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Gasoline blending is a critical process with a significant impact on the total revenues of oil refineries. It consists of mix-
ing several feedstocks coming from various upstream processes and small amounts of additives to make different blends
with some specified quality properties. The major goal is to minimize operating costs by optimizing blend recipes, while
meeting product demands on time and quality specifications. This work introduces a novel continuous-time mixed-integer
linear programming (MILP) formulation based on floating time slots to simultaneously optimize blend recipes and the
scheduling of blending and distribution operations. The model can handle non-identical blenders, multipurpose product
tanks, sequence-dependent changeover costs, limited amounts of gasoline components, and multi-period scenarios.
Because it features an integrality gap close to zero, the proposed MILP approach is able to find optimal solutions at
much lower computational cost than previous contributions when applied to large gasoline blend problems. VC 2016
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Introduction

Gasoline is the dominant refined product that accounts for a

large portion of the total refinery profit1. It is a mixture of

hydrocarbons, additives and blending agents. Straight-run gas-

oline separated from crude oil via distillation does not meet

the required quality for modern engines, especially the octane

number (ON) and vapor pressure (VP) specifications. Such

properties can be improved through reforming and isomeriza-

tion processes. Nonetheless, the straight-run gasoline is used

as a blending component, but in a rather low proportion. The

other feedstocks blended to make gasoline come from various

refinery processing units such as catalytic reformers, alkyla-

tion units, isomerization units, fluid catalytic crackers, and

hydrocrackers. The low-value n-butane is also blended in the

gasoline mixture, but its amount is limited by the VP-

specification. Additives and blending agents are added to the

hydrocarbon mixture to improve the anti-knock performance

and stability of gasoline. These oxygenated compounds

include octane enhancers such as methyl tert-butyl ether and

tert-butyl alcohol, as well as alternative fuels such as ethanol

and methanol for economic and environmental reasons.
A large refinery can have more than 20 gasoline compo-

nents that are blended into several gasoline grades. None of

the individual components meet the specifications of commer-

cial gasoline. Then, it is necessary to determine the best pro-

portion of each one in the finished gasoline, called the blend

recipe, to meet the particular properties of the blend required
by the customer. A number of different gasoline grades are
usually produced in the gasoline blending unit (GBU) of a
refinery, with each grade meeting certain quality requirements.
Quality specifications include the octane rating, given in terms
of the Research Octane Number (RON) and the Motor Octane
Number (MON), the Reid Vapor Pressure, ASTM distillation
points, the flash point, the aromatic and sulfur content, etc.
These properties are monitored during production to ensure
the required qualities of the final product. RON and MON are
considered to be the most important ones because the increase
in the engine’s compression ratio led to higher requirements in
the octane rating.

Several blenders with each one making only one final prod-
uct at a time are operated in a semi-continuous mode in the
GBU. Gasoline components stored in a set of dedicated stor-
age tanks are supplied to the blenders at constant feed flow
rates according to the blend recipe selected for the final prod-
uct. At the same time, the component tanks can be receiving
additional amounts of components from upstream production
units. The finished products obtained in the blenders are dis-
charged into a farm of product tanks which afterwards deliver
orders to the market within specified time windows. When
using on-line certification, product properties are tested as the
blend is being produced with an on-line multi-property blend
analyzer, and the product qualities are certified without the
need of additional laboratory testing. By eliminating the wait-
ing time for additional testing at the end of the blend run, the
on-line certification has an important advantage in terms of
the GBU total throughput.

The operational management of a GBU requires making a
number of key decisions such as the choice of the blend recipe
for every gasoline grade, the assignment of final products to
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blending runs, the allocation sequence of production runs to
blenders, the assignment of product tanks to gasoline grades
and the allocation sequence of blending runs and order deliv-
eries to product tanks. In addition, the problem involves the
scheduling of blending and distribution operations and the
tracking of the inventory level in component and product
tanks. The goal is to produce the required amounts of on-spec
blended products while minimizing quality giveaway and
product changeovers in blenders and product tanks, and maxi-
mizing the use of low-cost components in the blends. In short,
the gasoline blending problem aims to simultaneously deter-
mine the product recipes and the short-term scheduling of
blending and order delivery operations. It is a very complex
problem because it usually involves a large number of orders,
final products, blend headers, gasoline components, and stor-
age tanks for components and final products.

The blending technology used by refiners to optimize the
gasoline recipe typically works on three levels: off-line opti-
mization, on-line optimization, and regulatory control. Given
the component properties, an off-line optimizer generates the
initial blend recipes to get on-spec products and the short-term
planning of blending operations. This information is subse-
quently downloaded to the on-line optimizer that determines
the set points for the controller. Both off-line and on-line opti-
mizers are typically conducted using either linear program-
ming or successive LPs to solve nonlinear optimization
models. Recently, an off-line multi-blend optimizer using
event-based, multi-period nonlinear models has been made
commercially available.2 Based on blend quality measure-
ments, an on-line optimizer can modify the initial recipes dur-
ing the blend and determine the final blend recipes to be
executed by the controller. To maintain the accuracy of the
models used by the blend optimizer, a correction term called
bias updating is usually employed to account for the nonli-
nearity of some gasoline properties. Bias updating involves
comparing measured blend properties with those predicted by
the model in the on-line optimizer. The difference between the
two is added as an error term to the linear blending models. In
this way, the on-line optimizer is usually formulated as a lin-
ear programming with bias updating.

This work introduces a novel continuous-time mixed-inte-
ger linear programming (MILP) formulation based on floating
time-slots to simultaneously optimize gasoline blend recipes
and the short-term planning of blending and distribution
operations using linear blending indices. Floating slots are not
pre-allocated to time periods but such assignment decisions
are model variables. The proposed off-line optimizer can
handle non-identical blenders, multipurpose product tanks,
sequence-dependent changeover costs, limited amounts of
gasoline components, and multi-period scenarios with feed
flow rates to component tanks changing with the period. More-
over, all the operational rules for the management of GBUs
are considered. Because it features an integrality gap close to
zero, the proposed MILP approach is able to find optimal
solutions at much lower computational cost than previous con-
tributions when applied to large gasoline blend scheduling
problems.

Previous Contributions

The gasoline components can be blended using either the
traditional batch-blending process where they are mixed in a
blend tank, or tankless, inline blenders continuously mixing
the feedstocks. Several papers have already studied the multi-

period mixing of crude oil or refined petroleum products in
blending tanks and considering the issue of (non-)simultane-
ous input and output flows.3–6

Other important contributions assumed that the blending

process is carried out in tankless inline blenders, and focused
on the simultaneous optimization of gasoline recipes and the
scheduling of blending and distribution operations7 developed

a multi-level integrated approach to coordinate the short-term
scheduling of blending operations with nonlinear recipe opti-
mization. At the upper level, a nonlinear problem is solved to

determine blending recipes and product volumes for the sched-
uling level. The lower-level scheduling problem was modeled
through an MILP formulation based on a Resource-Task

Network representation that allows recipe changeovers
between alternate product recipes determined at the upper
level8 decomposed the overall refinery system into three major

sections: (a) crude oil unloading, blending and processing, (b)
scheduling of production units yielding intermediate streams,
and (c) gasoline blending and delivery of final products. Then,

they proposed a continuous-time event-based MILP formula-
tion for the simultaneous scheduling of gasoline blending and
distribution operations. The model assumed fixed product rec-
ipes and a single blend header that can concurrently feed vari-

ous product tanks. An interesting model feature is the
handling of multipurpose product tanks that can deliver multi-
ple orders of a given product at the same time. Reciprocally,

multiple tanks can deliver the same order9 proposed an itera-
tive method that consists of solving a sequence of MILP for-
mulations based on either a discrete-time or a slot-based

continuous-time domain representation. Since variable product
recipes and nonlinear gasoline properties are considered, the
iterative procedure aims to preserve the model’s linearity.

Thus, the solution of a large nonlinear, non-convex mixed-
integer programming (MINLP) model is replaced by sequen-
tial MILP approximations. When the slot-based approach is

adopted, the scheduling horizon is divided into a number of
time intervals using the order due dates, and a set of process
time slots with unknown durations is postulated for each inter-

val. Every product demand can be satisfied by making multi-
ple discharges from one or more product tanks during one or
more time slots. Besides, the MILP model assumes the opera-
tion of parallel identical blenders, dedicated storage tanks for

components and final products, a constant feed component
flow rate all along the scheduling horizon, and simultaneous
loading and unloading operations at every product tank. The

problem objective is to maximize the production profit while
satisfying process constraints, final product demands and qual-
ity specifications. Since feasible solutions are difficult to find

through the sequential MILP procedure, additional constraints
penalizing out-spec products and component shortages were
included.

Li et al.10 developed a continuous-time MILP formulation

based on process slots for the simultaneous treatment of vari-
able recipes, blending campaigns, component/product storage,
and order scheduling. Compared with the work of M�endez

et al.,9 the approach incorporates several new operational fea-
tures such as the handling of parallel non-identical blenders,
multi-purpose product tanks, and blending and storage transi-

tions. In addition, a blender can at most charge one product
tank at a time, the blending rate should remain constant during
a production run, and a product tank cannot receive product
from a blender and deliver customer orders at the same time.

Although some blend quality specifications are predicted using
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highly nonlinear correlations, Li et al.11 noted that a linear
blending index exists for almost every hydrocarbon property
with nonlinear mixing correlations. Using such property indi-
ces, Li et al.10 were able to model the problem through an
MILP that ensures a constant blend rate per time slot. Because
a production run may be extended over two or more slots, the
authors developed a schedule adjustment procedure to get a
constant blend rate during a blending run. The procedure con-
sists of successive MILPs instead of solving a non-convex
MINLP. The selected problem goal was to minimize the total
operating cost, including component, order tardiness, transi-
tion and backorder costs. The MILP model has also been
extended to consider multi-period scenarios with each period
featuring a different constant component feed rate. Later, Li
and Karimi12 presented a multigrid continuous-time MILP
formulation to improve the efficiency of the approach pro-
posed by Li et al.10 To this end, the new MILP formulation
uses unit slots instead of process slots to get a higher RMIP
bound and a faster improvement of the lower bound. Besides,
it accounts for limited component inventories that force to
change the product recipes along the time horizon. By
including additional constraints, the model was extended to
allow for simultaneous receipt/delivery operations in product
tanks.

