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� Full three-dimensional analysis of
liquid transfer from a cavity to a ro-
tating roll.

� Transferred liquid volume depends
strongly on the capillary number of
the process.

� At low capillary number, poor print-
ing placement precision (registra-
tion) is attained.

� At high capillary number, registra-
tion improves and transferred vo-
lume is still high.

� Smaller roll diameter contributes to
higher transferred liquid volume.
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Gravure printing is one of the most promising technologies for high volume production of printed
electronics and microscale films and devices. The characteristics of the printed pattern, i.e. ink volume,
resolution and pattern placement (registration), are directly related to the fluid mechanics of the liquid
transfer process from a cell to a substrate wrapped around a rotating roll; the liquid transfer is mainly
controlled by free surfaces and dynamic contact lines. Most of the available analyses are restricted to
axisymmetric flows, at which the relative motion between the cavity and the substrate is greatly
simplified. Recent results have shown that the use of the complete description of the relative motion in
a roll-to-roll process is critical to obtain accurate results on the amount of liquid that is transferred to
the substrate. In this work we present an extension of the model describing liquid transfer from a
groove to a substrate in a R2R process in order to consider the liquid transfer from a small individual
cell; to this end we solve a full 3D free surface flow with moving contact lines. The results show that
the liquid transfer dynamics is governed by two different characteristic time scales, one is associated
with the contact line motion and the other with liquid filament breakup. Both are dependent on the
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Fig. 1. (a) Sketch of a roto-gravure printing system; (
motion; (c) a more realistic model, where the surface
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capillary number. The predictions show how the volume, registration and shape of the printed dot
varies with operating conditions and liquid properties. These predictions could be helpful in designing
high precision printing operations.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the last ten years, the development of novel conductive or-
ganic materials together with the need to build electronic circuits
on flexible substrates has renewed the attention on printing
technologies (Willmann et al., 2014; Kang et al., 2013). The effort
has been specially directed to roll-to-roll processes (R2R), mainly
due to the potential high production rates. Among the different
R2R processes, roto-gravure techniques provide a good compro-
mise between production rate and the required printed pattern
resolution (Krebs, 2009). In roto-gravure printing, the pattern to
be printed is engraved on the surface of a rotating roll; then, as
depicted in Fig. 1a, the pattern is transferred to the substrate by
pressing it between the engraved and a second soft roll. The fluid
mechanics of liquid bridges with moving contact lines between
moving surfaces has been the subject of considerable research (see
Kumar (2015) for a review) because it is essential for under-
standing many aspects involved in printing.

Here we focus on the particular aspect of liquid transfer from a
single cavity to a flat surface. Because of the small scale, the
complex relative motion between two rotating surfaces and the
relative high speed of these surfaces, flow visualization is ex-
tremely challenging. A common approach is to use scaled-up
cavities with simplified kinematics. For example, Yin and Kumar
(2006) used a groove with trapezoidal cross section having a width
and depth of approximately 1 mm to visualize the liquid transfer
from the groove to a curved surface (or a rubber-covered roller)
moving horizontally over the groove. They found that the volume
of liquid remaining inside the groove increases as a power-law
function with the capillary number, while the flow visualization
suggested an emptying mechanism mainly controlled by capillary
forces. This observation was more remarkable when small gaps
were formed between the moving surface and the cavity corners,
because in this case high capillary pressure gradients were pro-
duced in the menisci driving liquid outside the cavity. Despite the
b) simpler model for the liquid tra
s motion tends to mimic the roll-
simplified kinematics used and the fact that the range of Stokes
number (ratio between gravitational and viscous forces) in the
experiments was orders of magnitude higher than in actual gra-
vure printing process, flow visualization revealed the importance
of contact line motion on the liquid transfer process. Other ex-
periments using scaled-up gravure cells presented by Chuang et al.
(2008) and Lee et al. (2012) show similar results. More recently,
Sankaran and Rothstein (2012) used axisymmetric trapezoidal
cavities (width and depth ∼2 and 1 mm, respectively) to study the
effect of the vertical stretching velocity and fluid rheology on the
liquid transfer process. The results indicate that, with pure vertical
relative motion between the surfaces, the volume of transferred
liquid rises with capillary number up to a plateau. As was dis-
cussed in a subsequent related work (Lee et al., 2013), the ap-
pearance of this plateau was probably due to limitations of the
experimental setup for working at high speeds. They also showed
that the elastic stresses, which occur when viscoelastic liquids are
used, delay the filament breakup. Because gravity had an im-
portant effect on the experiments, the impact of the viscoelasticity
upon the transfer process was highly dependent on the setup
configuration. Despite the interesting results of the aforemen-
tioned works, at the real scale of the problem (micrometers),
gravity is certainly negligible; therefore, modeling can be a pow-
erful tool to understand the fundamentals of the flow.

Powell et al. (2002) presented a finite element model to study
the liquid removal from a groove by the action of a passing me-
niscus. Inspired in this work, Hoda and Kumar (2008) solved a
similar problem but used the boundary integral method to study
the liquid removal. The contact line was fixed at the moving plate
and it was allowed to slip along the cavity wall. The results re-
vealed that the amount of liquid left inside the groove was a strong
function of the kinematics imposed by the moving plate.

Dodds et al. (2009, 2011) presented a 2D axisymmetric analysis
of the liquid transfer between a fixed single trapezoidal cavity and
a surface moving vertically away from it (see Fig. 1b), to determine
nsfer between a single cavity and substrate, considering a one dimensional surface
to-roll kinematics.
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the pick-out liquid fraction ϕ, defined as the ratio between the
liquid volume transferred to the substrate and the total liquid
volume initially inside the cavity. Solving the governing equations
using the Galerkin finite element method (GFEM), Dodds et al.
(2011) explored the effect of wettability (contact angles) and cavity
aspect ratio (width / depth) on ϕ. Higher values of ϕ were obtained
for non-wetting cavity surface θ( > °)90c and wetting substrate
θ( < °)90p . In addition, they showed that ϕ rises as the cavity aspect
ratio increases and suggested that ϕ should fall as the cavity wall
becomes steeper.

