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San Luis, CONICET, San Luis-Argentina.
3Computational Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca New York
4Institute of Chemical Biology and Fundamental Medicine of Siberian Brunch of Russian Academy of Science,
Novosibirsk, Russia

ABSTRACT Interest centers here on whether
the use of a fixed charge distribution of a protein
solute, or a treatment that considers proton-binding
equilibria by solving the Poisson equation, is a
better approach to discriminate native from non-
native conformations of proteins. In this analysis of
the charge distribution of 7 proteins, we estimate
the solvation free energy contribution to the total
free energy by exploring the 2� possible ionization
states of the whole molecule, with � being the num-
ber of ionizable groups in the amino acid sequence,
for every conformation in the ensembles of 7 pro-
teins. As an additional consideration of the role of
electrostatic interactions in determining the charge
distribution of native folds, we carried out a compari-
son of alternative charge assignment models for the
ionizable residues in a set of 21 native-like proteins.
The results of this work indicate that (1) for 6 out of
7 proteins, estimation of solvent polarization based
on the Generalized Born model with a fixed charge
distribution provides the optimal trade-off between
accuracy, with respect to the Poisson equation, and
speed when compared to the accessible surface area
model; for the seventh protein, consideration of all
possible ionization states of the whole molecule
appears to be crucial to discriminate the native
from non-native conformations; (2) significant differ-
ences in the degree of ionization and hence the
charge distribution for native folds are found be-
tween the different charge models examined; (3) the
stability of the native state is determined by a
delicate balance of all the energy components, and
(4) conformational entropy, and hence the dynamics
of folding, may play a crucial role for a successful ab
initio protein folding prediction. Proteins 2005;61:
56–68. © 2005 Wiley-Liss, Inc.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

An important aspect of polypeptides and proteins is that
these biological molecules usually contain a large fraction

of ionizable side-chain groups that can bind or release
protons to become positively or negatively charged. When
considering the ionizable residues, Asp, Glu, His, Lys, Tyr,
and Arg, the average and standard deviation of the percent
of ionizable groups in a sample of 106 proteins1 is 26.3 �
5.9%. The observed pK’s of these ionizable groups depend
on the conformation of the molecule and on the environ-
ment of these groups in the macromolecule.2 Since charged
groups may come spatially close to each other at intermedi-
ate conformations during folding, the equilibrium binding
of protons should also vary. The conformation, in turn, is
sensitive to the state of ionization of the individual amino
acid residues,3 and should accommodate to the particular
state of charge. As a consequence, adoption of a fixed
charge distribution during a simulation may introduce an
undesired bias to the folding process. This means that the
appropriate charge distribution should be assigned by
solving the Poisson equation by considering the 2� ioniza-
tion states for every conformation, with � being the num-
ber of ionizable groups in the molecule. Although this
approach has been used for an oligopeptide with a limited
number of ionizable groups,4 the inclusion of such level of
detail in methodologies for ab initio protein structure
prediction is not currently feasible for medium-size pro-
teins (50–100 amino acids residues) with existing compu-
tational resources because, among other reasons, the
fraction of ionizable residues is approximately 25% of the
total number of residues in the protein. As a consequence,
the number of conformations to be explored for a sequence
containing N residues can be approximated by �2[N/4]
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ionization states (with the bracket representing the inte-
ger part of this fraction), and this number is quite large.

The theory of protein titration has been the subject of
extensive research for many decades5–19 because of its
importance in the study of biological processes. Recent
evidence20 indicates that a correct description of electro-
static interactions that considers all states of ionization
may be crucial for understanding protein stability and,
consequently, to discriminate the native state from non-
native conformations.

It should be noted that all physics-based scoring func-
tions used recently to discriminate native from non-native
folds make use of different levels of approximation to
compute solvent polarization.21–26 However, a common
denominator of all of them is the assumption of a fixed
charge distribution obtained by considering all ionizable
residues as either neutral or as having a fixed charge of 0
or �1e. The state of charge of a given ionizable group is
determined by the pH of the solution and the pKa of the
group according to the Null (or Zero) model27 (i.e., the
group titrates as if it is immersed in an aqueous solution
with no perturbations from other ionizable groups).

To examine the relevance of the charge distribution to
the discrimination of native folds, we carried out a theoreti-
cal analysis of the ensembles of conformations derived for
7 proteins, namely, 1e0l, 9api_B, 1gab, 1bdd, 1vii, 1res,
and 1fsd. As a scoring function, we use 3 different forms of
the potential energy function that differ in how solvation
effects are treated. The following solvation models are
considered: (1) a solvent-accessible surface area, repre-
sented here by the parameter set SRFOPT28; (2) a pair-
wise [Generalized Born (GB)] approximation to the solu-
tion of the Poisson–Boltzmann equation, as implemented,
for example, by Ghosh et al.29; and (3) the Multigrid
Boundary Element (MBE) method,30–32 in which the free
energy associated with the state of ionization of the
ionizable groups, at a fixed pH value, is calculated by using
the general multisite titration formalism. The latter ap-
proach has been used to predict several observables ob-
tained from NMR at a given fixed pH, with good agree-
ment.4,33–35

In these applications, many questions arise and are
addressed here:

1. How cost-effective is the computation of the solvent
effect when we consider the 2� ionization states?

2. How does this cost-effectiveness change if we compute
solvent polarization using faster and simpler models
that ignore the proton binding/release equilibrium?