Kolodziej et al.13 introduced a generalized non-convex
MINLP formulation for the multi-period blend scheduling
problem. The primary difficulties to be faced were the pres-
ence of bilinear terms together with binary decision variables
that are defined to impose operational constraints. A radix-
based discretization technique was applied to reformulate the
model as an approximate MILP that is incorporated either in a
heuristic procedure or in two rigorous global optimization
methods. Flows are not allowed to enter and exit a blending
tank in the same time period. The resulting approaches require
much less computational time than existing global optimiza-
tion solvers. More recently, Castillo-Castillo and Mahalec14

presented a continuous-time MILP model that modifies to
some extent the formulation of Li and Karimi12 by incorporat-
ing new operational constraints, lower bounds on the objective
function, and additional equations transforming binary varia-
bles into continuous ones. Moreover, the use of demand infor-
mation allows lowering the number of binary variables. The
proposed formulation accounts for product-dependent setup
times in blenders, minimum production of blend runs, and

penalties for fulfilling the same order by product discharges

from multiple tanks. When nonlinear correlations are consid-

ered to estimate RON and MON properties of the gasoline

blend, satisfactory results were obtained by using global

MINLP solvers.
One of the major shortcomings of previous contributions is

the very high computational cost they require to find near-

optimal solutions for real-world gasoline blend scheduling

problems. This work presents a new tight MILP formulation

that solves large problems at much lower CPU time.

Problem Statement

The GBU of an oil refinery comprises a set of dedicated

tanks for gasoline components s � S, a pumping station, a

number of blend headers b � B working in parallel and a set

of multipurpose product tanks j � J that can hold different

final products p � P along the time horizon (see Figure 1).
Several production runs i � I are sequentially performed in

each blender to produce different gasoline blends or final prod-

ucts p � P. These products are temporarily stored in product

tanks and subsequently delivered to meet a set of customer orders

or requests r � R. A blend header b is usually assigned to the

production of a group of final products p � Pb and its processing

rate can vary within some given product-dependent range

[ rbmin
b;p ; rbmax

b;p ]. The production runs should have a minimum

length whose value depends on both the product and the blender

(lbmin
b;p ). A product changeover in the blender b has a sequence-

dependent transition time (sb,p,p0) and transition cost (ctrbb,p,p0).
Conversely, every final product p is characterized by speci-

fying the allowable range of some critical properties g � G,

and the limiting proportions of the gasoline components in the

blend, given by [pprmin
g;p ; pprmax

g;p ] and [ vcmin
s;p ; vcmax

s;p ], respec-

tively. Besides, the values of the critical properties for the gas-

oline components (sprg,s) are problem data. Each gasoline

blend has its own recipe consisting on the group of constituent

components and their relative proportions. The optimal recipe

of a final product is the one featuring the lowest component

cost, while satisfying both property requirements and limiting

proportions of gasoline components. If these components are

available in unlimited amounts, the recipe of a particular prod-

uct is independent of the other products to be blended during

the time horizon. Under limited amounts of components, the

recipe will depend on the other products to be obtained and

Figure 1. A sketch of the gasoline blending process.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the amounts of them required by the customers. Thus, the opti-
mization of the recipes should be done simultaneously for all
the required products.

The feed rate to each component tank will be regarded as a
piecewise constant function of time. In other words, the schedul-
ing horizon will be viewed as composed by a number of time
periods k � K with each one featuring a different constant com-
ponent feed rate svrs,k. The time limits for period k are given by
[llimk, ulimk] and its length is hkk 5 ulimk 2 llimk. The overall
length of the scheduling horizon h 5

P
k2Khkk is also a problem

data. The unit cost of component s is provided by the parameter
scosts. Customer orders demanding product p are grouped into
the set Rp. In this way, each request is defined by specifying the
order group Rp to which it belongs, the order size qr, the delivery
time window [atwr, btwr] and the order delivery rate rdrr. Orders
that are delivered beyond their due dates btwr should pay a
demurrage penalty per unit time (ctd). Data for component tanks
include the tank capacity (scaps), the initial inventory (iiss) and
the constant feed flow rate during each period k (svrs,k). For every
product tank j � J, it is given the group of products that can be
stored (Pj), the tank capacity (pcapj), the product currently stored,
the initial inventory (iijp,j), and the maximum delivery rate (pdrj).

In addition to the gasoline property specifications and the lim-
iting component proportions in the blends, the management of a
GBU also involves a series of operational rules for blenders and
component/product tanks.5 Those rules are the following:

1. Every blender can process several products over the
time horizon, but one after another.

2. After starting the processing of a gasoline product, a
blender should operate for some minimum time before
stopping or switching to another product.

3. A component tank may feed multiple blenders at the
same time.

4. A component tank can receive flows from upstream
processes and feed blenders at the same time.

5. A blender can at most feed a single product tank at any
time instant.

6. Different products can be sequentially stored in the
same product tank.

7. A product tank cannot receive a lot of final product from
a blender and simultaneously deliver a customer order.

8. A customer order can be satisfied by delivering the
requested product from different product tanks.

9. A product tank can deliver several orders at the same
time.

The gasoline recipe and blend scheduling problem aims to
determine: (a) the allocation of production runs to blenders;
(b) the gasoline grade and the amount yielded by every pro-
duction run; (c) the product recipe for every production run;
(d) the short-term schedule of blending operations in every
blender; (e) the sequence of gasoline grades that are stored in
each product tank; (f) the allocation of blending runs and cus-
tomer orders to product tanks, (g) the schedule of delivery
operations from each product tank; and (h) the inventory pro-
files for component and product tanks, in such a way that all
customer orders are fully satisfied while minimizing quality
giveaway, off-spec products, component cost, order delivery
tardiness, and changeover costs in blenders and product tanks.

Model Assumptions

In addition to the operational rules, a series of assumptions
already proposed in previous works have been used to model
the problem.10 They are:

1. The scheduling horizon is composed of a number of
time periods of known lengths.

2. The feed rate to every component tank is a piecewise
constant function of time, i.e., it can have a different
value for each period.

3. Multiple component tanks may simultaneously feed a
particular blender.

4. Several parallel non-identical blenders can be
operated.

5. Every blending run should occur within a single time
slot.

6. Mixing in every blender is perfect.
7. The product changeover time and cost in blenders are

sequence-dependent.
8. Every product tank can at most receive the production

from a single run during a time slot.
9. The changeover time in product tanks is negligible.

10. Each order involves a single product and must be
delivered within the time horizon. Then, multiproduct
requests are handled as a set of single-product orders
with the same delivery window.

11. Loading and delivery operations in product tanks
should occur in different time slots.

12. Delivery of a customer order from a product tank
should occur within a single time slot and begin at the
start of the slot. Moreover, the amount delivered
should be greater than a threshold value.

13. No additional time is needed for product certification.

The Mathematical Model

The proposed continuous-time MILP formulation for the
simultaneous optimization of blend recipes and the scheduling
of blending and delivery operations is based on the use of
ordered sets of production runs (I) and floating time slots (T)
with variable length. Such model features allow to sequencing
blend operations in blenders (B) and manage non-
simultaneous receipt and delivery tasks in product tanks,
respectively. As shown in Figure 2, the elements of I are said
to be chronologically ordered because the production run
(i 1 1) never begins before starting run i. If both campaigns
are performed in the same blender, then run (i 1 1) must begin
after finishing run i. Similarly, the time slot t � T starts at the
completion time of slot (t 2 1). In addition, the scheduling
horizon of known length is composed of a number of time
intervals k � K, with the value of each component feed rate
(svrs,k) varying from one to another period, i.e., a multi-period
scenario. In contrast to previous works, floating time slots t �
T and production campaigns i � I are not pre-assigned to time
periods because it is somewhat difficult to know a priori the
number of them required in each period. They can be viewed
as floating elements that can move from one to another period
during the solution procedure. Pre-assignment of slots and pro-
duction runs to time periods may lead to non-optimal solu-
tions. Instead, unique sets of time slots and productions runs
are defined, and the assignment of them to time periods is
made by the model in an optimal way. Another difference
with previous approaches is the handling of sequence-
dependent transition costs in blenders and product tanks. R is
another important set involving the customer orders to be sat-
isfied during the current scheduling horizon. It is forbidden for
a product tank to receive a flow of product from some blender
and deliver a customer order of the same product within the
same time slot. However, a simple change allows the proposed
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approach to also manage simultaneous receipt/delivery opera-
tions in product tanks.

Model variables

Model decision variables can be gathered into three groups
according to their purpose. The arrangement of blending oper-
ations in the blend headers is handled through three different

sets of binary variables. Variables WIi,k assign production runs
to time periods k � K, variables WBi,b allocate production
runs to blenders b � B, and YBi,p select the final product p �
P generated by every production run. The second group of 0–1
variables is defined to allocate production runs to time slots t
� T and product tanks j � J. XIJi,j,t indicates that the produc-
tion run i is discharged into the product tank j during the time
slot t, and XPJp,j,t identifies the final product stored in product
tank j during the slot t. In combination with YBi,p, the assign-
ment variables XIJi,j,t and XPJp,j,t choose the destination for

the volume of product generated by run i during the time slot
t. In fact, XIJi,j,t can be equal to one only if YBi,p 5 XPJp,j,t 5 1.
The third group involves the 0–1 variables XRJr,j,t and XDJp,j,t

to assign customer orders to product tanks and time slots. If

XRJr,j,t 5 1, then the product tank j delivers a portion or the
whole order r within the time slot t. Let us assume that order r
demands product p. In that case, XRJr,j,t can be equal to one
only if a volume of product p is discharged from tank j during
the time slot t, i.e., XDJp,j,t 5 1.