A closer look at the relative motion between the cavity and the
substrate reveals that the kinematics is more complex than the
simple one-directional extension motion (Fig. 1b) considered in
the previous analyses. As was mentioned, Hoda and Kumar (2008)
showed that lateral (shear) and rotational displacements of the
substrate relative to the cavity result in important changes on the
cavity emptying process. Recently, Campana and Carvalho (2014)
used a similar approach to that presented by Dodds et al. (2009,
2011) to study the liquid transfer from grooves by introducing the
complete kinematic description (sketched in Fig. 1c) of the relative
motion that occurs in a R2R configuration. This approach allowed
to analyze the effects that operating and geometric parameters,
such as roll diameter and velocities have on the transfer process.
They found that the relative rotational and lateral velocities be-
tween the cavity and substrate surfaces enhance the liquid dis-
placement and increase the liquid transfer fraction ϕ, when com-
pared to the simpler one-directional motion. The predictions show
a non-monotonic behavior of ϕ as a function of the capillary
number σ= μCa V / (μ being the liquid viscosity, V the stretching
reference velocity and s the surface tension), represented sche-
matically in Fig. 2. In particular, for <Ca 0.1 the authors observed
that the contact lines are able to move out of the cavity; this is due
to increased capillary forces. If the contact line motion is faster
than the fluid stretching ( ≤ )Ca 0.01 , the filament begins to break
as if it were being stretched between two flat surfaces. When this
occurs ϕ approaches 0.5 because strong rotational velocities are
needed to disrupt the symmetry of the flow (Dodds et al., 2012).
However, if the filament breakup begins when part of fluid is still
inside the cavity, more fluid will be transferred to the substrate
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Fig. 2. Sketch of the variation of liquid volume transfer with capillary number for
the case of a 2D planar flow (straight groove) analyzed by Campana and Carvalho
(2014).
and ϕ > 0.5. For >Ca 0.1, the filament breakup occurs without
significant contact line motion. In this case, ϕ rises with capillary
number. The competition between these two characteristic time
scales explains the non-monotonic variation of the liquid transfer
fraction ϕ with Ca, sketched in Fig. 2. This behavior is not observed
when the liquid transfer kinematics is modeled only by an ex-
tensional motion.

The 2D planar flow model of Campana and Carvalho (2014) that
considers the complete kinematic description of a R2R process can
only be used to calculate the liquid transfer from straight grooves.
To model the process by which liquid is removed from trapezoidal
cavities and transferred to a substrate wrapped around a roll con-
sidering the full R2R kinematics, a 3D flow model with moving
contact lines is needed. Probably, the small number of works in
which those models are discussed is related to their considerable
complexity. Among them we can cite the contributions by Cairn-
cross et al. (2000), Baer et al. (2000), Dodds et al. (2012), and Cen
et al. (2014). Cairncross et al. (2000) and Baer et al. (2000) pre-
sented a 3D model with moving contact lines using boundary fitted
finite element meshes. Dodds et al. (2012) used a 3D finite element
model to describe the breakup of a liquid filament between two flat
plates moving relative to each other. The numerical technique used
in those works can be classified in a group frequently called inter-
face tracking methods, because the free surface is defined as a
boundary of the flow domain and its position is calculated with the
other flow variables. As the interface evolves, the flow domain de-
forms and suitable techniques must be implemented to calculate
and update the computational mesh. Cairncross et al. (2000) and
Baer et al. (2000) used a pseudo-solid mesh deforming algorithm
while Dodds et al. (2012) implemented an elliptic mesh generation
method to compute the node coordinates. In the interface tracking
methods, the curvature of the interface is directly evaluated from
the nodal position and accurate flow predictions are obtained even
when using relatively coarse meshes, providing that the mesh dis-
tortion is not so strong. However, coalescence and breakup cannot
be modeled with these techniques.

Another example of 3D model with moving contact lines was
presented by Cen et al. (2014). They used the finite element method
combined with the level-set approach to model the process by
which a flexible blade is used to fill a cavity. Their numerical ap-
proach follows in the class generally called interface capturing
techniques. In these methods, the mesh is generally fixed and a
scalar field is used to define the different phases present in the flow.
The main advantage of these methods is that they are able to handle
large interface deformation, such as coalescence and breakup.
However, since the interface is defined as an iso-surface (level-set)
of the scalar field, the evaluation of the curvature is not as accurate
as in interface tracking methods and it is highly dependent on some
numerical tuning parameters and mesh refinement.

The aim of the numerical analysis presented by Cen et al. (2014)
was to understand how the interface moves and the contact line
slips over the cavity walls as a cell is filled with liquid. Their ex-
perimental results show that the capillary number, defined using
the filling velocity (or tangential roll velocity), is a good indicator
of the filling regime. The contact line tends to pin at the cavity
corner and only at <Ca 0.1 it is able to move over the solid sur-
faces enabling the complete filling of the cavity. By increasing Ca
the filling progressively worsens; moreover, in experiments, air
entrapment is observed inside the cavities for the higher capillary
numbers considered. With their numerical model, Cen et al. (2014)
could reproduce how the interface displaces over the surface,
enters the cavity and exits on the other side, filling it completely.
However, the technique failed to reproduce how the air is en-
trapped. They discuss that despite the limited accuracy of the
numerical solution, that led to large differences between the time
scales predicted by the model and those observed in their
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experiments, the model was able to provide physical insights to
improve the filling process at high-speed gravure printing.