3. How elusive is the native fold?
4. Can the trivial Null (or Zero) model describe the charge

distribution in native folds accurately?
5. Aside from errors in the potential function, and limita-

tions on the efficiency of the search of the conforma-
tional space, what are the reasons that keep the ab
initio protein folding problem from being solved despite
the fact that existing scoring functions can discriminate
the native from non-native folds?

This work is not intended to be a complete review of (1)
methods for the computation of solvent polarization; (2)
capabilities of different scoring functions, either knowl-
edge- or physics-based, to discriminate native from non-
native folds; or (3) approaches to compute proton binding/
release equilibrium.

METHOD
Forms of the Potential Energy Function

Three alternative forms were used to compute the total
free energy as a function of the coordinates rp of the
protein, namely,

1. A gas phase potential plus a solvent-accessible surface
area model to treat the solvent (GPSAS):

E�rp� � Eint�rp� � Fsas�rp) (1)

where Eint(rp) is the internal conformational energy of the
molecule in the absence of solvent, assumed to correspond
to the Emperical Conformational Energy Program for
Peptides (ECEPP/3)36–39 energy of a neutral molecule; and
Fsas(rp) represents the solvation free energy as defined by
Vila et al.28

2. A gas phase potential plus a multigrid boundary
element method to treat the solvent (GPBEM):

E�rp, pH� � Eint�rp� � Fcav�rp� � Fsolv�rp� � Finz�rp, pH).

(2)

where Fcav(rp) is the free energy associated with the
process of cavity creation when transferring the molecule
from the gas phase into the aqueous solution, Fsolv(rp) is
the free energy associated with the polarization of the
aqueous solution, and Finz (rp, pH) is the free energy
associated with the change in the state of ionization of the
ionizable groups due to the transfer of the molecule from
the gas phase to the solvent, at a fixed pH value. Fcav(rp)
describes the free energy of creation of a cavity to accommo-
date a zero-charge peptide molecule (i.e., with all partial
atomic charges set to zero). As shown previously,40,41

Fcav(rp) can be considered as the free energy of transfer of
a nonpolar molecule from the gas phase to water. This free
energy is proportional to the solvent-accessible surface
area of the molecule. The term Fsolv(rp) is obtained by
using the fast MBE method, and Finz (rp, pH) is calculated
by using the general multisite titration formalism.30,42,43

3. A gas phase potential plus a GB model to treat the
solvent (GPGB):

E�rp, pH� � Eint�rp� � FGB�rp) (3)

where FGB (rp) represents the “pairwise” GB solvation
model of Hawkins et al.,44 as implemented by Ghosh et
al.29 (with the GB code provided by D. A. Case).

It should be noted that re-evaluation of the total energy
of a given conformation with the GPBEM and GPGB
energy functions [Eqs. (2) and (3), respectively] does not
include local energy minimization. In addition, our estima-
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tion of the free energy, as given by Eqs. (1) through (3),
does not contain terms accounting for vibrational entropy
(due to local fluctuations) and conformational entropy (due
to large-scale conformational variations). The conforma-
tional entropy is not computed, because a sufficient num-
ber of conformations is not obtained in the search proce-
dure used here. The vibrational entropy can be treated by
a harmonic approximation45,46 for each conformation ob-
tained by using the ECEPP/3 potential function. However,
the values of the vibrational entropy for native, misfolded
or denaturated conformations are similar21,26,47 and small
compared to the large energy contributions, while evalua-
tion of this term is computationally expensive.

Generation of the Ensemble of Conformations
(Decoys)

For each protein listed in Table I, we generated an
ensemble of conformations, starting from (1) the native

fold, (2) the canonical �-helix, and (3) a randomly gener-
ated conformation, by using the EDMC (Electrostatically
Driven Monte Carlo) method,4,48 with the GPSAS poten-
tial function given by Eq. (1). For each protein, the total
generated ensemble from all 3 starting points varied from
692 to 4218 conformations and is characterized by a
uniform distribution of root-mean-square deviation (RMSD)
from the native fold in the range 0.1–30.0 Å. The results of
the search are shown in Table II. A description of each
starting conformation follows.

1. Native fold: conversion to fixed-geometry (ECEPP/3-
optimized) conformation

The coordinates for the native structure of each protein
used in this work (listed in the first column of Tables I
through III) were obtained from the Protein Data Bank
(PDB) and subsequently optimized to ECEPP/3 geometry
(i.e., with fixed bond lengths and bond angles). This

TABLE I. Details of the Proteins Analyzeda

Proteinsb

(PDB code)

Secondary
Structure
Contentc

Residuesd

(N)
Ionizable residuese

(%) Experimental method
Backbone heavy atoms RMSDf

(Å)
�-helix

(%)
�-sheet

(%)

