
and storage are variables subject to adjustment when specific
realizations of uncertain parameters occur. In addition, the
stochastic approach addresses a problem of a generic
multiperiod multiproduct CLSC with a general network
structure of ten types of entities, transport capacity, salvage
grade of returned products, CO2 emissions of the transport

system, as well as minimum and maximum storage and
processing capacity limits for network entities.
The objective criterion is to maximize the supply chain

profits considering risk measures to deal with the volatile
conditions of the market. Five objective functions that include
risk-averse criteria are considered and their results are
compared. Thus, results show some interesting points.
OFCVaRcr can be seen as a conceptually more advanced
objective function than OFCVaRr and OFCVaRc because the
explicit consideration of the risk of costs and revenues allows
the decision maker to choose the relative importance and the
desired confidence level for each magnitude. Another important
advantage of OFCVaRcr is that optimal solutions are reached in
comparable CPU time compared to those obtained by other
objective functions considering the risk (for example for the
modified linear measure of the profits variability: OFMLMPV).
In addition, the expected profits obtained with OFCVaRcr are
greater than the values achieved with OFLMPV and
OFMLMPV. Moreover, when the solutions obtained with
OFCVaRcr are compared with the results achieved with the
utility functions that consider the effects of risk of costs and
revenues separately, it is noted that the former solutions obtain
trade-off results with suitable levels of expected profits and
extreme values for costs and revenues. Considering the network
structure, the objective functions OFLMPV, OFMLMPV,
OFCVaRr, and OFCVaRcr take more advantage of the
potential adjustments in the structure of the supply chain
than OFEP and OFCVaRc.
As future work, two main points can be stated. An area for

further investigation is to enhance the stochastic model to deal
with a more precise representation of the distribution functions
of the uncertain parameters. On the other hand, alternative
solution methods are to be tested in order to improve the
exploration of the solution space and reduce the computational
effort.
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