The continuous variables associated to a production run i
are: QBi,p representing the production of final product p, (SBi,
CBi) denoting the initial and final times, and LBi,b,p standing
for the length of run i. The value of LBi,b,p is restricted to the
range [lbmin

b;p ; lbmax
b;p ] which depends on the selected blender

and the product to be obtained. If run i is allocated to time slot
t and (STt, CTt) represent the initial and final times of slot t,
then the following conditions must hold: SBi� STt and
CBi�CTt. To track the inventory levels in component tanks,
the proposed model includes the continuous variables (SINIs,i,

SINCs,i) standing for the inventory of component s at the start
and end times of run i, SINFs denoting the inventory of com-
ponent s at the end of the scheduling horizon, and USs,i, indi-

cating the amount of component s 2 S assigned to run i.
Similarly, the inventory levels in product tanks are controlled
by the variables: PINVp,j,t standing for the inventory of final
product p in tank j 2 Jp at the end of slot t, QPJi,p,j,t denoting
the amount of product p coming from run i that is discharged
into tank j 2 Jp during the slot t, and UPp,j,t representing the
amount of product p unloaded from product tank j during the
slot t. A product changeover in tank j can occur at the start of
a time slot only if tank j is empty at that time. It is assumed
that an order delivery assigned to the slot t always begins at
the initial time STt. Associated to an order delivery r there are
two continuous variables: URr,j,t representing the amount of
product delivered from tank j within the time slot t for order r,
and CRr,j,t denoting the final time of that delivery.

Model constraints

Different groups of constraints are defined for: (a) sched-
uling production runs in the blend headers, (b) fulfilling the
demand and quality specifications of final products, (c)
tracking inventory levels in component and product tanks,
and (d) scheduling receipt and delivery operations in multi-
purpose product tanks. All the model constraints are given
below.

Production runs performed in blenders

A Production Run i Should at Most Be Performed Within a
Single Time Period k. The ordered set K includes the time
periods into which the scheduling horizon has been divided,
and the binary variable WIik assigns the production run i2 I to
time period k 2 K. According to Eq. 1, a production run
should at most be performed within a single time period.
Therefore,

P
k2K WIi;k 5 0 characterizes a fictitious run i.

Moreover, the feed rate of any gasoline blending component s
(vcs,k) can change with the period k � K. For single-period
blend scheduling problems, the set K just includes only one
element.

X
k2K

WIi;k � 1 8 i 2 I (1)

Figure 2. Illustrating the proposed slot-based approach.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal 2016 Vol. 00, No. 00 Published on behalf of the AIChE DOI 10.1002/aic 5

http://wileyonlinelibrary.com


A Production Run Can at Most Be Assigned to a Single
Blender. The set B comprises the blenders available for the

mixing process, while the 0–1 variable WBib allocates produc-

tion runs to blenders. By Eq. 2, a production run should at

most be assigned to a single blender.

X
b2B

WBi;b 5
X
k2K

WIi;k 8 i 2 I: (2)

A Production Run Can at Most Yield a Single Product. The

binary variable YBi,p allocates production runs to final prod-

ucts. By Eq. 3, a production run can at most yield a single final

product. X
p2P

YBi;p5
X
b2B

WBi;b 8 i 2 I (3)

Definition of the Continuous Variable WBPi,b,p. The contin-

uous variable WBPi,b,p identifies the final product yielded by

production run i in blender b. Its value becomes determined by

Eqs. 4–6.

WBPi;b;p � WBi;b1YBi;p21 8 i 2 I; p 2 P; b 2 Bp (4)X
b2Bp

WBPi;b;p � YBi;p 8 i 2 I; p 2 P (5)

X
p2Pb

WBPi;b;p � WBi;b 8 i 2 I; b 2 B (6)

Length of a Production Run. The continuous variable LBi,b,p

whose value is restricted to the interval [lbmin
b;p ; lbmax

b;p ] denotes

the length of the production run i. By Eq. 7, it has a finite

value only if WBPi,b,p 5 1, i.e., just for the blender b and the

final product p assigned to run i.

lbmin
b;p WBPi;b;p � LBi;b;p � lbmax

b;p WBPi;b;p

8 i 2 I; p 2 P; b 2 Bp:
(7)

Volume of Final Product Generated by a Production Run.

The continuous variable QBi,p stands for the amount of final

product p yielded by run i. Its value is given by Eq. 8, where

the interval [rbmin
b;p ; rbmax

b;p ] denotes the processing rate limits

for producing the final product p in blender b.

X
b2Bp

rbmin
b;p LBi;b;p � QBi;p �

X
b2Bp

rbmax
b; p LBi;b;p 8 i2 I; p2P

(8)

Ordered Execution of Production Runs in Blenders. By Eq.

9, a generic run i can be assigned to a blender only if the prec-

edence campaign (i 2 1) is really performed, i.e.,
P

b2B

WB i21ð Þ;b 5 1. Therefore, the last elements of the set I are

reserved for dummy or fictitious runs.X
b2B

WBi;b �
X
b2B

WB i21ð Þ; b 8 i21ð Þ; i 2 I; b 2 B (9)

Sequencing Production Runs in Every Blender b. The

continuous variables SBi and CBi stand for the starting and

completion times of run i. By Eq. 10a, a production run i0 can

never start before completing run i if i< i0 and both runs have

been assigned to the same blender. Moreover, if run i is

assigned to time period k, it should be performed within the

time limits of period k, i.e., (llimk, ulimk). Then, the starting

and completion times of the production run i are determined
by the set of Eqs. 10a–10d. The parameter sb,p,p0 is the
sequence-dependent changeover time in blender b. It is equal
to zero for p 5 p0, i.e. sb,p,p 5 0.

CBi � SBi02sb;p;p01 h ð22WBPi;b;p2WBPi0;b;p0Þ
8 i; i0 2 I i0 > ið Þ; p; p0 2 P; b 2 Bp \ Bp0

(10a)

CBi �
X
k2K

ulimk WIi;k 8 i 2 I (10b)

SBi �
X
k2K

llimk WIi;k 8 i 2 I (10c)

CBi 5SBi1
X
p2P

X
b2Bp

LBi;b;p 8 i 2 I (10d)

Since the elements of the set I stand for generic runs, Eq.
11a states that the model should activate the production runs
in the same order that they are listed in the set I. Then, a
production run (i 1 1) can never begin before starting the
preceding run i whatever are the blenders assigned to both
runs. In this way, it is reduced the size of the solution space
but no feasible alternative is cut off by the model. More-
over, fictitious runs arise last. In addition, it is also imposed
that a production run i can never finish after completing the
run i0> i to facilitate the tracking of component/final prod-
uct inventories. Eq. 11b just disallows solutions where run i
finishes after completing the campaign i0> i. However,
equivalent solutions can still be considered by performing a
succeeding run i00 making the same product than run i in the
same blender and starting at the end of campaign i. As a
result, additional runs may be needed in the set I because of
Eq. 11b.

SBi � SBi11 8 i 2 I (11a)

CBi � CBi11 8 i 2 I (11b)

If the changeover time is not sequence-dependent, Eq. 10a
should be replaced by the following constraint:

CBi � SBi02sb1 h 22WBi;b2WBi0;b

� �
8 i; i0 2 I i0 > ið Þ; b 2 B

Transition Cost in Blenders. The continuous variable TRBi,b

given by Eqs. 12a and 12b denotes the cumulative transition
cost at blender b � B after performing the production run i. In
Eq. 12a, the parameter ctrbb,p,p0 denotes the sequence-
dependent transition cost in blender b and MB is a relatively
large number. When p 5 p0, no changeover occurs and
ctrbb,p,p 5 0. As stated by Eq. 12c, the maximum value of
TRBi,b provides a lower bound for the total transition cost
(TTRBb) in blender b.

TRBi0;b � TRBi;b1 ctrbb;p;p02MB 22WBPi;b;p2WBPi0;b;p0
� �

8 i; i0ð Þ 2 I i < i0ð Þ; b 2 Bp \ Bp0 ; p; p0 2 P

(12a)

TRBi;b � MB WBi;b 8 i 2 I; b 2 B (12b)

TTRBb � TRBi;b 8 i 2 I; b 2 B (12c)

If the transition cost is not sequence-dependent and inde-
pendent of the blender (ctrb), a lower bound on the total tran-
sition cost in blenders is given by Eq. 13. Such a lower bound
assumes that a number of production runs equal to the number
of products to be made has been chosen, i.e. one run per
product.
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X
b2B

TTRBb � ctrb card Pð Þ2card Bð Þ½ � (13)

Overall fulfillment of final product demands

The Net Demand of a Final Product Should Be Satisfied
with New Production from Blenders. The parameter demp

denotes the total demand of final product p to be satisfied dur-
ing the scheduling horizon. It is given by Eq. 14, where qr is
the size of order r. Part of that demand can be fulfilled by mak-
ing use of the initial inventory of product p. Equation 15 states
that the production of product p should be large enough to
cover its net demand over the time horizon. In Eq. 15, the set
Jp includes the allowable storage tanks for product p, and the
parameter iijp,j represents the initial inventory of product p in
the tank j2 Jp.

demp5
X
r2Rp

qr 8 p 2 P (14)

X
i2I

QBi;p � demp2
X
j2Jp

iijp;j 8 p 2 P (15)

Monitoring the inventory of component s at the start/
end times of a production run

Total Amount of Gasoline Blending Components Assigned
to a Production Run. The continuous variable QSs,i,p repre-
sents the amount of component s 2 S assigned to run i produc-
ing product p. According to Eq. 16, the total amount of
components assigned to run i should be equal to the produc-
tion of the final product yielded by run i.X

s2S

QSs;i;p5 QBi;p 8 i 2 I; p 2 P (16)

Amounts of Components Assigned to a Production Run.
Equation 17 provides the value of QSs,i,p. The parameters

{ vcmin
s;p ; vcmax

s;p g denote the limiting volume fractions of com-
ponent s in the final product p.

vcmin
s;p QBi;p � QSs;i;p � vcmax

s;p QBi;p 8 s 2 S; i 2 I; p 2 P

(17)

Total Amount of Component s Consumed by Production
Runs up to the Completion Time of Run i. The total amount of
component s consumed up to time CBi given by the continuous
variable USs,i is obtained by summing up the amounts of com-
ponent s assigned to production runs i0 � i.