1e01 0.0 35.1 37 (17) 45.9 NMR (pH � 6.5) 0.09
9api_B 0.0 38.9 36 (9) 25.0 X-ray diffraction (pH � 7.0)g 0.15
1gab 56.6 0.0 53 (20) 37.7 NMR (pH � 6.0) 0.09
1bdd 61.7 0.0 46 (15) 32.6 NMR (pH � 5.0) 0.14
1vii 52.8 0.0 36 (12) 33.3 NMR (pH � 3.7) 0.11
1res 53.5 0.0 43 (15) 34.9 NMR (pH � 6.1) 0.09
1fsd 32.1 0.0 28 (16) 57.1 NMR (pH � 5.0) 0.09
aFor which an EDMC conformational search was carried out.
bProtein code, as listed in the PDB.
cAccording to the Rost & Sander1 classification: (�-helix, 310-helix, 	-helix)3 �-helix, and (extended strand)3 �-sheet
dTotal number of residues in the sequence. All the proteins were considered with the N- and C-terminal unblocked. The numbers of ionizable
residues, including the N- and C-terminal groups, are given in parentheses.
eIn boldface, we denote the highest percentage of ionizable residues seen among all proteins analyzed and listed in Tables I–III.
fRMSD for the superposition of the NMR or X-ray structure on the structure obtained from it by optimizing the geometry to that used in the
ECEPP/3 potential.
gWhen the pH of the crystallization was not reported in the PDB, a value of 7.0 was adopted.

TABLE II. Summary of the EDMC Runs

Proteins
(PDB code)

No. of
(accepted)

conformationsa
RMSD Rangeb

(Å)

Discrimination of native from non-
native foldsc

GPSAS GPGB GPBEM

1e0l 4218 0.1–30.0 No Yes Yes
9api_B 692 0.1–16.0 No No Yes
1gab 2019 0.1–23.0 No Yes Yes
1bdd 1067 0.1–20.0 Yes Yes Yes
1vii 2114 0.9–13.0 Yes Yes Yes
1res 1952 0.1–18.0 No Yes Yes
1fsd 2754 0.1–13.0 No Yes Yes
aAccording to the Metropolis criterion. This column indicates the total number of conformations accepted
after EDMC runs starting from the native, helix, and random, structures, respectively, as explained in the
Method section.
bMinimum and maximum values of the RMSD, with respect to the native structure, seen for the ensemble
of conformations generated.
cThese columns contain the answer to the question: Do GPSAS, GPGB, and GPBEM discriminate
nativelike folds from non-native (decoys)?
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conversion provides an all-atom representation, including
hydrogen atoms, for each of the selected proteins. With the
few exceptions of very high-resolution structures that
include those from neutron studies, X-ray crystallography
does not identify the positions of hydrogen atoms. How-
ever, the positions of all the atoms in the structure are
crucial for the level of detail of the current analysis.

The RMSD for backbone heavy atoms between the
native structure before and after the ECEPP/3 optimiza-
tion is very low, as can be seen from column 7 of Table I
and column 6 of Table III (i.e., all the RMSDs are lower
than 0.6 Å). For illustrative purposes only, superpositions
of native and ECEPP/3-optimized structures for proteins
1fsd and 4cpa_I are shown in Fig. S1(A and B, respec-
tively) in the Supplementary Material.

When more than one structure was present in the PDB,
one of them was selected arbitrarily, and its geometry was
ECEPP/3-optimized. In one case, all 10 NMR structures of
1e0l were ECEPP/3-optimized for later evaluation of the
average charge distribution.

2. Canonical �-helix

For each protein listed in Table I, a canonical �-helix
conformation was generated by assigning the values

(
60.0°, 
40.0°) to the dihedral angles (�, �) of each amino
acid residue, while keeping all values of  as 180.0°.

3. Randomly generated conformations

For each protein listed in Table I, a randomly generated
conformation was produced by assigning to the dihedral
angles of each amino acid residue values chosen randomly
from the ranges 
180.0° � � � 180.0°, 
180.0° � � �
180.0° and assuming all values of  to be 180.0°.

Experimental Data Used

Seven proteins used for generating an ensemble of
conformations are listed in Table I. Two of them are
�-sheet folds (1e0l and 9api_B). The remaining 5 are
�-helical folds. The highest percentage of ionizable resi-
dues was found for the �-helical protein 1fsd (57.1%) and
for the �-sheet protein, 1e0l (45.9%).

To test whether the Null (or Zero) model is an accurate
approximation to assign the charge distribution for native-
like (ECEPP/3-optimized) structures, a test of 21 proteins
selected from the PDB, namely, those listed in Table III,
with less than 30 ionizable residues, was carried out. The
upper limit of 30 ionizable residues was adopted because
energy evaluations with the GPBEM function require

TABLE III. Testing the Null Modela

Proteins
(PDB code)

Secondary
structure content

Residuesb

(N) Experimental methodc
Backbone heavy atoms

RMSDd (Å)
Disagreement in the assignment

of chargee (%)
�-helix

(%)
�-helix

(%)