In summary, the effect of operating conditions and liquid
properties on the amount of liquid removed from a single cavity in
a gravure printing process remains an open problem. In this work,
we extend the previous results of Campana and Carvalho (2014) to
a more general situation by solving a new 3D free surface flow
model with moving contact lines. Section 2 presents the mathe-
matical model and Section 3, the finite element approach used to
solve it. In Section 4, the model is validated by comparing its
predictions with available axisymmetric flows; also, the evolution
of the liquid filament and liquid transfer fraction are presented for
different operating conditions. Finally, Section 5 presents the main
conclusions and final remarks.
2. Mathematical model

Fig. 3 represents the cross section (in the −z x plane) of the
three-dimensional domain considered to model the liquid transfer
between a single cavity and a moving plate. The geometry of the
cavity is described by the revolution surface around the z-axis of
the cross section defined by the function (Dodds et al., 2009;
Campana and Carvalho, 2014):

= ( ) = − − −
( )
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In Eq. (1), the variables are made dimensionless with the cavity
depth δ, being = +r x y2 2 the distance from a point on the wall
to the z-axis and rc the value of this variable measured at

= −z 1/2. In addition, rs is a parameter that controls both the
curvature of the corners and the steepness of the cavity wall.
Sharper corners and steeper cavity walls are obtained by using
smaller values of rs.

There is a fixed frame ( )x y z, , with unit vectors ( )i j k, , , at-
tached to the center of the cavity. Although the cavity is perfectly
symmetric under z-axis rotation, the liquid bridge is not because
the plate has a relative velocity ( )tV x,w with components in z and
x directions. The dimensionless velocity ( )tV x,w of any point lying
on the plate, which approximates a R2R kinematics, was derived in
detail by Campana and Carvalho (2014):
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Fig. 3. Sketch of the transversal section ( −z x plane) of the flow domain, showing
the spatial variables, dimensions and geometric parameters.
where A is the instantaneous gap in units of cavity depth, H0 is the
gap between both surfaces at t¼0 and the angle θ is given by
θ ω π= +t /2, and represents the instantaneous inclination angle of
the plate measured from a vertical line in anti-clockwise direction:
plate in horizontal position implies θ π= /2. Eq. (2) was derived
assuming that both rolls have the same radius R and angular speed
Ω. The equation was made dimensionless using appropriate length
and velocity scales. The cavity depth δ is used as the characteristic
length scale. As discussed by Dodds et al. (2009), the stretching
vertical velocity VE at which the surfaces separate represents a
convenient characteristic velocity scale of the problem. It is a
function of the roll tangential velocity ΩR, the filament length at
breakup Lb and the roll radius R. Dodds et al. (2009) have shown
that there is an upper limit value for the filament length at
breakup, i.e. δ≈L 5b and thus Ω Ω δ≈ =V R L R R R2 / 10 /E b . The
dimensionless parameters in Eq. (2) are defined as: ω Ωδ≡ V/ E ,

δ≡H H /b 0 , and δ≡R R/b . It is interesting to observe that with the
velocity scale VE used, the dimensionless angular speed ω can be
simplified to ω = R0.1/ b ; hence, this variable is not an in-
dependent dimensionless parameter. The dimensionless velocity is
a function of the geometric parameters Hb and Rb only.

At t¼0, the plate above the cavity (which represents the sur-
face of the roll that moves with respect to the engraved roll) is
located perfectly horizontal over the cavity at =z Hb. Also at t¼0,
the origin of the second frame ( )⁎ ⁎ ⁎x y z, , attached to the moving
plate has coordinates ( ) = ( )x y z H, , 0, 0, b . This frame will be used
later to represent the printed pattern on the substrate.

A Newtonian liquid with density ρ, viscosity μ and surface ten-
sion s, forms a liquid bridge between the cavity and the top plate.
The surrounding gas phase has negligible density and viscosity and
a constant pressure =p 00 , which is taken as reference. At t¼0 we
consider the system in equilibrium; then, the free surface is a static
meniscus between the cavity and plate with static contact angles θc
and θp, respectively. The quantities xc and xp represent the contact
line positions along the cavity and plate, respectively.

In a previous work, Campana and Carvalho (2014) argued that for
typical cavity sizes in the order of μ10 m and usual fluid properties,
gravity force can be safely neglected but the inertial effects can be
important depending on the rotational velocity of the rolls. Despite
this fact, we decided to neglect not only gravity but also inertial ef-
fects in order to keep the present model as simple as possible. Hence,
the momentum and mass conservation equations are:

∇· =

∇· = ( )

T

v

0,

0. 3

In Eq. (3), = − + (∇ + ∇ )pT I v vT is the total stress tensor ( I
being the identity tensor), made dimensionless with μ δV /E . It
should be noted that Eq. (3) is solved only on the liquid domain,
which deforms as the upper plate separates from the cavity.

Because the surface tension is constant, the capillary force
along the interface has only normal component, given by

κ· = ( )Ca
n T n , 4fs fs

where σ= μCa V /E is the capillary number and κ is the mean cur-
vature of the free surface κ( = − ∇ · )ns fs . In the above expression,
∇ = ( − )·∇I n ns fs fs is the free surface gradient operator.