USs;i5
X
i0 2 I
i0 � i

X
p2P

QSs;i0;p 8 i 2 I; s 2 S (18)

Inventories of Component s at the Start/End Times of a Pro-
duction Run. The inventory level of every component tank
should be monitored to avoid overloading and running-out
conditions at the start/end time of every production run. The
continuous variables SINIs,i and SINCs,i represent the inven-
tory levels of component s at the start and completion times of
run i. Equation 19a provides the inventory of component s at
the start of run i. Its value must be lower than the capacity of
the tank assigned to component s. Assuming that the produc-
tion run i is assigned to time period k, then Eq. 19a accounts
for: (a) the initial inventory of component s; (b) the amount of
component s loaded into the dedicated tank over the periods
k0< k; (c) the amount of component s loaded during the period
k up to the start time of run i; (d) the amount of component s
discharged from the assigned tank and allocated to production
runs i0< i. In Eq. 19a, the continuous variable LKSi,k denotes
the length of the time interval between the beginning of period
k and the start time of run i. Its value is given by Eqs. 19b and
19c. Obviously, LKSi,k is equal to zero if run i is not assigned
to period k.

SINIs;i5iiss1
X
k2K

X
k0 2 K
k0 < k

svrs;k0 hkk0

0
BB@

1
CCAWIi;k1svrs;k LKSi;k

2
664

3
7752 USs;i2

X
p2P

QSs;i;p

 !
� scaps 8 s 2 S; i 2 I (19a)

LKSi;k � SBi2llimk1hkk 12WIi;k

� �
8 i 2 I; k 2 K (19b)

LKSi;k � hkk WIi;k 8 i 2 I; k 2 K (19c)

Similarly, Eq. 20a provides the inventory of component s at
the completion of run i given by the continuous variable
SINCs,i. In this case, LKFi,k denotes the length of the time

interval between the beginning of period k and the completion
of run i. Its value is given by Eqs. 20b and 20c. The inventory
of component s at the horizon end (SINFs) is determined by
Eq. 20d. To avoid running-out conditions for component s, the
condition SINCs,i� 0 is to be satisfied for any run i. In turn,
SINFs must never exceed the capacity of the assigned tank
(scaps).

SINCs;i5iiss1
X
k2K

X
k0 2 K
k0 < k

svrs;k0 hkk0

0
BB@

1
CCAWIi;k1 svrs;k LKFi;k

2
664

3
7752 USs;i 8 s 2 S; i 2 I (20a)

LKFi;k � CBi2 llimk WIi;k 8 i 2 I; k 2 K (20b) LKFi;k � hkk WIi;k 8 i 2 I; k 2 K (20c)

AIChE Journal 2016 Vol. 00, No. 00 Published on behalf of the AIChE DOI 10.1002/aic 7



SINFs 5 iiss1
X
k2K

svrk;s hkk2
X
i2I

X
p2P

QSs;i;p � scaps

8 s 2 S (20d)

Equation 19a assumes that the blending runs preceding
run i are all completed before starting run i. Moreover,
Eq. 20a supposes that the blending runs succeeding run i do
not start before ending run i. In other words, blending runs
do not overlap. Therefore, Eqs. 19a and 20a are strictly valid
only if a single blender is available. When multiple blenders
are operated, overlapping events can occur and the equations
controlling the inventory in component tanks should be
modified. Let us define the binary variable ZOi0,i denoting
the overlapping of blending runs (i0, i) with i0< i whenever
ZOi0,i 5 1. In contrast, no overlapping of runs (i0, i) will
occur if ZOi0,i 5 0. Then, the binary variable ZOi0,i is defined
by Eqs. 21a and 21b with the parameter e standing for a very
small number. The subset IPi comprises the preceding
runs (i0< i) performed in other blenders that can overlap in
time with run i. It is given by: IPi 5 i0 2 Ij i0 < i \f
i0 > i2card Bð Þg.

SBi � CBi02e1H 12ZOi0;i

� �
8 i 2 I; i0 2 IPi (21a)

SBi � CBi02H ZOi0;i 8 i 2 I; i0 2 IPi (21b)

To account for overlapping of blending runs when multiple

blenders are operated, Eqs. 19a and 20a will be generalized

but preserving the model linearity. Because Eq. 19a intends to

avoid the overloading of component tanks, the amount of com-

ponent s consumed by run i0 up to time SBi will be ignored in

the new expression of that constraint if ZOi0,i 5 1. This is a

conservative assumption based on the worst case at which

both runs (i0, i) with i0< i start at the same time, i.e.,

SBi0 5 SBi. In turn, Eq. 20a has been included in the model to

avoid running-out conditions in component tanks. If runs (i, i0)
with i< i0 overlap in time, the worst case occurs when they

finish at the same time, i.e., CBi 5 CBi0. Then, the new expres-

sion for Eq. 20a will assume that the total amount of

component s assigned to run i0 (with i0> i) has been totally

consumed at time CBi when ZOi,i0 5 1. For the multi-blender

case, Eqs. 19a–20a should be replaced by Eqs. 22a and 22b.

In Eq. 22b, the subset ISi is given by ISi 5

i0 2 Ij i0 > i \ i0 < i1card Bð Þf g.

SINIs;i5iiss1
X

k2K

X
k0 2 K
k0 < k

svrs;k0 hkk0

0
BB@

1
CCAWIi;k1svrs;k LKSi;k

2
664

3
7752 USs;i2

X
p2P

QSs;i;p

 !
1
X

i02IPi
QSOs;i0;i � scaps 8 s 2 S; i 2 I

(22a)

SINCs;i5iiss1
X

k2K

X
k0 2 K
k0 < k

svrs;k0 hkk0

0
BB@

1
CCAWIi;k1 svrs;k LKFi;k

2
664

3
7752 USs;i2

X
i02ISi

QSOs;i;i0 � 0 8 s 2 S; i 2 I (22b)

The continuous variable QSOs,i0,i arising in constraints 22a

and 22b are defined by Eqs. 22c and 22d. QSOs,i0,i is equal to

QSs,i0 in Eq. 22a providing the value of SINIs,i if ZOi0,i 51. The

parameter MSs is a relatively large number.

QSOs;i0;i � MSs ZOi0;i (22c)

QSOs;i0;i �
X
p2P

QSs;i0;p2MSs ð12ZOi0;iÞ

8 s 2 S; i 2 I; i0 2 IPi

(22d)

Fulfillment of the gasoline quality specifications

Controlling the Value of Every Critical Property g in the
Final Product p. Equations 23a and 23b seek to make on-spec

final products within the desired limits { pprmin
g;p ; pprmax

g;p },

using linear blending indices, on volume or weight additive

base. The parameter sprg,s represents the blending index of

property g for the component s. In Eq. 23b, qs represents the

density of component s.

pprmin
g;p QBi;p �

X
s2S

sprg;s QSs;i;p � pprmax
g;p QBi;p

8 i 2 I; p 2 P; g 2 G (23a)

pprmin
g;p

X
s2S

qs QSs;i;p

 !
�
X
s2S

sprg;s qs QSs;i;p

� pprmax
g;p

X
s2S

qs QSs;i;p

 !

8 i 2 I; p 2 P; g 2 G

(23b)

Allocating the production from blenders to final product

tanks

Assigning Production Runs to Storage Tanks. The 0–1 vari-

able XIJi,j,t denotes the assignment of the production from run

i to the final product tank j during the time slot t whenever

XIJi,j,t is equal to one. By Eq. 24, a production run should at

most be assigned to a single product tank and performed

within a single time slot.

X
t2T

X
j2J

XIJi;j;t5
X
b2B

WBi;b 8 i 2 I (24)

In turn, Eq. 25 states that a product tank can at most receive

a single production run during a time slot.
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X
i2I

XIJi;j;t � 1 8 j 2 J; t 2 T (25)

Assigning Storage Tanks to Final Products During a Time
Slot. The binary variable XPJp,j,t denotes the assignment of the

storage tank j to the final product p during the time slot t
whenever XPJp,j,t 5 1. By Eq. 26, a storage tank should be

allocated to a single product over a time slot. The set Pj

includes the final products that can be stored in tank j.X
p2Pj

XPJp;j;t 5 1 8 t 2 T; j 2 J (26)

Moreover, the production from a campaign of product p
(i.e., YBi,p 5 1) must be discharged into a storage tank

assigned to that product. Assuming that run i yields product p,

then the variable XIJi,j,t can be equal to one only if XPJp,j,t 5 1

by Eq. 27.

XIJi;j;t1YBi;p � 11XPJp;j;t 8 i 2 I; j 2 J; p 2 Pj; t 2 T

(27)

Amount of Product Loaded into a Storage Tank During a
Time Slot. The continuous variable QPJi,p,j,t stands for the

amount of product p from run i discharged into the storage

tank j 2 Jp during the time slot t. As specified by Eqs. 28a and

28b, its value is zero if either the production run i does not

yield product p (i.e., YBi,p 5 0) or the run i is not assigned to

tank j during the slot t (i.e. XIJi,j,t 5 0). Otherwise, it is equal

to QBi,p by Eq. 28c.

QPJi;p;j;t � demp XIJi;j;t 8 i 2 I; j 2 J; p 2 Pj; t 2 T

(28a)X
t2T

X
j2Jp

QPJi;p;j;t � demp YBi;p 8 p 2 P; i 2 I (28b)

X
t2T

X
j2Jp

QPJi;p;j;t 5 QBi;p 8 p 2 P; i 2 I (28c)

Product Transition Cost in Storage Tanks. The positive

variable TRJp,j,t represents the changeover cost in the product

tank j when product p stored during the slot t is replaced by

another product p0 6¼ p in the next slot (t 1 1). The value of

TRJp,j,t is given by Eq. 29a. The parameter ctrjj denotes the

product changeover cost in tank j per instance.

TRJp;j;t � ctrjj XPJp;j;t1
X

p0 2 Pj

p0 6¼ p

XPJp0;j;t1121

0
BBBBBB@

1
CCCCCCA

8 p 2 P; j 2 Jp; t 2 T

(29a)

If sequence-dependent transition costs are to be handled,

Eq. 29a is to be replaced by Eq. 29b.

TRJp;j;t � ctrjj;p;p0 XPJp;j;t1XPJp0;j;t1121
� �

8 p; p0 2 P p 6¼ p0ð Þ; j 2 Jp \ Jp0; t 2 T
(29b)

Sequencing time slots

Ordered Set of Time Slots. A common set of process time

slots T for all product tanks is defined. It is said that T is an

ordered set because the time slot t must begin just after finish-

ing the precedence slot (t 2 1) as specified by Eq. 30.