1sh1 0.0 35.4 48 (16) NMR (pH 5.0) 0.2 50 (20)
4cpa_I 0.0 15.8 38 (9) X-ray 0.2 22 (0)
6hir 0.0 12.3 65 (10) NMR (pH 7.0) 0.1 10 (10)
2mhu 0.0 0.0 30 (7) NMR (pH 7.0) 0.0 0 (0)
2or1_L 53.6 0.0 63 (14) X-ray 0.3 7 (0)
2tgp_I 13.8 24.1 58 (18) X-ray 0.2 0 (0)
1bds 0.0 27.9 43 (10) NMR (pH 7.0) 0.2 20 (20)
4rxn 0.0 14.8 54 (23) X-ray 0.3 30 (22)
1ppt 50.0 0.0 36 (13) X-ray 0.2 8 (8)
1ovo_A 17.9 12.5 56 (15) X-ray 0.2 0 (0)
3icb 50.7 0.0 75 (28) X-ray 0.2 21 (11)
2ltn_B 7.7 0.0 46 (12) X-ray 0.1 0 (0)
1tgs_I 16.1 12.5 56 (13) X-ray 0.2 15 (15)
1mrt 0.0 0.0 31 (6) NMR (pH 7.0) 0.1 0 (0)
1fc2_C 36.2 0.0 45 (11) X-ray 0.2 27 (27)
1crn 43.5 8.7 46 (6) X-ray 0.2 17 (0)
1cdt_A 0.0 43.3 60 (17) X-ray 0.3 41 (35)
2mev_4 5.7 0.0 58 (9) X-ray 0.5 22 (0)
3ebx 0.0 43.6 62 (15) X-ray 0.1 13 (0)
1cka_A 0.0 36.8 57 (26) X-ray 0.1 23 (8)
1p7e_A 25.0 42.9 56 (19) NMR (pH 6.5) 0.1 5 (0)
aComputation of the average degree of charge for each of the 21 listed proteins was carried out only for the ECEPP/3-optimized structure.
bThis column denotes the number of residues in the amino acid sequence. The corresponding numbers of ionizable residues excluding the N- and
C-terminal groups are given in parentheses. These end groups were excluded, because N- and C-termini are usually free to move, and hence could
introduce a bias in the comparison shown in column 7.
cComputation of the average degree of charge for each ionizable residue was carried out at the indicated pH. The value of 7.0 was adopted for the
pH when the experimental conditions were not reported in the PDB database.
dRMSD for the superposition of the NMR or X-ray structure on the structure obtained from it by optimizing the geometry to that used in the
ECEPP/3 potential.
eThis column denotes the percentage of all ionizable groups in the sequence that are in disagreement between the estimated value from the Null
(or Zero) model and the average degree of charge computed by the GPBEM model, at the pH indicated in column 5. The values listed represent
disagreement of 10% and 30% (in parentheses) between both predictions. We highlight the highest disagreement found in bold.
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exploring the 2� ionization states for each conformation,
with � being the number of ionizable residues. As an
example, for one conformation of protein 3icb, with 30
ionizable groups (2 of them representing the unblocked N-
and C-terminal groups) a single energy evaluation re-
quired �6 h and 17 min on a single Athlon 2800 processor.

RESULTS AND DISCUSSION
Discrimination of Native From Non-Native Folds:
Advantages and Disadvantages of Different
Approaches Used to Compute Solvent Polarization

Six of the seven proteins, listed in Table I were deter-
mined by NMR spectroscopy. The experimental condi-
tions, also listed in Table I, cover a broad range of pH,
ranging from 3.7 (for 1vii) to 7.0 (for 9api_B). For each of
the proteins, we carried out an EDMC conformational
search starting from native, helix and randomly generated
conformations, as described in the Method section. Table
II, columns 2 and 3, gives specific information about the
number of accepted conformations (by the Metropolis
criterion) for all of the mentioned starting structures, as
well as the whole range of backbone heavy-atom RMSDs
covered by the corresponding ensemble of conformations.
Figure 1(a) (for 1e0l) and Figure 2(a) (for 9api_B) illustrate
the wide range of RMSD covered.

The last three columns of Table II indicate whether the
energy of the models used to compute solvent polarization
discriminates native from non-native folds. We discrimi-
nate in terms of fragments of the protein in regular
secondary structure, as in �-helices or �-sheets. The word
“YES” means that the identified lowest-energy structure
in the ensemble (1) belongs to the same secondary struc-
ture class as the native one, (2) contains its secondary
structure motifs in the correct location within the amino-
acid sequence (with an allowed shift of up to 3 residues),
and (3) is packed in the same way as in the native
structure in more than 50% of these secondary structure
motifs. If any of these 3 conditions is not met, the word
“NO” is used. It should be noted that the criterion to
discriminate native from non-native folds is not based on
an RMSD analysis.

It is clear from Table II that use of the GPBEM potential
function, which explicitly considers the coupling between
conformation and degree of ionization, provides the best
results. Our implementation of the GB model, in the
GPGB potential function, also leads to very good scores
(i.e., 6 of 7 native folds were also discriminated). Compari-
son of (a) and (b) in Figure 1 for 1e0l shows that both
models behaved quite similarly in this test [illustrated in
Fig. S2(A and B) in the Supplementary Material]. On the
other hand, comparison of (a) and (b) in Figure 2 for 9api_B
shows the only case for which the GPGB potential function
failed to discriminate the native from the non-native
conformation [illustrated in Fig. S3(A and B) in the
Supplementary Material]. From Table II, it is clear that
the poorest results are obtained with the GPSAS potential,
in accord with a recent analysis made by Lee and Duan.26

Even though we did not try any other existing solvent-
accessible surface area models, such as OONS,49 it seems

that their applicability is, as far as we know, limited to
some �-helix motifs. Nevertheless, failure to discriminate
other �-helix motifs such as 1gab, 1res, or 1fsd, as well as
�-sheet folds (as can be seen from Table II) may indicate
that the effectiveness of GPSAS as a discriminative tool is
limited.