Along the walls, the fluid has the same normal velocity as the
solid surface. In a similar manner, because the free surface is a
material surface, the net flux across it vanishes. Thus, the following
boundary conditions are used along each surface:



D.M. Campana et al. / Chemical Engineering Science 149 (2016) 169–180 173
· =

( − )· =

·( − ̇) = ( )

v n

v V n

n v x

0, at the cavity walls;

0, at the moving plate;

0, at free surfaces. 5

w

w w

fs

In Eq. (5), ẋ represents the velocity of the free surface. To
overcome the stress singularity at the contact lines, we allow the
fluid to slip along the tangential direction (Huh and Scriven, 1971).
As in previous analysis (Ubal et al., 2012; Dodds et al., 2012;
Campana and Carvalho, 2014), Navier-slip is considered along the
solid walls and a contact angle between the liquid interface and
solid walls is prescribed:

β θ( · )· = ( ·( − )) · = ( ) = ( )− i c pn T I I v v n n; cos ; , 6w s s surf w fs i
1

In Eq. (6), β is the dimensionless slip coefficient as defined in
Lamb (1975), vsurf is the velocity of the solid surface and

= ( − )I I n ns w w is the identity tensor on the solid surface.
A common approach is to consider the apparent dynamic

contact angle θi to be a function of the contact line velocity (see
Blake (2006) for a discussion of the available models). We follow
here the simple approach used by Cairncross et al. (2000) and
Dodds et al. (2012) and we use a linear dependence between the
contact angle and contact line velocity:

θ θ γ= − ̇

̇ = ( − )· ( )

Cax

x v v t

cos cos ;

7

i
s

f wet

wet surf w

In Eq. (7), θsi is the static contact angle of the contact line i and
̇xwet is the velocity of the contact line relative to the surface ve-

locity in a direction tangent to the surface and normal to the
contact line; this direction is represented by the unit vector tw .
Finally, γf is a friction parameter which we set equal to zero: the
dynamic contact angle is constant and equal to the static contact
angle.

The above governing equations and their boundary conditions
must be solved in an unknown deforming domain that must be
calculated as part of the solution. The spatial deforming domain is
mapped to a known fixed reference domain and the mapping
function is solved simultaneously with the rest of the flow vari-
ables. The solution of the mapping function, with appropriate
boundary conditions, gives the coordinates of the nodal positions
for a given time step, from which the mesh can be updated to
adjust the new configuration of the domain. There are several
ways to construct the mapping, being the best choice strongly
problem dependent. In this work we have tested pseudo-solid
material (Cairncross et al., 2000) and Laplacian type methods such
as the Winslow's technique used by Ubal et al. (2014). The later
showed the best performance. If the coordinates of the nodal

position on the fixed reference domain are designated as X̂ , the
Winslow's technique consists of calculating the displacement of
the nodal position by solving the following partial differential
equations

∇ ^ = ( )X 0, 82

where the ∇ operator is calculated in the spatial (physical) co-

ordinates = (^ )tx x X, and the nodes move with velocity ̇ = ∂ ∂ |^tx x/ X.
Eq. (8) is solved with appropriate boundary conditions. We use the
kinematic condition along the free surface (see Eq. (5)) to track the
displacement of the moving surface, and the function given by Eq.
(1) along the cavity walls to define its geometry. These are im-
plemented using a Lagrange multiplier technique, that is briefly
explained in the next section.
3. Numerical technique

The numerical methodology used in this work is a 3D extension
of that used by Campana and Carvalho (2014) to solve 2D plane
and axisymmetric flow problems. The main ideas were taken from
Cairncross et al. (2000), Sprittles and Shikhmurzaev (2012) and
Ubal et al. (2012) and then adapted to this particular problem. The
weak form of the partial differential equations (3) and (8) are
obtained in the usual form, then they are discretized with the fi-
nite element method and the flow domain is tessellated with an
unstructured mesh of tetrahedrons. Quadratic Lagrange poly-
nomials are used as basis functions to expand the velocity field
and linear continuous basis functions to expand the pressure field
(P2P1 tetrahedral elements). For the nodal displacement, Eq. (8),
linear continuous functions (linear elements) are used to minimize
the appearance of degenerated elements due to excessive mesh
distortions.

The boundary conditions are implemented by the Lagrange
multipliers technique. Its application to free surface flow problems
is discussed in detail by Sprittles and Shikhmurzaev (2012). The
key concept is that new degrees of freedom are introduced on
boundaries where constraints must be applied and they are in-
terpreted as stresses on the given surface. For example, the weak
form of the momentum Eq. (3) is built by projecting the equation
with the same set of basis functions φi used to interpolate the
velocity field (Galerkin formulation); it reads:

∫ ∫φ Ω φ Γ(∇ · ) = ( · ) ( )Ω Γ
d dT n T . 9

i i

To obtain Eq. (9) the divergence theorem was applied over the
domain Ω with boundary Γ Γ Γ Γ= + +s m fs, where Γs represents the
fixed solid boundaries (cavity wall), Γm the moving solid bound-
aries (upper plate) and Γs the free surface.

The traction vector ( · )n Tfs along the free surface is directly
substituted by the normal stress balance given by Eq. (4). This
expression is integrated by parts once more, thus obtaining a
contribution along the free surface itself and a line integral along
the contact lines. This last expression is used to impose the contact
angle (see Sprittles and Shikhmurzaev (2012) for details).

The traction vector for the fluid on solid surfaces ( · )n Tw is
handled in a different way. It is decomposed in normal and tan-
gential directions (see Eq. (6)):

Λ β

Λ

( · ) = ( ) + ( ·( − ))

≡ ( · · ) ( )

−n T n I v v t

n T n

;

10

w w w s surf w

w w w

1

In Eq. (10), Λw is a Lagrange multiplier representing the normal
stress to the solid boundaries (cavity wall and moving plate). Λw is
approximated as a new finite element variable field and is written
as a linear combination of two-dimensional basis functions φ̃i

defined along the solid surfaces. To calculate the new degrees of
freedom Λw

j, the kinematic condition (Eq. (5)) is imposed as a new
weighted residual: ∫ φ Γ˜ ( · ) =

Γ
dv n 0i

w
s

is used on the fixed wall and

∫ φ Γ˜ [( − )· ] =
Γ

dv V n 0i
w w

m
on the moving plate. With this approx-

imation, Λw represents the normal stress on the solid boundary
that must be applied to the fluid in order to satisfy the kinematic
condition.