STt � CTt21 8 t21ð Þ; t 2 T (30)

Initial and Final Times of Production Runs Assigned to Slot
t. By Eqs. 31a and 31b, a production run assigned to the time

slot t must be performed within the interval {STt, CTt}. The

length of slot t is given by Eq. 32.

STt � SBi1h 12
X
j2J

XIJi;j;t

 !
8 i 2 I; t 2 T (31a)

CBi � CTt1h 12
X
j2J

XIJi;j;t

 !
8 i 2 I; t 2 T (31b)

LTt 5CTt2STt 8 t 2 T (32)

Total Length of the Time Slots. Equation 33 states that the

total length of the time slots should be equal to the horizon

length h. X
t2T

LTt5h (33)

Unloading final products from the storage tanks to

satisfy customer demands

Non-Simultaneous Loading and Unloading Operations in
Storage Tanks. The binary variable XDJp,j,t denotes the deliv-

ery of the final product p from tank j during the time slot t
whenever XDJp,j,t is equal to one. Equation 34 imposes that

receipt and delivery operations cannot be performed in a prod-

uct tank within the same time slot.X
p2Pj

XDJp;j;t1
X
i2I

XIJi;j;t � 1 8 t 2 T; j 2 J (34)

Amount of Product p Unloaded from a Storage Tank Dur-
ing a Time Slot. The continuous variable UPp,j,t represents

the amount of product p unloaded from the product tank j
during the slot t to satisfy customer orders for product p. Its

value should be equal to zero in case: (a) the tank j receives

the production from a blender during the slot t, (b) the tank j
has not been assigned to product p during the slot t, or (c) no

delivery of product p from tank j is planned during the slot t.
Such conditions are expressed by Eqs. 35–37, respectively.

If none of those conditions holds, the unloaded volume of

product p can never exceed the available inventory of p in

tank j at the end of the preceding slot (t 2 1) as established

by Eq. 38.

X
p2Pj

UPp;j;t � pcapj 12
X
i2I

XIJi;j;t

 !
8 j 2 J; t 2 T (35)

XDJp;j;t � XPJp;j;t 8 j 2 J; p 2 Pj; t 2 T (36)

UPp;j;t � pcapj XDJp;j;t 8 j 2 J; p 2 Pj; t 2 T (37)

UPp;j;t � PINVp;j;t21 8 j 2 J; p 2 Pj; t 2 T (38)

Meeting the Total Demand of Product p. By Eq. 39, the total

volume of product p unloaded from all the storage tanks over

the scheduling horizon should be large enough to meet all the

orders requiring product p.

X
t2T

X
j2Jp

UPp;j;t �
X
r2Rp

qr 8 p 2 P (39)
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Controlling the inventory of final products in storage
tanks

Inventory Level of Final Products in Storage Tanks
Along the Scheduling Horizon. The positive variable
PINVp,j,t denotes the inventory of product p in tank j 2 Jp at
the end of slot t. Its value, given by Eq. 40, accounts for:
(a) the initial inventory of product p in tank j (iijp,j), (b) the
volume of product p discharged from a blender into the
tank j during the slot t, and (c) the amount of p unloaded
from tank j 2 Jp to meet customer orders over the slot t. By
Eq. 41, the value of PINVp,j,t should never exceed the
capacity of tank j.

PINVp;j;t5iijj;p1
X
i2I

X
t0 2 T

t0 � t

QPJi;p;j;t0 2
X

t0 2 T

t0 � t

UPp;j;t0

8 j 2 J; p 2 Pj; t 2 T (40)

PINVp;j;t � pcapj XPJp;j;t 8 j 2 J; p 2 Pj; t 2 T (41)

Conditions for the Assignment of Tank j 2 Jp to Product p
During the Time Slot t. Eq. 42 specifies that a storage tank j 2
Jp allocated to product p during the time slot t cannot contain
another product at the end of slots (t 2 1) and t.

PINVp0;j; t21ð Þ � pcapj 12XPJp;j;t

� �
8 t21ð Þ; t 2 T; p; p0 2 Pj p0 6¼ pð Þ; j 2 Jp \ Jp0

(42)

Assigning volumes of final products to customer orders

Allocating Deliveries of Final Products from Storage Tanks
to Customer Orders. The binary variable XRJr,j,t denotes that a
portion or the whole amount of final product discharged from
tank j during the time slot t has been allocated to customer
order r. By Eq. 43, no assignment of product to orders requir-
ing product p can be made if there is no discharge of p from
tank j during the slot t, i.e. XDJp,j,t 5 0. The parameter nrp

represents the number of customer orders for the final product
p.X

r2Rp

XRJr;j;t � nrp XDJp;j;t 8 j 2 J; p 2 Pj; t 2 T (43)

The continuous variable URr,j,t stands for the volume of
product assigned to order r from tank j within the slot t. Equa-
tion 44 requires that the whole amount of product discharged
from a storage tank j should be entirely allocated to one or
several customer orders requiring that product. By Eq. 45, the
total amount of product assigned to customer order r from one
or several tanks at the same or different time slots should be
exactly equal to the order size.

UPp;j;t 5
X
r2Rp

URr;j;t 8 j 2 J; p 2 Pj; t 2 T (44)

X
t2T

X
j2Jr

URr;j;t5 qr 8 r 2 R (45)

Limiting the Amount of Product Delivered from a Storage
Tank for Any Customer Order. Equations 46a and 46b restrict

the value of URr,j,t to the interval (srmin, qr), where srmin is the

minimum amount of product coming from a storage tank that

can be assigned to a customer order. If the parameter rdrr

stands for the delivery rate of order r demanding product p
and pdrp,j denotes the maximum delivery rate of product p
from tank j, then the value of URr,j,t is also limited by Eqs. 47a

and 47b.

URr;j;t � srmin XRJr;j;t 8 j 2 J; r 2 R; t 2 T (46a)

URr;j;t � qr XRJr;j;t 8 j 2 J; r 2 R; t 2 T (46b)

URr;j;t � rdrr CTt2 STtð Þ 8 p 2 P; j 2 Jp; t 2 T (47a)X
r2Rp

rdrr XRJr;j;t � pdrp;j 8 j 2 Jp; p 2 P; t 2 T (47b)

Starting and Completion Times of Product Deliveries from
Storage Tanks. The positive variable CRr,j,t represents the

completion time for the delivery of order r from tank j during

the time slot t. Assuming that every unloading operation

begins at the start of time slot t and STt satisfies the constraint

(48), then the value of CRr,j,t is given by Eq. 49. Besides, the

delivery of a customer order should occur within a single slot.

Then, CRr,j,t should not be greater than CTt if XRJr,j,t 5 1 by

Eqs. 47a and 49.

STt � atwr XRJr;j;t 8 r 2 R; j 2 Jr; t 2 T (48)

CRr;j;t � STt1 URr;j;t=rdrr

� �
2h 12 XRJr;j;t

� �
8 r 2 R; j 2 Jr; t 2 T

(49)

Tardiness of Customer Order r. The continuous variable

CRFr is the time at which the customer order r is completely

satisfied. Its value is given by Eq. 50. Then, the tardiness of

order r (TDr) can be determined by Eq. 51.

CRFr � CRr;j;t 8 r 2 R; j 2 Jr; t 2 T (50)

TDr � CRFr2 btwr 8 r 2 R (51)

Objective function

The problem goal (52) is the minimization of the total oper-

ating cost, including the component cost, the transition costs

in blenders and product tanks, and the tardiness costs. In Eq.

52, the parameter ctd stands for the tardiness cost per unit

time, and scosts is the unit cost of component s.

min Z5
X
s2S

X
i2I

X
p2P

scosts QSs;i;p 1
X
r2R

ctd TDr 1
X
b2B

TTRBb 1
X
p2P

X
j2Jp

X
t 2 T

t < jTj

TRJj;p;t

0
BBBBBB@

1
CCCCCCA

(52)
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Simultaneous receipt/delivery operations in product

tanks

A few changes should be introduced in the proposed formu-

lation to handle simultaneous receipt/delivery operations in

product tanks. Let us suppose that the order deliveries

assigned to time slot t finish at time CTt instead of assuming

that they start at time STt. In this way, running-out conditions

in product tanks can be avoided by monitoring their inventory

levels at the end time of every slot. The required changes in

the mathematical formulation consist on removing the con-

straints 34 and 35 and replacing Eqs. 48 and 49 by constraints

53–54b.

STt � atwr XRJr;j;t 8 r 2 R; j 2 Jr; t 2 T (53)

SRr;j;t � CTt2
URr;j;t

rdrr

� �
1h 12 XRJr;j;t

� �
8 r 2 R; j 2 Jr; t 2 T

(54a)

CRr;j;t � CTt1h 12 XRJr;j;t

� �
8 r 2 R; j 2 Jr; t 2 T

(54b)

Simple rules for selecting the number of production

runs and time slots

Two cases will be considered to develop simple rules for

choosing the number of production runs. When the gasoline

components are available in enough quantities, the optimal

recipe of a particular product is independent of the other prod-

ucts to be blended during the time horizon (Case 1). Such opti-

mal product recipes are usually called the preferred product
recipes. Under limited amounts of components, the preferred

recipes for all products are no longer obtained. The optimal

constrained recipe of a blend will depend on the other prod-

ucts to be made and the amounts of them required by the cus-

tomers (Case 2). Assuming that the available amount of each

component is given, blending problems with relative low

product demands belong to Case 1. As the product demands

rise, blending problems can switch to Case 2.
Let us assume that l�s;p stands for the fraction of component

s in the preferred recipe of product p. The preferred product

recipes are usually achieved (Case I) when the following con-

dition holds:

iiss1
X
k2K

svrs;k hkk �
X
p2P

l�s;p demp (55)

The symbol (�) in Eq. 55 means that the total availability

of each component is sufficiently greater than the optimal

component demand to avoid temporal running-out conditions

in component tanks along the time horizon. For problems

belonging to Case 1, the rule for choosing the number of pro-

duction runs is given by:

jIj5 ^jPj (56)

where P̂ is the set of products to be blended. Generally P̂5P,

but in some cases the demands of some products can be fully

satisfied using the inventories initially available in product

tanks.
For blending problems belonging to Case 2, the required

quantities of some components to achieve the preferred prod-

uct recipes exceed the available amounts and usually more

runs are to be performed to minimize the total operating costs.