A comparison of the efficiency of the GPBEM and GPGB
potential functions to discriminate native from non-native
conformations shows that there is no correlation between
total free energy and RMSD [see Figs. 1 and 2] in accord
with previous work.23,50 In fact, we observed a significant
anticorrelation between solvent polarization [Fsolv(rp) in
Eq. (2)] and total internal energy [Eint (rp) in Eqs. (1)
through (3)], as shown in Fig. 3. A similar anticorrelation,
but between solvent polarization and internal electrostatic
energy, was already noted by Vorobjev and Hermans.21–23

As indicated clearly in Figure 3, for protein 1gab, the
solvent polarization free energy favors unfolded (random)
conformations, whereas more compact conformations, such
as �-helical structures, have more favorable total internal
energy. A similar pattern to the one illustrated in Figure 3
was observed for all 7 proteins analyzed in this work.

The computed solvent polarization for the accepted
ensemble of conformations of protein 1e0l by using both
the BEM and GB models, is well correlated (i.e., with a
value of R � 0.99, and the slope of the correlation equal to
0.65). An analysis regarding structural similarity between
the lowest energy conformations identified with both the
GPBEM and GPGB methods shows that (1) for two
proteins (i.e., 1bdd and 1res), the same conformation in the
ensemble was identified as the lowest energy one using
both the GPGB and GPBEM potential energy functions
[Fig. S4(A and B) in the Supplementary Material]; (2) for
three proteins, namely, 1e0l, 1gab, 1vii, and 1fsd, different
conformations, but having the native-like fold (see Figs. S2
and S5 in the Supplementary Material), were identified as
the lowest energy structures using the GPGB or GPBEM
functions; and (3) for the remaining protein (i.e., 9api_B),
the lowest energy conformation identified by GPGB does
not have the nativelike fold [see Fig. S3(A) in the
Supplementary Material], while the one identified by
GPBEM does [see Fig. S3(B) in the Supplementary
Material]. In all the runs that make use of the GB model
to estimate solvent polarization, all the ionizable groups
were first assumed to be uncharged. To test whether the
assignment of full charges to the ionizable groups could
improve the discriminating power of the GPGB potential
energy function, new energy evaluations of the whole
ensemble of conformations generated for 9api_B were
carried out. The charge distribution was estimated with
the Null (or Zero) approximation model. Despite consid-
ering either two such charge distribution models or
different salt concentrations, namely, 5.0 M and 0.001
M, it was not possible to discriminate the native from
the non-native structures of 9api_B using our current
implementation of the GB model. A better treatment,
involving the GB model, would treat all 2� possible
ionization states explicitly for all conformations, but we
have not yet developed such a treatment.
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How Elusive Is the Native Fold?
A few years ago, Lazaridis and Karplus50 carried out

an extensive analysis of the discrimination of the native
from misfolded protein models by using an energy

function that includes implicit solvation. In their study
they concluded that “…Once certain side chains are
displaced from the correct orientation, the energy is
nearly equivalent to many other unfolded or misfolded

Fig. 1. (a) Total energy versus C� RMSD for 1e0l, computed by Eq. (3) (i.e., using the GB solvation model
to estimate solvent polarization). Each point in the graph corresponds to an accepted conformation (see row 1
of Table II). The filled black circle indicates the lowest-energy conformation identified with this potential energy
function [superposition of this structure with the native ECEPP/3-opptimized one is shown in Fig. S2(A) in the
Supplementary Material]. (b) Total energy versus C� RMSD for 1e0l, computed by Eq. (2) using the BEM
solvation model that considers all 217 degrees of ionization, at pH 6.5, to estimate solvent polarization. Each
point in the graph corresponds to an accepted conformation (see row 1 of Table II). The filled black circle
indicates the lowest energy conformation identified with this potential energy function [superposition of this
structure with the native ECEPP/3-optimized one is shown in Fig. S2(B) in the Supplementary Material].
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Fig. 2. (a) Total energy versus C� RMSD for 9api_B, computed by Eq. (3) (i.e., using the GB solvation
model to estimate solvent polarization). Each point in the graph corresponds to an accepted conformation (see
row 2 of Table II). The filled-black circle indicates the lowest-energy conformation identified with this potential
energy function [superposition of this structure with the native ECEPP/3-optimized one is shown in Fig. S3(A) in
the Supplementary Material]. (b) Total energy versus C� RMSD for 9api_B, computed by Eq. (2) using the BEM
solvation model that considers all 29 degrees of ionization, at pH 7.0, to estimate solvent polarization. Each
point in the graph corresponds to an accepted conformation (see row 2 of Table II). The filled-black circle
indicates the lowest energy conformation identified with this potential energy function [superposition of this
structure with the native ECEPP/3-optimized one is shown in Fig. S3(B) in the Supplementary Material].
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conformations.” We investigated this behavior to obtain
some insight about the accuracy that a given energy
function should have in order to recognize a native fold,
in an attempt to shed more light on the inherent
difficulties in protein structure prediction.