A similar approach is used for Eq. (8) that describes the nodal
displacement. Once its weak form is obtained and the corre-
sponding term is integrated by parts, the normal component of the
pseudo-traction vector acting on the boundary is defined as a new
Lagrange multipliers field. Along the cavity wall, the normal nodal
displacement is restricted by a pseudo-stress along the boundary
so that Eq. (1) is satisfied. The pseudo-stress satisfies
∫ φ Γ˜ [( ̇ − )· ] =

Γ
dx V n 0i

w w
m

and ∫ φ Γ˜ [( ̇ − )· ] =
Γ

dx v n 0i
fs

fs
along the



D.M. Campana et al. / Chemical Engineering Science 149 (2016) 169–180174
moving plate and the free surface, respectively. There are no re-
strictions on the tangential directions and nodes can freely move
to minimize mesh distortions.

The aforementioned approach has the advantage that non-
linear boundary conditions (as Eq. (1)) can be applied in a very
clean and easy way; however, its drawbacks are that new degrees
of freedom are introduced and the size of the computational
problem increases. This is specially important in our approach
because we solve the resulting non-linear system of algebraic
equations obtained from the implicit time integration using a fully
coupled solver: velocity, pressure and nodal displacements (mesh
deformation) are simultaneously calculated. Previous numerical
experiments (Dodds et al., 2012; Campana and Carvalho, 2014)
show that this approach, combined with the use of sparse direct
solvers, improves the robustness of the technique allowing better
convergence and numerical stability. Thus, the level of dis-
cretization used is the result of a balance between computer ex-
ecution time and solution accuracy; a typical mesh meeting this
requirement has approximately 100,000 elements and 600,000
degrees of freedom.

The aforementioned weak forms of the governing equations
and the resulting set of Lagrange multipliers fields are solved with
the commercial finite element software COMSOL Multiphysics
(COMSOL Multiphysics, 1998-2013). A fully implicit second order
time integration scheme with adaptive time step is used and all
variables are simultaneously calculated at each time step. As we
mentioned before, this fully-coupled scheme shows better con-
vergence and stability properties compared to others decoupled or
semi-implicit numerical procedures. At each time step, the re-
sulting set of non-linear equations is solved using Newton's
method. During the evolution of the liquid filament, the liquid
domain largely deforms and the elements become distorted;
hence, the accuracy of the solution is compromised. To control the
mesh quality, the aspect ratio of each element is computed during
the transient calculation. Whenever this control parameter goes
below a critical value, the simulation is stopped. Then, the domain
configuration of the last converged solution is used to define a
new geometry (and reference configuration), which is tessellated
into a new, high-quality mesh of tetrahedrons. The last converged
solution is interpolated onto the new mesh and the time in-
tegration resumed. Typically, the simulations presented here re-
quire (depending on Ca) between 8 and 20 stages of re-meshing to
complete the run. Since there is an inherent error in each geo-
metry re-construction and further re-meshing procedures, we use
the total volume of the liquid bridge as a control variable in order
to check the error associated with them. In this way, we are certain
that the maximum variation between the initial and the breakup
liquid volumes does not exceed 0.1%.
Table 1
Values of the model parameters corresponding to the reference case (RC).

Capillary number Ca 0.1
Roll radius to cavity depth ratio Rb 15,240
Dimensionless angular speed ω × −2.5 10 3

Gap to cavity depth ratio Hb 0.03
Cavity width to depth ratio rc 0.8
Cavity geometry parameter rs 0.3
Slip coefficient β 10�3

Contact angles θ θ=p
s

c
s °70

Contact line friction parameter γf 0
4. Results

This section is organized as follows. The validation of the nu-
merical procedure is presented in Section 4.1, the effect of the
capillary number on the transferred liquid fraction is studied in
Section 4.2 and finally, the influence of the capillary number on
the printed pattern is explored in Section 4.3.

4.1. Validation

In our computations the number of degrees of freedom was kept
close to 600,000. However, this implies that near the contact lines
(where there are large velocity gradients) the mesh was compara-
tively coarser than those previously used to solve 2D plane and ax-
isymmetric models (Sprittles and Shikhmurzaev, 2012; Campana and
Carvalho, 2014). Therefore, we first recomputed numerical solutions
of the axisymmetric case but using the 3D numerical model de-
scribed in the previous section. These predictions were compared to
the predictions computed with a previous 2D axisymmetric numer-
ical model (Campana and Carvalho, 2014). In fact, in the 3D model
the size of the elements near the contact line was ( )−O 10 2 , that is,
two orders of magnitude larger than the elements used in the 2D
axisymmetric flow analysis. To preserve the symmetry of the flow,
we employed a one-dimensional simplification of the plate velocity
given by Eq. (2) that results in a vertical motion (Campana and Car-
valho, 2014). The plate velocity is

ω θ( ) = − ( ) ( )t RV x k, 2 cos 11w b

The plate velocity given by Eq. (11) was used to run both the
axisymmetric and 3D models. The values of the geometric and
flow parameters correspond to the reference case (RC) used by
Campana and Carvalho (2014). These parameters were chosen
considering typical values of gravure printing operating condi-
tions, geometric parameters and liquid properties: roll radius
R¼6 in ¼0.1524 m, cavity depth δ = μ10 m, cavity width

= μR 8 mc , roll and substrate speed Ω =R 10 m/s, liquid viscosity
μ¼0.02 Pa s and surface tension σ = 0.025 N/m. The contact angles
were set to θ θ= = °70c p . The slip coefficient β defines the region
close to the contact lines at which slip is significant and the actual
value of the contact line velocity. β δ≡ l/ is determined by con-
sidering the dimensional slip length range ≤ ≤l1 10 nm, resulting
in β≤ ≤− −10 104 3. In the parametric analysis presented by Cam-
pana and Carvalho (2014), values of β > −10 2 led to unrealistic
large-slip regions, while β < −10 3 required highly refined meshes
without significant changes in the solution. Thus, here we set
β = −10 3. The values of the model parameters are summarized in
Table 1.