Additional runs allow overcoming some temporal component

shortages. For Case 2,

jIj5 ^jPj1n with n � 1ð Þ (57)

The value of n should be increased by one as the component

shortages grow. For problem with sizable component short-

ages, it is recommended n 5 3. In turn, the criterion proposed

for choosing the number of time slots for Cases 1 and 2 is

given by:

jTj5 jIj11 (58)

In few instances, the MILP model may become infeasible

using the number of time slots given by Eq. 58. In such cases,

the value of |T| should be increased by one. As shown in the

Supporting Information, the number of time slots has usually

no impact on the optimal solution and a minor effect on the

CPU time.

Computational Results and Discussion

The proposed approach has been applied to single-period

(SP) and multi-period (MP) instances of 14 examples first

introduced by Li et al.10 and later studied by Li and Karimi12

and Castillo-Castillo and Mahalec14. Data for the two instan-

ces of Examples 1–14 are given as Supporting Information.

They can also be found in Li et al.10 For both instances of

every example, it is given: (a) the list of customer orders to be

satisfied together with the required product, order size, deliv-

ery rate, and delivery time window; (b) the product tanks, tank
capacities, the storable products, the current stored product,

initial inventories, and maximum delivery rates; (c) the com-

ponent tanks and their capacities, initial stocks and maximum

delivery rates; (d) the limiting proportions of the gasoline

components in the final products; (5) the limiting values of the

critical properties for the different gasoline grades demanded

by the customers; (6) the available blenders together with the

products that can be processed, the allowable processing rates

and the minimum length of the production runs; and (7) eco-

nomic data including the component and demurrage unit costs

and transition costs (in blenders and product tanks) per

instance. Example 1 is the simplest case study involving five
orders for only two final products, one blender, nine gasoline

components, one critical property, and a time horizon of 72 h.

In turn, Examples 2–14 comprise 10–45 orders, 3–5 final prod-

ucts, 1–3 blend headers, 9 gasoline components, 9 gasoline

critical properties, 11 product tanks, and a time horizon of

192 h. At the initial time, the blenders are idle except for

Example 5. In Example 5, the unique blender is processing the

final product P1 at time zero and the production run has

already a length of 10 h and a production volume of 150 kbbl.

Multiperiod scenarios are also defined for Examples 1–14

involving 2–4 time periods. All the examples have been solved

using GAMS/CPLEX 24.2 on an Intel(R) Core i7 3632QM
2.20 GHz one-processor PC with 12 GB RAM and four cores.

The relative optimality gap tolerance has been fixed to 0.001

for all examples. Besides, a maximum CPU time of 3600 s

was allowed.
Computational results are shown in Tables 1 and 2. In addi-

tion, the best solutions found for the SP and MP-instances of

Examples 1–14 are all illustrated in a series of 26 figures pre-

sented as Supporting Information. Such figures contain the

Gantt chart showing the sequence of operations in blenders

and product tanks, and the inventory profiles in component
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and product tanks. Table 1 presents the optimal objective val-
ues for the SP and MP instances of Examples 1–14, and the
CPU solution times. It also includes the results reported by Li
and Karimi12. It is observed that both instances of Examples 4
and 5 share the same solution. In turn, Table 2 shows the opti-
mal values for the different cost items (component, transition,
and demurrage costs) at the best solution, the selected number
of production runs and the LP relaxation bound for every

example. Values for the tardiness costs are not included
because orders are delivered on time at all examples. Although
Examples 3 and 4 both involve three products, two production
runs have been selected to solve such examples (see Table 2).
This is so because the demand of P3 is satisfied using the ini-
tial inventory of that product. Then, no production of P3 is
needed and ^jPj5 |I| 5 2. The number of time slots chosen for
each example is reported in the Supporting Information. In

Table 1. Computational Results for the SP and MP-Instances of Examples 1–14.

Example

Our approach Li and Karimi (2011)

Cost (3103 $) CPU time (s) Switching operations Cost (3103 $) CPU time (s) Switching operations

1 SP 5139.93 0.34 1 5149.73 0.89 2
MP 5139.93 0.34 1 5149.73 1.25 2

2 SP 3658.11 0.55 1 3658.11 2.12 1
MP 3658.11 0.58 1 3658.11 0.69 1

3 SP 3159.12 0.39 1 3159.12 2.62 1
MP 3159.12 0.36 1 3159.12 1.16 1

4–5 SP 4556.67 0.27 1 4556.67 4.20 1
MP 4556.67 0.27 1 4556.67 1.97 1

6 SP 5213.88 0.50 2 5213.88 2.41 2
MP 5213.88 0.95 2 5213.88 1037 2

7 SP 8100.35 1.9 3 8100.35 3024 3
MP 8100.35 1.7 3 8100.35 10,814 3

8 SP 8080.35 2.7 2 8080.35 10,802 2
MP 8080.35 1.4 2 8082.85 14,170 2

9 SP 10,573.65 8.8 4 10,573.65 10,819 4
MP 10,576.74 2.7 4 10,573.65 10,817 4

10 SP 11,289.80 8.3 4 11,286.10 10,814 4
MP 11,313.23 7.0 4 11,306.10 11,735 5

11 SP 13,248.58 818.8 4 13,248.58 14,400 4
MP 13,282.98 1987.0 4 13,248.58 36,075 4

12 SP 14,774.14 641.1 4 14,764.86 46,800 5
MP 15,221.74 23.0 4 14,809.36(1) 46,800 7

13 SP 17,986.65 1003.9 3 15,646.15(2) 118,800 6
MP 18,609.73 47.4 3 16,187.58(3) 118,800 5

14 SP 20,352.22 1544.6 3 17,737.39(4) 118,800 9
MP 21,101.43 134.0 3 18,678.48(5) 118,800 9

LP relaxation bound 5 {15,147.24(1), 17,918.26(2), 18,555.23(3), 20,286.52(4), 21,046.93(5)}.

Table 2. Values of the Different Cost Items for Examples 1–14 (SP and MP Instances)

Switching cost (103 $)

Example Componentcost (103 $) Blenders Product tanks Number of runs Total cost (103 $) RMIP bound (103 $)

1 SP 5119.93 20 – 3 5139.93 5119.93
MP 5119.93 20 – 3 5139.93 5119.93

2 SP 3638.11 20 – 2 3658.11 3638.11
MP 3638.11 20 – 2 3658.11 3638.11

3 SP 3139.12 20 – 2 3159.12 3139.12
MP 3139.12 20 – 2 3159.12 3139.12

4–5 SP 4536.67 20 – 2 4556.67 4536.67
MP 4536.67 20 – 2 4556.67 4536.67

6 SP 5173.88 40 – 3 5213.88 5173.88
MP 5173.88 40 – 3 5213.88 5173.88

7 SP 8040.35 60 – 4 8100.35 8040.35
MP 8040.35 60 – 4 8100.35 8040.35

8 SP 8040.35 40 – 4 8080.35 8040.35
MP 8040.35 40 – 4 8080.35 8040.35

9 SP 10,499.15 60 14.5 5 10,573.65 10,499.15
MP 10,502.24 60 14.5 5 10,576.74 10,502.24

10 SP 11,215.30 60 14.5 5 11,289.80 11,211.60
MP 11,238.73 60 14.5 5 11,313.23 11,235.04

11 SP 13,174.08 60 14.5 7 13,248.58 13,174.08
MP 13,208.98 60 14.5 7 13,282.98 13,205.71

12 SP 14,699.64 60 14.5 8 14,774.14 14,689.92
MP 15,147.24 60 14.5 8 15,221.74 15,147.24

13 SP 17,932.15 40 14.5 8 17,986.65 17,918.26
MP 18,555.23 40 14.5 8 18,609.73 18,555.23

14 SP 20,297.72 40 14.5 9 20,352.22 20,286.52
MP 21,046.93 40 14.5 9 21,101.43 21,046.93
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Table 3. Optimal Blend Recipes for the SP Instance of Examples 1–12

Ex. Product

Component fraction (%)

C1 C2 C3 C4 C5 C6 C7 C8 C9

1 P1 22.00 10.00 – – 25.00 – 0.39 30.00 12.61
P2 24.00 10.00 – – 25.00 – 3.50 30.00 7.50

2–5 P1 1.27 38.73 – 40.00 – 20.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –

6 P1 1.27 38.73 – 40.00 – 20.00 – – –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –

7–8 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –

9 &11 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –
P5 – 30.76 – 40.00 – 20.00 – 9.24 –

10 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –
P5 – 30.55 – 40.00 – 20.00 1.69 7.76 –

12 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –

6.92 30.23 – 41.15 3.70 18.00 – – –
P4 24.00 10.00 – 29.70 19.51 16.79 – – –
P5 – 30.76 – 40.00 – 20.00 – 9.24 –

Table 4. Optimal Blend Recipes for the MP Instance of Examples 1–12

Ex. Product

Component fraction (%)

C1 C2 C3 C4 C5 C6 C7 C8 C9

1 P1 22.00 10.00 – – 25.00 – 0.39 30.00 12.61
P2 24.00 10.00 – – 25.00 – 3.50 30.00 7.50

2–5 P1 1.27 38.73 – 40.00 – 20.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –

6 P1 1.27 38.73 – 40.00 – 20.00 – – –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –

7–8 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 44.00 16.95 5.05 – – –

9 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 42.27 17.26 6.47 – – –
P5 – 30.76 – 40.00 – 20.00 – 9.24 –

10 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 – 30.84 17.30 15.86 – – –
P5 – 30.55 – 40.00 – 20.00 1.69 7.76 –

11 P1 1.27 38.73 – 40.00 – 20.00 – – –
P2 – 31.98 – 45.00 – 22.00 – 1.02 –
P3 10.00 29.00 – 43.00 – 18.00 – – –
P4 24.00 10.00 - 26.40 20.10 19.50 – – –

24.00 10.00 – 32.79 18.95 14.25 – – –
P5 – 30.76 – 40.00 – 20.00 – 9.24 –

12 P1 – 10.00 32.02 29.27 12.01 16.70 – – –
P2 – 10.00 16.17 45.00 7.42 21.41 – – –

– 26.78 6.22 45.00 – 22.00 – – –
P3 – 19.98 0.16 43.00 18.87 18.00 – – –

– 10.00 55.16 – 16.84 18.00 – – –
P4 – 75.00 11.10 – 13.90 – – – –

– 62.10 – – 25.00 12.90 – – –
P5 – 15.00 18.84 40.00 – 20.00 – 6.16 –
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addition, Tables 3 and 4 include the product recipes selected
at the best solutions found for the SP and MP instances of
Examples 1–12, respectively.