To carry out this analysis, the lowest energy conforma-
tion identified for the protein 1e0l with the GPBEM
function was chosen. This particular protein was selected
because (1) it represents the smallest monomeric triple-
stranded �-sheet protein domain stable in the absence of
disulfide bonds, bound ions or ligands51; (2) it does not
have a formal hydrophobic core, even though some hydro-
phobic residues are highly conserved; (3) it contains a large
number of ionizable residues (45.9%) and would enable us
to monitor changes in the average charge as a consequence
of variable ionizable side-chain positions; (4) the NMR
experiments carried out at pH 6.5 in 30 mM NaCl, so the
corresponding Debye length is �17 Å, suggest that screen-
ing should not affect the electrostatic interactions signifi-
cantly; and (5) analysis of the lowest-energy conformation
identified in the ensemble of 4218 conformations men-
tioned in Table II revealed that Lys13 is fully deprotonated
at pH 6.5 (see Fig. 4); visual inspection of this structure
revealed that the Lys13 side-chain is partially buried
leading to an unfavorable solvation of the amino group (see
Fig. S6 in the Supplementary Material). To test the
Lazaridis and Karplus conclusions, we varied the dihedral
angle �1 by �90°, followed by local energy-minimization
with Eq. (1); this exposes the amino group to the solvent
completely, while maintaining the rest of the structure

Fig. 4. Bars indicate the average value of the charge for each
ionizable group, computed at pH 6.5, for the lowest energy conformation
identified in the ensemble of 4218 conformations generated for the
unblocked protein 1e0l. Gray-filled bars pertain to acid groups and white
bars to basic groups. The N- and C-termini are indicated as N- and C-,
respectively. The one-letter code is used for the ionizable groups,
followed by a number that represents its position in the 1e0l sequence.
The values of 3.90, 4.3, 10.50, 10.10, and 12.50 were adopted as pKa

o for
the ionizable groups for residues Asp, Glu, Lys, Tyr, and Arg, respectively,
as an average from the data of Perrin.52 Values of 7.80 and 3.75 for the
�-amino and �-carboxyl groups53 were used for the pKa

o of the ionizable
N- and C-terminal groups, respectively.

Fig. 3. Solvent polarization given by the term Fsolv(rp) in Eq. (2) versus total internal energy as given by the
term Eint (rp) in Eqs. (1) through (3). Filled black circles indicate the positions of the initial randomly-generated,
native and all-�-helical structures used during the EDMC runs for protein 1gab.
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unchanged. Re-evaluation of the energy of the side-chain-
modified conformation with the GPBEM showed that (1)
Lys13 is fully protonated; (2) the total free energy of the
new conformation is �140 kcal/mol higher (black-filled
square in Fig. 5) than the lowest energy structure from
which it was derived (black-filled circle in Fig. 5); and (3)
the all heavy-atom RMSDs with respect to the native
structure for both the new and the lowest energy conforma-
tions from which it was derived, are almost identical (i.e.,
RMSD of 2.60 Å). In summary, the side-chain-modified
conformation is now part of the ensemble containing
misfolded structures, as shown in Figure 5 as a black-filled
square, and in line with the Lazaridis and Karplus50

observation that different side-chain conformations can
lead to large changes in the total energy.

From this analysis, some questions arise:

1. Is the observed difference of �140 kcal/mol in the total
free energy a consequence only of the change in the
protonation of Lys13? Figure 6 illustrates the changes
in the average degree of charge after modification of the
Lys13 side-chain. From Figure 6, it can be seen that,
among other small changes, a sizable decrease in the
average degree of charge for both Glu11 and Lys33
takes place. In this conformation of 1e0l, the distance
between Lys33 N� and Glu11 O�2 is 5 Å. Certainly, they
participate in a salt bridge and, what is more impor-
tant, are 14 Å away from Lys13 N� (i.e., at a distance

shorter than the Debye length), which means that the
electrostatic potential between these groups is not
screened significantly. This represents an example of
the cooperative interactions that take place in proteins.

2. Can Lys13 be deprotonated in the native fold? Evalua-
tion of the average degree of charge of Lys13 for the 10

Fig. 5. Total energy versus C� RMSD, computed by Eq. (2) (i.e., using the GPBEM energy function) for
protein 1e0l. Each accepted conformation is indicated by an open circle. The black filled circle indicates the
position for the lowest energy conformation identified with this potential energy function during the EDMC runs.
The black filled square corresponds to the conformation derived from the lowest energy one after the
side-chain of Lys13 was modified (see Results and Discussion section for details).

Fig. 6. Bars indicate the difference in the net charge of each ionizable
group between the lowest energy conformation described in Figure 5 and
the conformation obtained after the side-chain of Lys13 was modified
(black-filled circle and square, respectively, in Fig. 5).
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models representing the native structure satisfying the
NMR constraints revealed that only 1 out of 10 appears
to be fully deprotonated. This calculation leads to a
value of 0.9 for the average degree of ionization of Lys13
(as shown in Fig. 7). To be more specific, the only
deprotonated Lys13 side-chain is found for the initial
NMR structure from which the ensemble of conforma-
tions shown in Figure 1(a and b) was derived.

These results obtained for the �-sheet protein (1e0l) are
in complete agreement with the similar calculations car-
ried out for an �-helical protein (1vii).20 Results from 1vii
for the computed average degree of charge from the
structures satisfying the NMR constraints show that
assignment of an integer number to the charge of each
ionizable group [as in the Null (or Zero) model] may
represent a poor approximation, because the native fold
(which is an ensemble of NMR structures) cannot be
represented by a unique structure. To investigate further
whether an integer charge value (0 or 1) for each ionizable
residue agrees with our estimation of the averaged degree
of charge, we analyzed the charge distribution of all the
ionizable amino acid residues of 21 proteins listed in Table
III, and the results are discussed in the next subsection.