Fig. 4 depicts the free surface position in the −z y plane for
both the 3D and the axisymmetric model at the same di-
mensionless time t¼3.46. These free surface profiles correspond to
the last time a solution without excessive mesh distortion could be
obtained with the 3D model. The filament configurations pre-
dicted by both models are close, however the contact line posi-
tions on the moving substrate differ by around 8%. If this dis-
crepancy is acceptable or not will depend on the application and
the expected reliability of the results. In this work we are mainly
interested in a estimation of the transferred liquid fraction ϕ and,
as we show next, the predicted values of ϕ are almost coincident
for both models.

Although 3D solutions could not be obtained for >t 3.46, the
evolution of the liquid bridge in the axisymmetric model con-
tinued up to the instant at which the minimum radius of the fi-
lament reached the value rb¼0.03, at zb. This was arbitrarily taken
as the breakup time and denoted as tb. For this particular case,
tb¼3.56 and the predicted 2D axisymmetric free surface profile at
this time is also shown in Fig. 4. To estimate the transferred liquid
fraction in the 2D flow, we computed the liquid volume Vp for

>z zb and ϕ = =V V/ 0.058p t , being Vt the total liquid volume. Be-
cause the 3D simulation could not be continued for >t 3.46, we
used spline extrapolation of the 3D predictions to determine the
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breakup time, defined such that rb¼0.03, as indicated in Fig. 5a,
and the transferred liquid fraction, as indicated in Fig. 5b. With
this procedure, the breakup time and the transferred liquid vo-
lume predicted by the 3D model are ∼t 3.71b and ϕ ∼ 0.059, re-
spectively. Note that these values are very close to the predictions
of the axisymmetric model. Since this procedure led to very good
agreement between predictions of both models in all similar tests
performed for Ca between 0.01 and 0.1, we used this approach to
predict the values of ϕ for all 3D simulations.

In the next sections we studied the effect of capillary number and
roll radius on the volume of liquid transferred to the substrate and on
the printing pattern. The goal was to understand how the 3D char-
acter of the flow changes the capillary pressure field, which is the
driving force for filament breakup, and the contact line motion. We
did not explore the effects that cavity geometries and wetting
properties might have on the process; nonetheless, it was shown
(Dodds et al., 2009) that for a pure extensional relative motion, the
cavity aspect ratio and contact angle differences between the surfaces
change the liquid volume removed from the cavity. These effects
should still be relevant for complex kinematics, such as the one
analyzed here, and are left for future analysis.

4.2. Effect of capillary number and roll radius on the transferred li-
quid fraction

Fig. 6 depicts a comparison between the values of ϕ obtained
for full 3D motion and those obtained for axisymmetric motion.
The predictions in the first case were calculated with the 3D flow
model using the complete R2R kinematics given by Eq. (2), while
in the last case they were obtained with the 2D axisymmetric
model (labeled Ax. in the plot) because, as we showed in the
previous section, the values of ϕ are in good agreement with the
3D model that only considers vertical motion. It can be observed
that for the pure stretching motion (Ax.), ϕ diminishes mono-
tonically as Ca falls. This behavior was explained in detail in
Campana and Carvalho (2014), by analyzing the mobility of the
contact lines (along the cavity and plate surfaces) as a function of
the capillary pressure gradient. As the capillary number increases,
the contact line motion along the surfaces slows down and the size
of the liquid drop at the substrate enlarges resulting in larger va-
lues of ϕ.

Results reported in Fig. 6 show that even though calculated
values of ϕ for the full R2R kinematics follow the behavior of the
stretching motion case for >Ca 0.02; however, the behavior at
lower capillary numbers is quite different. The variation of the
transferred volume with Ca for the complete R2R kinematics can
be better understood by analyzing the free surface evolution at
Ca¼0.01, shown in Fig. 7. At low capillary number, the R2R kine-
matics leads to a flow at which the liquid bridge is pushed out of
the cavity and the whole contact line is located on the flat surface
for >t 2.8. At this stage, the evolution continues as a liquid bridge
being stretched between two flat surfaces. During the evolution
outside the cavity, a neck on the liquid filament begins to form on
a region closer to the cavity and consequently, after the breakup,
more liquid remain on the portion attached to the moving plate;
thus, ϕ ∼ 0.65 at ∼t 5.0. This process is similar but even stronger
at Ca¼0.0125, at which ϕ ∼ 0.8.



10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ca

φ

Ax.
3D

Fig. 6. Transferred liquid fraction versus Ca for both 3D and axisymmetric simu-
lations. The rest of parameters correspond to the RC.

Fig. 7. Snapshots of the evolution in the liquid transfer at Ca¼0.01; the rest of the par
center of the cavity is located at = =x y 0.

D.M. Campana et al. / Chemical Engineering Science 149 (2016) 169–180176
The behavior of the 3D flow is similar to the one observed in
the case of liquid transfer from an infinite groove (2D planar flow)
analyzed by Campana and Carvalho (2014) and can be summarized
as follows. The dynamics of the liquid transfer is governed by two
different characteristic times. One is related to the motion of the
contact lines along the surfaces, which is a function of the capillary
pressure gradient; the other is related to the filament breakup
time, which depends on the velocity at which roll surfaces are
separating and thereby controlling the formation of the filament
neck. If the liquid filament is pushed out of the cavity much faster
than the roll surfaces are getting apart, the neck will begin to form
between two flat surfaces. In agreement with previous results
(Campana and Carvalho, 2014; Dodds et al., 2012), this situation
usually leads to ϕ ∼ 0.5 (see Fig. 6 for <Ca 0.01). On the other
hand, if the filament neck is formed sufficiently fast, while the
cavity contact line is still inside of it, ϕ increases with Ca and the
flow is well approximated by the stretching kinematics; this be-
havior is observed at >Ca 0.02. Between the two regions, a more
complex situation appears: if the neck is formed while the cavity
contact line is slipping over the cavity corner, as for Ca¼0.0125
and 0.01, more liquid is transferred to the plate because the fila-
ment breaks in its lower half part (closer to the cavity).