From Table 1, it can be said that the proposed formulation
is able to find the best solutions for both instances of Examples
1–8 in less than 5 s of CPU time. When our results are com-
pared with the ones found by Li and Karimi12, it is observed a
sharp reduction in the computational cost, especially for the
SP and MP instances of Examples 7–14. Indeed, the two
approaches mostly discover the same solutions for the SP and
MP versions of Examples 1–8. Then, we will focus on those
cases where we produce different results. Using our approach,
better solutions have been found for the SP and MP instances
of Example 1, and the MP-instance of Example 8. Figures
illustrating them are presented in the Supporting Information.
At Example 1, the proposed solutions avoid changeovers in
product tanks by receiving the new production of final prod-
ucts P1 and P2 in product tanks initially containing those gaso-
line grades. In this way, the transition cost in product tanks
each amounting to $9800 is saved and the total operating cost
decreases from $5,149,730 to $5,139,930 (see Table 1). In
fact, only one changeover in the blender occurs along the time

horizon. Conversely, the cost saving for the MP instance of
Example 8 amounts to $2500, i.e., 1-hour demurrage cost. The
improvement was achieved by finding a solution where all
customer orders are delivered on time. In turn, Li and Karimi12

discovered lower-cost solutions for the MP instance of Exam-
ples 9 and 11. Both solutions feature optimal values similar to
the single-period instances of those examples. The common
operating cost reported by Li and Karimi12 for both variants of
Example 9 amounts to $10,573,650. However, such results for
the MP instance of Examples 9 and 11 may be questionable as
explained next.

Figure 3 illustrates the best solution provided by our
approach for Example 9(MP) that includes a Gantt chart dis-
playing the sequence of operations in blenders and product
tanks, and the inventory profiles for component and product
tanks. It was found in 2.7 s with an absolute gap equal to zero
when the solution algorithm stops. As shown in the upper part
of Figure 3, Example 9(MP) presents some limitation in the
availability of component C4. At Example 9(SP), the feed flow
rate of C4 into the assigned storage tank remains equal to 1.0
(kbbl/h) during the entire planning horizon. In contrast, it

Figure 3. Best solution found for the MP-instance of
Example 9.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 4. Best solution found for the MP-instance of
Example 11.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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decreases from 1.0 to 0.8 (kbbl/h) at time 5 80 h and drops to
zero at time 5 162 h for Example 9(MP). Looking at Tables 3
and 4, we see that C4 is the dominant component in the pre-
ferred recipes of all final products systematically selected at
both instances of Examples 2–8. To still stick with the pre-
ferred product recipes and satisfy the blend demands in
Example 9(MP), we need to have available 183.23 (kbbl)
of component C4. However, the total volume of C4 obtained
by adding the receiving flows from upstream units to
the initial inventory is: (44.44 1 80.00 1 56.00) 5 180.44
(kbbl)< 183.23 (kbbl) at Example 9(MP). This shortage of C4

produces a slight deviation from the preferred recipe of prod-
uct P4 (see Table 4). That change produces an increase of
$3090 in both the LP relaxation bound and the total compo-
nent cost (see Table 2). Consequently, the optimal value for
Example 9(MP) rises to $10,576,740 slightly larger than the
one for Example 9(SP). Then, the best solution reported by Li
and Karimi12 for Example 9(MP) cannot be feasible. From
Table 4, the preferred recipes are still adopted for the other fin-
ished products {P1, P2, P3, P5}. For Example 9(SP), the avail-
able amount of C4 given by: 44.44 1 192.00 5 236.44 (kbbl)
is large enough to still adopt the preferred recipes (see Table
3). A figure illustrating the optimal solution for Example
9(SP) is included in the Supporting Information.

Similar comments can be made on the result found by Li
and Karimi12 for Example 11(MP). Again, they reported the
same optimal value for the SP and MP instances of Example
11. However, a shortage of gasoline component C4 arises in
Example 11(MP) because of a decreasing feed flow rate from
upstream units along the planning horizon. To select the pre-
ferred product recipes, it is needed an amount of component
C4 equal to 227.03 kbbl, but the total volume available is:
44.44 1 80.001 48.00 1 26.00 5 198.44 kbbl. As a result, a
deviation from the preferred recipe of product P4 occurs (see
Table 4). The shortage of C4 produces an increase of the oper-
ating cost with regards to the SP-instance from $13,248,580 to
$13,282,980, i.e., an increment of $34,400. Therefore, the
solution reported by Li and Karimi12 for Example 11(MP)
may be infeasible. In contrast, no shortage of C4 occurs in
Example 11(SP) and the preferred recipes for all products are
still chosen at the best solution (see Table 3). In this case, the
total available volume of C4 is: 44.44 1 192 5 236.44 (kbbl).
Figure 4 illustrates the best solution found with our approach
for Example 11(MP). Similar differences arise in the SP and
MP instances of Example 10. It should be emphasized that the
best solutions discovered by our approach for Examples
10(SP) and 10(MP) both feature an absolute gap equal to zero.

The proposed MILP formulation presents a remarkable
computational efficiency simply because it has a very small
integrality gap. Accounting for the values of the LP relaxation
bound (at the root node) given by the last column of Table 2,
the ratio between the best integer solution and the initial LP

relaxation bound for the SP and MP instances of Examples 1–
14 is always below 1.0075. Moreover, the starting LP bound is
quite close or equal to the optimal component cost (see Table
2). Therefore, the difference between the integer solution and
the LP relaxation bound is mostly due to the product transition
costs in blenders and product tanks. For the purpose of com-
parison, Tables 1 and 2 include the number of switching oper-
ations performed on the best solutions found with our
formulation and those reported by Li and Karimi.12 In every
example, the number of changeovers using our formulation is

Figure 5. Best solution found for the MP-instance of
Example 12.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Table 5. Comparison with Previous Results Reported by Castillo-Castillo and Mahalec
14

Example MP-instance

Our approach Castillo-Castillo et al. (2015)

Cost (103 $) CPU time (s) Transition in product tanks Cost (103 $) CPU time (s) Transition in product tanks

3 3159.12 0.36 0 3159.1 1.9 0
4 4556.67 0.27 0 4556.7 2.02 0
7 8100.35 13.0 0 8100.3 36.9 0
8 8080.35 39.5 0 8080.3 45.8 0
9 10,576.74 3.2 1 10,778.8 210.0 1
12 15,221.74 18.8 1 15,221.7 1342.0 1
14 21,101.43 119.0 1 21,101.4 2877.0 1
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always equal or smaller (especially for larger examples) than
the ones performed in Li and Karimi.12 In fact, the best solu-
tions found for the two instances of Examples 1–14 always
exhibit the least possible number of changeovers in blenders
and product tanks. Just for Examples 9–14, a single change-
over P3–P5 is additionally required in the product tank PT-2
simply because no product tank is initially devoted to product
P5. The other product tanks are devoted to a unique product all
over the scheduling horizon and no changeover is needed.
Orders are always delivered on time to avoid the payment of
penalties for tardy orders in every example. Moreover, no
inventory remains in product tanks at the end of the scheduling
horizon. Thus, it is produced only what is needed to satisfy
customer orders. In this way, the total operating cost is mini-
mized. As shown in the Supporting Information, the number
of time slots has usually no impact on the optimal solution
found and a weak influence on the solution time.

Table 5 shows a comparison with the results recently pub-
lished by Castillo-Castillo and Mahalec14 for the MP-
instances of Examples {3, 4, 7, 8, 9, 12, and 14}. Solutions

similar to those reported by Castillo-Castillo and Mahalec14

were found for the examples {3, 4, 7, 8, 12, and 14} at smaller
CPU times, but our approach leads to a better solution of

Example 9(MP). To reduce the computational cost, Castillo-
Castillo and Mahalec14 estimated a tight lower bound for the
component and switching costs by solving an aggregate opti-

mization model. Solutions and computational cost shown in
Table 5 were obtained by Castillo-Castillo and Mahalec14

through applying that bound. To solve examples {3, 4, 7, 8,

9}, they selected a number of blending runs similar to those
used in our work and shown in Table 2. Let us have another
look at Table 1. We can see that the optimal values reported

by Li and Karimi12 for Example 12(MP) and both instances of
Examples 13 and 14 are smaller than the LP relaxation bound
at the root node. We believe that they correspond to infeasible

solutions. Results obtained for Castillo-Castillo and Mahalec14

for the MP-instance of Examples 12 and 14 seem to confirm
that presumption. Figures 5 and 6 illustrate the best solutions
provided by our approach for the MP-instance of Examples 12

and 14, respectively. They reveal shortages of components C2,
C4, and C6 for Example 12(MP) and insufficient amounts of
components C2–C6 for Example 14(MP). Such shortages pro-

duce a substantial increase in the values of both the LP bound
and the optimal integer solution as the number of orders rises.
In addition, deviations from the preferred recipes are observed

for all products at those examples (see Tables 3 and 4).
The best solutions for both variants of Examples 1–8 pres-

ent the same optimal objective value (see Table 2). As shown
in Tables 3 and 4, they all systematically select the same rec-

ipes for the final products P1–P5. Such recipes can be regarded
as the preferred product recipes. Every final product p is
always produced using the preferred recipe even if multiple

production runs are performed along the time horizon. Then,
Examples 2–8 can be viewed as blend scheduling problems
with unlimited component inventories. As discussed before,

the preferred recipes are still chosen for the gasoline grades
produced in the two instances of Example 9 with only one
exception. This exception is caused by a slight shortage of

component C4 in the MP-instance of Example 9. Conse-
quently, the recipe used for product P4 undergoes a minor
change to overcome that restraint in the amount of C4 (see
Table 4). In fact, the selected feed flow rates of components

from upstream units for the MP-instance of Examples 9–14
produce increasing component shortages as the number of
orders grows. The earlier lack of components in the MP-

examples gives rise to a growing discrepancy between the
least operating costs for the SP and MP versions of Examples
9–14. The rising shortage of gasoline components first cause

some limited changes on the recipe of the lowest-quality prod-
uct P4 and then on the recipes of all products, especially at
Examples 12–14. Contrarily, such component shortages for

the SP-variant just appear at Example 12 and become more
important for Examples 13 and 14.