Indeed, all the accumulated evidence indicates that the
stability of the native state is determined by a delicate
balance of all the energy components, in line with experi-
mental54,55 and theoretical50 observations.

Charge Distribution in Native Folds: Is the Null (or
Zero) Model Accurate Enough?

Based on the calculation of the pKa’s of ionizable groups
in proteins, 11,12,27 the accumulated evidence shows that
the Null (or Zero) model is frequently a fairly good
approximation, even though it is physically unrealistic.
For example, it is common to observe titration curves
displaying unusual shapes, when compared with the typi-
cal Henderson–Hasselbalch-type curves. This behavior is
a consequence of the strong site–site couplings between
ionizable groups.2,56 Such interactions are expected to
occur frequently in proteins because (1) they exhibit a high
percentage of ionizable amino acid residues; (2) charged
groups may come spatially close to each other during
folding, especially for intermediates for which the equilib-
rium binding of protons should play a very important role;
and (3) the long-range nature of the electrostatic interac-
tions, as discussed for protein 1e0l.

To further understand the changes in the charge distri-
bution of native folds by using different models to assign
charges (Null or BEM, respectively), 21 ECEPP/3-opti-
mized proteins (listed in Table III) have been used to
compute the average degree of charge for each ionizable
amino acid residue. To decide if the average degree of
charge computed by the BEM is significantly different
from the assignment of the Null (or Zero) model (1/0), the
following criterion was adopted: If the average degree of
charge computed for a given ionizable residue differs by
more than a predefined percentage from the integer values
1 or 0, the charge assignment is considered different.
Predefined difference values, �, of 10% or 30% between
both assignments were used here. These values were
adopted by analogy with the average degree of charge
computed for residues Lys13 and Glu11, respectively, from
10 native conformations of protein 1e0l (as described in the
previous subsection).

From Table III, we can conclude that the Null model
correctly predicts the charge distribution for only 25–50%
of the analyzed proteins (see Table III) depending on the
value of � adopted.

A Comparison of CPU Times Between GPGB and
GPBEM

A comparison of the CPU time required to compute
solvent polarization for 9api_B shows that evaluation of
the total free energy with the GPBEM function is 2 orders
of magnitude more time-consuming than the evaluation
using GPGB (the time for GPGB is too short to show in Fig.
8). In open squares, Figure 8 shows how the computation
of the solvent polarization with the BEM scales with the
number of residues (proteins 1fsd, 9api_B, 1res, 4rxn, and
3icb containing 28, 36, 43, 54, and 75 residues, respec-
tively). To scale a BEM application to larger proteins, it
would be necessary to speed up the computation of the
solution of the Poisson equation. With this goal in mind,
we are currently developing a new algorithm to estimate
the last 2 terms in Eq. (2) (i.e., Fsolv and Finz) faster. The
new algorithm, Fambe257 for solving the Poisson equation
is a multilevel generalization of the current 3-level bound-

Fig. 7. Bars indicate the value of the charge averaged over 10
conformations of the NMR-derived models for the native structure of 1e0l,
computed at pH 6.5. Gray filled bars pertain to acid groups and white bars
to basic groups. The N- and C-termini are indicated as N- and C-,
respectively. The 1-letter code is used for the ionizable groups, followed
by a number that represents their position in the 1e0l sequence. The
values of 3.90, 4.3, 10.50, 10.10, and 12.50 were adopted as pKa

o for the
ionizable groups for residues Asp, Glu, Lys, Tyr, and Arg, respectively, as
an average from the data of Perrin.52 Values of 7.80 and 3.75 for the
�-amino and �-carboxyl groups53 were used for the pKa

o of the ionizable
N- and C-terminal groups, respectively.
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ary element method.32 The new algorithm also utilizes a
smoother dielectric surface interface calculation.32 An
effective multigrid tessellation of the dielectric surface
guided by the size of the protein molecule provides a
method with linear scaling over protein size. Figure 8
shows a comparison, in terms of CPU time between the
new Fambe2 algorithm (open circles) and the current BEM
used in this work (open squares), for calculating Fsolv in
Eq. (2). Significant speedups, by 1 order of magnitude, in
the computation of the solvent polarization are observed
with the new Fambe2 algorithm.57

Figure 9 shows how the CPU time with BEM scales with
the number of ionizable residues. Here, it can be observed
that there is a plateau in the CPU time corresponding to
the sequences containing less than � � 20 ionizable
residues. This plateau is a consequence of the fact that the
computation of the 2� states of ionization requires only a
small fraction of the CPU time needed to compute solvent
polarization when the number of ionizable groups is less
than 20. A faster method for calculating the ionization
energy when the molecule contains more than 20 such
groups is in progress. It is based on a Monte Carlo
calculation of the equilibrium degree of ionization and
would provide a calculation of the free energy of ionization
with the Tanford–Schellman titration approach.58,59 The
cost-effectiveness of this new method, together with the
faster Fambe2 algorithm, is expected to make this proce-
dure competitive with faster, though less accurate, alterna-
tive approximations such as the GB models.