It is very interesting that ϕ versus Ca presents the same non-
monotonic behavior in both the 2D planar flow analyzed by
Campana and Carvalho (2014) and the full 3D flow here discussed.
However, the values of ϕ are quite different because in the latter
ameters correspond to the RC. (a) t¼0, (b) t¼2.00, (c) t¼2.57 and (d) t¼5.00. The



Fig. 8. Snapshots of the evolution in the liquid transfer at Ca¼0.1; the rest of the parameters correspond to the RC. (a) t¼0, (b) t¼2.00, (c) t¼2.85 and (d) t¼3.36. The center
of the cavity is located at = =x y 0.
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case, the capillary pressure and consequently the breakup is
dominated by the azimuthal curvature which is not present in the
plane model. The higher pressure gradient in the neck accelerates
the breakup of the liquid filament, reducing the time available to
remove liquid from the cavity. Consequently, the amount of liquid
transferred to the substrate is smaller in the case of a cavity (3D)
than in the case of a groove (plane 2D). At ∼Ca 0.05, ϕ ∼ 0.022 for
the 3D flow and ϕ ∼ 0.38 for the 2D plane flow. The evolution of
the free surface for Ca¼0.1 is shown in Fig. 8; at this capillary
number, the neck is formed before the contact line moves out of
the cavity. The strong pressure gradient in the neck pumps liquid
back to the cavity leading to a low liquid transfer fraction ϕ.

Due to the velocity scale chosen, ω is proportional to −Rb
1/2 and

thus a reduction in the roll size promotes a larger rotational and
horizontal dimensionless velocities of the plate relative to the
cavity. In the 2D plane flow, Campana and Carvalho (2014) showed
that this has an important effect on ϕ, which increases almost
linearly with a reduction of Rb. For example, ϕ rises by 25% as Rb
decreases from 15,240 to 2540, keeping all the other dimension-
less parameters the same. In the present full 3D analysis, ϕ in-
creases approximately 12% as the roll size falls (with all the other
dimensionless parameters fixed): ϕ = 0.059 for Rb¼15,240 and
ϕ = 0.0675 for Rb¼2540. This indicates that as a consequence of
the faster breakup of the filament, the 3D flow is less sensitive
than the 2D plane flow to increments in the rotational and hor-
izontal velocity. At lower capillary number, e.g. Ca¼0.05, the in-
crement in ϕ is higher (approximately 37%): ϕ = 0.022 for
Rb¼15,240 and ϕ = 0.0353 for Rb¼2540. It is important to note
that the characteristic velocity VE used in the definition of the
capillary number is a function of the roll diameter. Therefore,
changes on roll diameter actually affect both Rb (and consequently
ω) and Ca.

In summary, the predictions for ϕ versus capillary number and
roll radii obtained with the 3D flow model show the same quali-
tative behavior as the one obtained with the 2D planar flowmodel.
However the results are not directly comparable because the va-
lues of ϕ and its sensitivity to changes in Rb are remarkably re-
duced. As was discussed, this is a consequence of the azimuthal
curvature of the filament in the 3D flow processes that accelerates
the breakup.

In contrast, Fig. 6 shows that for >Ca 0.02 differences between
the full 3D and the 2D axisymmetric computations are negligible.
Furthermore, these differences are also negligible for the highest
rotational velocities here considered (Rb¼2540). These results
demonstrate that to solve a full 3D flow model with a complete
R2R kinematic is not required within this Ca range, because in
these situations the contact line slipping promoted by the shear
velocities is small and thus, there is no appreciable effect on the
transferred liquid fraction. In other words, in this range of the
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capillary number a 2D axisymmetric model using only stretching
kinematics would be sufficient to obtain accurate predictions. As
we mentioned, Dodds et al. (2009) explored a wide range of cavity
sizes and contact angle differences using this approach. Our results
suggest that their predictions accurately describe the liquid vo-
lume transferred in a R2R system if the capillary number is high
enough.

Because the results were obtained just for one cavity shape and
a contact angle value (see Table 1), the question is if the conclu-
sions can be extended to other conditions. As long as the velocity
of separation of the surfaces, which controls the filament breakup,
is higher than the contact line velocity (high Ca), we should expect
the same qualitative behavior of the fraction ϕ versus the capillary
number for different cavity aspect ratios. However, when the dy-
namic contact line velocity becomes more important than the
velocity of separation of the surfaces (small Ca), wetting properties
and contact angles will influence significantly the results. This
dependence was not explored in the present work.

4.3. The influence of capillary number in the printed pattern

For the conditions explored in this work, our results suggest
that high liquid transfer ratio can only be obtained at low enough
capillary number, e.g. < × −Ca 2 10 2. However, low capillary
numbers lead to a high contact line mobility along both the cavity
surface and the substrate. The pronounced contact line slipping
might produce poor results concerning fidelity and registration
(precision placement of the printing pattern). Because the sub-
strate is moving, the contact line configuration is presented in a
moving frame of reference attached to the substrate, denoted by
the ( )⁎ ⁎x y, coordinates in Fig. 3. Fig. 9 shows the contact line
configuration (printed pattern) on the substrate close to the
breakup point at different capillary numbers. In the moving frame
of reference, a perfectly registered pattern should be centered at