Gasoline components that reach the allowed minimum/max-
imum fractions in the optimal product recipes for Examples 1–

12 appear in bold type in Tables 3 and 4. The fraction of C4 is
at its maximum value in the recipes of the final products P1–
P5, and is the largest one for every product. This explains why

it is the first component presenting shortages at Example
9(MP). The other preferred component C6 reaches its maxi-
mum allowed proportion in the recipes of products {P1, P2,
P3, P5} but compared with C4 is relatively less required. Simi-

larly to what happen with the product recipes, the values of

Figure 6. Best solution found for the MP-instance of
Example 14.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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the gasoline blend properties also remain the same at the best

solution of both instances of Examples 1–8. The optimal blend

properties for the MP-instance of Examples 1–12 are listed in

Table 6. At all examples, the best solutions have a common,

constant feature. None of the gasoline properties are at their

limiting values with the exception of the RBN index associ-

ated to the RON that is always set to its lowest limit, and the

OXI index that reaches the upper limit for product P5 at Exam-

ple 10(SP).

Conclusions

Based on the notion of floating time slots, a new MILP

approach for the simultaneous optimization of the gasoline

blend recipes and the short-term planning of blending and dis-

tribution operations has been developed. By relying on a very

tight MILP formulation with an integrality gap close to zero,

the approach is able to discover the best solutions for large

benchmark problems at much lower computational time than

previous contributions. All the typical operations rules for the

management of gasoline blending processes have been consid-

ered. Moreover, the proposed model handles several usual fea-

tures of the gasoline blend unit such as the presence of

multiple non-identical blenders, multipurpose product tanks,

sequence-dependent changeover costs in blenders and product

tanks, limited amounts of gasoline components, and multi-

period scenarios with component feed flow rates from

upstream units changing with the period. In contrast to previ-

ous works, the assignment of floating slots and production

runs to time periods is made by the model. By so doing, we
reduce the model size, preserve the optimality of the solution
and substantially close the integrality gap.

The approach was successfully applied to a significant num-
ber of gasoline blend optimization problems. Single-period
and multi-period scenarios were considered in all cases. When
compared with the results reported in previous works, it is
observed a sharp reduction in the computational cost, espe-
cially for the larger problems. In addition, the best solutions
provided by the proposed MILP formulation present some
interesting features: (a) they exhibit the least number of
changeovers in blenders and product tanks; (b) orders are all
delivered on time to avoid penalties for tardy orders; (c) no
inventory remains in product tanks at the end of the scheduling
horizon, i.e., it is produced what is needed to satisfy customer
orders; and (d) the RON property for all final products is at the
allowed minimum value, while the quality constraints for the
other properties of every product are almost always redundant
at the optimum. Results also show the impact of component
shortages on the optimal recipes of the final products. Under
unlimited stocks of components, the optimal product recipe
can be individually established before determining the short-
term planning of blending operations. This solution scheme
can be done for Examples 1–8. When the number of orders
rises and shortages of some preferred components appear, the
recipe of a final product will depend on the other gasoline
grades and their demands. As a result, the product recipes and
the scheduling of blend operations are to be simultaneously
determined.

Table 6. Optimal Product Property Indices for the MP Instance of Examples 1–12(MP)

Ex. Product

Property

RBN RVI SULI BI AROI OI DNI FLI OXI

1 P1 110.45 – – – – – – – –
P2 111.95 – – – – – – – –

2–5 P1 110.45 53.046 13.574 0.390 12.595 9.374 1.455 4.618 0.536
P4 103.24 94.017 17.323 0.302 9.170 2.724 1.511 3.536 0.454

6 P1 110.45 53.046 13.574 0.390 12.595 9.374 1.455 4.618 0.536
P3 108.97 59.749 15.454 0.363 11.693 7.131 1.473 4.345 0.520
P4 103.24 94.017 17.323 0.302 9.170 2.724 1.511 3.536 0.454

7–8 P1 110.45 53.046 13.574 0.390 12.595 9.374 1.455 4.618 0.536
P2 111.95 50.708 11.041 0.317 10.334 7.772 1.467 4.459 0.673
P3 108.97 59.749 15.454 0.363 11.693 7.131 1.473 4.345 0.520
P4 103.24 94.017 17.323 0.302 9.170 2.724 1.511 3.536 0.454

9 P1 110.45 53.046 13.574 0.390 12.595 9.374 1.455 4.618 0.536
P2 111.95 50.708 11.041 0.317 10.334 7.772 1.467 4.459 0.673
P3 108.97 59.749 15.454 0.363 11.693 7.131 1.473 4.345 0.520
P4 103.24 93.952 17.269 0.302 9.170 2.736 1.509 3.532 0.440
P5 115.01 55.987 10.638 0.326 11.525 7.479 1.454 4.581 1.737

10 P1 110.45 53.046 13.574 0.390 12.595 9.374 1.455 4.618 0.536
P2 111.95 50.708 11.041 0.317 10.334 7.772 1.467 4.459 0.673
P3 108.97 59.749 15.454 0.363 11.693 7.131 1.473 4.345 0.520
P4 103.24 93.527 16.913 0.305 9.170 2.811 1.494 3.508 0.821
P5 115.01 54.419 10.662 0.320 11.174 7.426 1.451 4.537 3.000

11 P1 110.45 53.046 13.574 0.390 12.595 9.374 1.455 4.618 0.536
P2 111.95 50.708 11.041 0.317 10.334 7.772 1.467 4.459 0.673
P3 108.97 59.749 15.454 0.363 11.693 7.131 1.473 4.345 0.520
P4 103.24 93.600 16.973 0.304 9.170 2.798 1.497 3.512 0.366

103.24 93.362 16.774 0.305 9.170 2.841 1.488 3.499 0.316
P5 115.01 55.987 10.638 0.326 11.525 7.479 1.454 4.581 1.737

12 P1 110.45 54.676 12.557 0.372 11.926 9.107 1.457 4.552 0.529
P2 111.95 50.708 11.041 0.317 10.334 7.772 1.467 4.459 0.673
P3 108.97 72.578 7.447 0.217 6.424 5.028 1.487 3.886 0.471

108.97 70.998 8.433 0.235 7.073 5.287 1.490 3.448 0.497
P4 103.24 93.339 16.755 0.306 9.170 2.845 1.487 3.497 0.311

103.24 80.534 25.039 0.559 17.926 9.272 1.449 4.502 0.460
P5 115.01 55.987 10.638 0.326 11.525 7.479 1.454 4.581 1.737
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Supporting Information

The Supporting Information file contains a set of tables with
all the problem data, the model sizes and the selected number
of time slots for Examples 1–14. It also includes the figures
showing the best solutions for the single-period and multi-
period instances of all examples.
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Notation

Sets

B = blender headers
K = ordered set of time periods
I = ordered set of production runs in blenders
P = final products

Pj = final products that can be stored in tank j
T = process time slots

Parameters

ctrbb,p,p0 = sequence-dependent changeover cost in blender b
ctd = penalty cost per unit time for tardy orders

demp = total demand of final product p to be satisfied during
the scheduling horizon

iijp,j = initial inventory of product p in the tank j 2 Jp

iiss = initial inventory of gasoline component s
llimk, ulimk = time limits for period k

MB = a large number
pcapj = capacity of the product tank j
pdrp,j = delivery rate of product p from product tank j

pprmin
g;p ; pprmax

g;p = limiting values of property g per unit amount of prod-
uct p

qr = size of order r
rbmin

b;p ; rbmax
b;p = processing rate limits for final product p in blender b

rdrr = delivery rate of product for order r
scaps = capacity of the dedicated tank for component s
scosts = unit cost of component s
sprg,s = value of property g per unit amount of component s
srmin = minimum amount of a customer order that can be deliv-

ered by a product tank
svrs,k = feed flow rate of component s during period k

vcmin
s;p ; vcmax

s;p = limiting proportions of component s in the final product
p

vcs,k = feed rate of blending component s during time period k
sb,p,p0 = sequence-dependent changeover time in blender b

Binary variables

XDJp,j,t = denotes the discharge of final product p from tank j during the
time slot s

XIJi,j,t = assigns production run i to product tank j during the time slot
t

XPJ,p,j,t = assigns the storage tank j to the final product p during the
time slot t

XRJr,j,t = denotes the discharge of order r to product tank j during the
time slot t

YBi,p = allocates production runs to final products
WBib = allocates production runs to blenders
WIik = assigns production runs to time periods

ZOi0 ,i = identifies overlapping of runs (i’,i) with i’< i

Positive continuous variables

CBi = completion time of run i
CRr,j,t = completion time for the delivery of order r from product tank

j during the slot t
CRFr = time at which the customer order r is completely satisfied

CTt = final time of slot t
LBi,b,p = length of the production run i within the range [lbmin

b;p ; lbmax
b;p ]

LKFi,k = length of time between the beginning of period k and the
completion of run i

LKSi,k = length of time between the beginning of period k and the
start of run i

Lt = length of time slot t
PINVp,j,t = inventory of final product p in tank j 2 Jp at the end of slot t

QBi,p = amount of final product p yielded by run i
QPJi,p,j,t = amount of product p from run i discharged into tank j 2 Jp

during the slot t
QSs,i,p = amount of component s 2 S assigned to run i producing

product p
QSOs,i0 ,i = amount of component s assigned to run i’ that overlaps with

run i
SBi = starting time of run i

SINCs,i = inventory level of component s available at the completion
time of run i

SINFs = inventory level of component s at the end of the scheduling
horizon

SINIs,i = inventory level of component s available at the start of run i
STt = starting time of slot t

SRr,j,t = starting time for the delivery of order r from product tank j
during the slot t

TRBi,b = cumulative transition cost in blender b up to run i
TRJp,j,t = product transition cost in the product tank j
TTRBb = total transition cost in blender b
UPp,j,t = amount of product p unloaded from product tank j during the

slot t
URr,j,t = amount delivered for order r from tank j during the time slot

t
USs,i = total amount of component s consumed up to time CBi

WBPi,b,p = identifies the final product yielded by production run i in
blender b
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