CONCLUSIONS

There are at least 2 different but related issues that
emerged from the current study. One has to do with the
determination of the optimal function, among those used
in this work, that discriminates native from non-native
folds while representing the best trade-off between compu-

tational speed and accuracy. The results shown in Table II
demonstrated that the GPSAS model has limited success
in discriminating native from non-native structures when
compared to GPGB or GPBEM. On the other hand, a fast
model for estimation of solvent polarization, such as the
GB model, improves the success of the potential energy
function remarkably. A comparison with the more precise,
but also more CPU-time-consuming method, that consid-
ers all possible degrees of ionization, as given by the
GPBEM function, indicates that the GPGB approximation
may be the best alternative. It provides the optimal
trade-off between accuracy, with respect to the GPBEM
model, and speed, when compared to the GPSAS model.
Certainly, the speed of the calculations is a very important
factor in many applications. However, in many others,
such as the determination of a protein-folding pathway for
a given sequence of amino acids, the indispensable accu-
racy of the calculations may require consideration of the
coupling between folding and proton binding/release equi-
librium. From this point of view, the Null model may not
be a sufficiently accurate approximation, since it predicts
the charge distribution correctly for only 25–50% of the
analyzed proteins.

Another issue discussed in this work relates to the
prediction of tertiary structure by physics-based methods.
It is known that a necessary condition for a successful ab
initio protein folding prediction is that the energy function
used should be capable of discriminating the native fold
among non-native ones. From this point of view, the
current work provides some hints about the weakness and
strength of different approaches for computing solvent
polarization. However, the inclusion of the polarization
contribution to the potential function is not a sufficient
condition. The potential energy function must also be able
to guide the formation of the native fold, when starting
from randomly generated initial conformations. This re-
quirement represents a challenging, yet unsolved, prob-
lem.

Fig. 8. Time for computation of solvent polarization as a function of the
number of residues, using (a) the BEM (open squares: proteins 1fsd,
9api_B, 1res, 4rxn, and 3icb), and (b) the new Fambe2 algorithm57 (open
circles: proteins 1fsd, 9api_B, 1res, 4rxn, 3icb, 1jc9, 1bty, 1k82, 1eal).
Calculations were carried out on an Athlon 2800 processor.

Fig. 9. CPU time required for the computation of solvent polarization
by the BEM as a function of the number of ionizable residues (�), with �
ranging from 7 to 28 (for the proteins listed in Table III).
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To predict tertiary structure, starting from an arbitrary
conformation, an accurate computation of the total free
energy should include a proper estimation of all free-
energy contributions responsible for the stability of pro-
teins. This means that an accurate estimation of the
entropy, which is missing in our current estimation of the
total free energy, has to be included. By considering how
polymer structures are distributed in the conformational
space, Sullivan and Kuntz60 provided an estimate of the
entropy change during folding. Their findings indicate that
the entropy contribution appears to be essential. Changes
in the vibrational entropy contribution for native, mis-
folded, or denaturated conformations appear to be roughly
the same21,26,47; hence, attention should be focus on the
conformational entropy contribution to the total free en-
ergy. Then, the following question arises: Why are energy
functions that ignore this contribution able to distinguish
native from non-native folds? To provide a tentative an-
swer, we should consider that (1) explicit and implicit
models used to estimate solvent polarization correlate very
well among themselves; however, an implicit solvent model
systematically overestimates the magnitude of this contri-
bution61; and (2) conformational entropy and solvent polar-
ization both favor unfolded versus folded structures. The
preference of solvent polarization for unfolded conforma-
tions is clearly illustrated in Figure 3. Conceivably, an
overestimated contribution of solvent polarization could,
to some extent, compensate for the absence of the conforma-
tional entropy component. This fortuitous cancellation of
errors may provide good results, as in some applications
discussed here. However, solvation free energy favors
conformations where all the polar and ionizable groups are
well exposed to the solvent. During a conformational
search, this preference imposes severe restrictions as to
which unfolded conformations will be sampled. Clearly, in
a conformational search, in which the conformational
entropy is missing, the overestimation of the free energy of
solvation could mislead the folding process.

We can conclude that a successful ab initio prediction
would require (1) developing faster and more accurate
methods for computing solvent polarization, and (2) a
better estimation of the conformational entropy (e.g., by
molecular dynamics).
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Liwo A, Chmurzyński L, Scheraga HA. Interplay of charge
distribution and conformation in peptides: comparison of theory
and experiment. Biopolymers 2005;80:214–224.

36. Momany FA, McGuire RF, Burgess AW, Scheraga HA. Energy
parameters in polypeptides: 7. Geometric parameters, partial
atomic charges, nonbonded interactions, hydrogen-bond interac-
tions, and intrinsic torsional potentials for naturally occurring
amino acids. J Phys Chem 1975;79:2361–2381.

37. Némethy G, Pottle MS, Scheraga HA. Energy parameters in
polypeptides: 9. Updating of geometrical parameters, nonbonded
interactions, and hydrogen-bond interactions for the naturally-
occuring amino acids. J Phys Chem 1983;87:1883–1887.

38. Sippl MJ, Némethy G, Scheraga HA. Intermolecular potentials
from crystal data: 6. Determination of empirical potentials for
O-H…OAC hydrogen bonds from packing configurations. J Phys
Chem 1984;88:6231–6233.

39. Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari
A, Rumsey S, Scheraga HA. Energy parameters in polypeptides:
10. Improved geometrical parameters and nonbonded interactions
for use in the ECEPP/3 algorithm, with application to proline-
containing peptides. J Phys Chem 1992;96:6472–6484.

40. Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration
free energies using macroscopic solvent models. J Phys Chem
1994;98:1978–1988.
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