= =⁎ ⁎x y 0. The initial contact line configuration (at t¼0) is also
shown in Fig. 9 as a reference (thicker line). At high capillary
numbers, e.g. Ca¼0.1, the printed dot area is approximately 13% of
the initial area and its center is located close to = =⁎ ⁎x y 0. As the
capillary number decreases, the printed pattern area does not
−3 −2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x*

y*

Initial
Ca = 0.1
Ca = 0.025
Ca = 0.0175
Ca = 0.01

Fig. 9. Contact line positions on the substrate at the last simulated time. The
thicker line labeled as Initial represents the contact line at t¼0, which is the same
for all cases.
change considerably, but it is shifted towards <⁎x 0. At the lower
capillary number explored, e.g. Ca¼0.01, the pattern is much lar-
ger, 58% of the initial area, and its position indicates loss of re-
gistration in the xn and yn directions. It is important to note that
the substrate kinematics is independent of the y-coordinate. The
loss of registration in the y direction results from small pertur-
bations in the flow triggered by the numerical procedure. At low
capillary number the contact line slipping is strong, the printed
pattern moves away from its initial position on the substrate and it
even loses its circular shape.

Darhuber et al. (2001) carried out experiments and quasi-static
simulations in order to uncover the physical mechanisms controlling
the pattern fidelity in offset printing operations. They prepared hy-
drophilic surface patterns on a hydrophobic surface enabling the
deposit of ink following specific designed shapes. Because they used
smooth non-porous surfaces like those modeled in this work, im-
portant contact line displacements were observed. Their experiments
showed that the unwanted ink redistribution after printing can be
minimized by using higher viscosity ink. Based on their simulations,
they suggested that the receding of the contact lines during printing
can be reduced by increasing the plate vertical separation velocity. An
increase in either ink viscosity or separation velocity means in both
cases an increase in the capillary number, which is in qualitative
agreement with our results shown in Fig. 9.

The shape distortion of the printed pattern can be character-
ized by the circularity C of the pattern. This quantity is measured
as the ratio of the perimeter of a circle that has the same area A of
the pattern and the calculated contact line length L; i.e.,

π π= −C L A2 /1 . Thus, if the pattern is a circle then C¼1; otherwise,
<C 1. Fig. 10 shows the evolution of C for the conditions shown in

Fig. 9. For <Ca 0.1 the contact line strongly distorts from its ori-
ginal circular shape as the liquid moves out of the cell: then, ca-
pillary pressures nearly restores its original circular shape. For the
lowest capillary number explored (Ca¼0.01), the final value of C
(at the liquid breakup) is C¼0.998. The shapes of the contact line
on the substrate for the minimum values of C computed for four
different values of the capillary number are presented in Fig. 11 as
examples. As we mentioned, at low capillary number the liquid
bridge moves out of the cell and during this process the printed
pattern is strongly distorted, becoming concave on one side.
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The contact line mobility and consequently the printing pattern
configuration are likely to be highly dependent on the contact
angles and slip parameters. Therefore, the printing pattern size
and placement will vary with the wetting characteristics of both
surfaces. The effect of these parameters were not explored here
and remains to be studied.
5. Conclusions

The fundamental aspects of gravure printing can be better
understood by analyzing the liquid transfer from a single cell to a
substrate wrapped around a rotating roll. Previous numerical
analyses either considered a simplified relative motion between
the cell and the substrate or were restricted to a 2D planar flow
that described liquid transfer from an infinite groove, not a cell.
Therefore, these analyses cannot be readily used to determine not
only the amount of liquid transferred to the substrate but also the
characteristics of the printing pattern.

In this work, we extended our previous analysis to fully de-
scribe the 3D free surface flow with moving contact lines that
occurs during the liquid transfer process. As in liquid transfer from
infinite grooves (2D plane flow), the process can only be accurately
described by considering the complete kinematics between a
rotating roll and the liquid-filled cell. The amount of liquid
transferred to the substrate is a function of the ratio between two
characteristic time scales, one related to the contact line motion
and the other to the filament breakup. Both phenomena are
strongly dependent on capillary number and, for the situation here
explored, the results can be summarized as follows.

At low capillary number ( < )−Ca 10 2 , the contact lines are very
mobile and the liquid is pushed out of the cavity before the fila-
ment breakup. In these cases, the amount of liquid that is trans-
ferred to the substrate is higher than 50% of the cavity volume. On
the other hand, at intermediate capillary numbers ( × −2 10 2 to
10�1), the contact lines are less mobile and breakup occurs before
the liquid is pushed out of the cell. Then the amount of liquid
transferred to the substrate decreases to values lower than 5% of
the cell volume. At even higher capillary numbers, the transferred
liquid volume increases as capillary number rises, mainly because
the contact lines remain almost static during the process.

When the contact line mobility is low, the effect of the shear
and rotational relative motion between the cell and the substrate
is weak and the transferred liquid fraction is well described by
simpler 2D axisymmetric model. This indicates that the 2D ax-
isymmetric solutions presented by Dodds et al. (2009) for a wide
range of cavity aspect ratios and contact angle differences accu-
rately describe liquid transfer in a roll-to-roll configuration, if the
capillary number is high enough. On other hand, when the
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mobility of the contact lines is high, the relative motion between
the surfaces strongly affects the way the liquid filament breaks up
and the simpler 2D axisymmetric model underpredicts the
transferred liquid ratio.

The 3D solutions presented here also reveal that although high
liquid transfer ratio can be attained at low capillary numbers, the
precision in the position of the printing pattern is poor when the
contact lines are very mobile. Smaller dots with higher placement
precision (improved registration) are obtained at high capillary
numbers.

It is important to mention that the design of the process should
not be guided only by conditions favoring the emptying of the
cavities because, before that, the cavities must be filled. As was
shown by Cen et al. (2014), at high capillary numbers, the contact
line pins at the cavity corners slowing down the liquid filling step
and promoting air entrapment inside the cavity. Thus, the optimal
capillary number for a given process should be estimated con-
sidering all the phenomena just discussed: cavity filling, cavity
emptying and registration of the pattern.
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