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Abstract

In this work we establish the optimal Lipschitz regularity for non-negative almost mini-
mizers of the one-phase Bernoulli-type functional

JG(u,Ω) :=

∫

Ω

(

G(|∇u|) + χ{u>0}

)

dx

where Ω ⊂ R
n is a bounded domain and G : [0,∞) → [0,∞) is a Young function with G′ =

g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical
interest, we also address a Höder regularity characterization via Campanato-type estimates
in the context of Orlicz modulars, which is new for such a class of non-standard growth
functionals.
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1 Introduction and main result

In this manuscript we deal with one-phase problems driven by the G−energy functionals, with
G a suitable function with non-polynomial growth. Specifically, we study nonnegative almost
minimizers for one-phase Bernoulli-type functional as follows

JG(u,Ω) :=

∫

Ω

(

G(|∇u|) + χ{u>0}

)

dx

where Ω ⊂ Rn is a bounded Lipschitz domain and G : [0,∞) → [0,∞) is a Young function with
G′ = g satisfying

(1.1) δ ≤ tg′(t)

g(t)
≤ g0 for some constants 1 < δ ≤ g0 <∞ (Lieberman’s condition).
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In our research, almost minimizers mean that we will consider functions 0 ≤ u ∈ W 1,G(Ω) such
that for some β > 0 and constant κ ≥ 0 it holds that

(1.2) JG(u,Br(x)) ≤ (1 + κrβ)JG(v,Br(x))

for any ball Br(x) such that Br(x) ⊂ Ω and any v ∈ W 1,G(Br(x)) such that v = u on ∂Br(x) in
the sense of traces (see Definition 2.7 and Subsection 2.2 for more details).

Particularly, in this framework, we address optimal local Lipschitz regularity for such class of
almost minimizers, where the corresponding estimate depends only on universal parameters

‖∇u‖L∞(Ω′) ≤ C(δ, g0,Ω
′, β, κ)G−1

(

1 +

∫

Ω

G(|∇u|) dx
)

for any Ω′ ⊂⊂ Ω.

We must highlight that the functional JG is a natural generalization of the classical one-phase
(Bernoulli type) p−energy functional, which corresponds to the choice of G(t) = 1

p t
p (for each

p ∈ (1,∞) fixed). We will denote by Jp such functional.
Additionally, in the current literature, see e.g. [36], almost minimizers have been interpreted

as a sort of minimizers of “perturbed functionals”. For instance, one can consider the functional
with regional structure (which is quite similar to certain functionals arising in phase transitions
for nonlinear nonlocal models - see [17])

(1.3) ĴG(u,Ω) = JG(u,Ω) +
1

2

∫∫

Ω×Ω

Φ(y, z)Ψ(u(y)− u(z))dydz,

where Φ(y, z) = ρ(y)ρ(z) with ρ(x) = Θ(u(x)), and Θ : R → [0, 1] fulfils Θ ≡ 0 for x ≤ 0.
Moreover, the potential Ψ : R → [0, 1] satisfies Ψ ≡ 0 for x ∈ (−∞, 0]

Now, if we define the Ψu−convolution as

(Φ ∗Ψu)(y, z) :=
∫∫

Ω×Ω

Φ(y, z)Ψ(u(y)− u(z))dydz,

then (1.3) turns out to be

ĴG(u,Ω) = JG(u,Ω) +
1

2
Φ(y, z) ∗Ψu(y, z).

Then, we verify that
JG(u,Ω) ≤ ĴG(u,Ω).

On the other hand, it is easy to see

ĴG(u,Ω) ≤
(

1 +
1

2
ωnr

n

)

JG(u,Ω) ≤
(

1 +
1

2
ωnr

n

)

JG(v,Ω),

for any v ∈ W 1,G(Br(x)) such that v = u on ∂Br(x). In short, a minimizer for the “perturbed
functional” ĴG(u,Ω) be revealed to be an almost minimizer for the G−energy functional JG(u,Ω)
for appropriated choices of constants β and κ. Therefore, it becomes a necessary task to work
with almost minimizers instead of minimizers because of the impossibility of dealing with weak
solutions of certain discontinuous functionals in certain general frameworks.

Regarding to minimizers in the linear setting, in Alt and Caffarelli’s seminal paper [3] concern-
ing regularity minimizers to one-phase Bernoulli energy functional given by

J2(u,Ω) :=

∫

Ω

(

|∇u|2 + χ{u>0}

)

dx

2



it is established the locally Lipschitz regularity estimates. Moreover, it can be shown that mini-
mizers J2(u0,Ω) = min

K
J2(u,Ω) are solutions of the following free boundary problem

(1.4)







∆u0(x) = 0 in {u0 > 0} ∩ Ω

|∇u0| =
√
2 on ∂{u0 > 0} ∩ Ω

u(x) = g(x) on ∂Ω.

in an appropriate distributional sense.
The natural motivations to investigate such a class of free boundary problems of Bernoulli type

(1.4) comes from the analysis of cavities and jets type problems, see e.g. [12, Section 1.1]. Another
relevant models also arise in combustion theory [6], optimal design problems [50], optimization
problems with constrained volume [2], shape optimization problems [8], [9] and [10] and phase
transitions [47], [48] and [51] just to mention a few scenarios.

Over the past few decades, there has been extensive literature exploring this research topic,
particularly in the context of both single and two-phase problems, most notably the celebrated
viscosity approach to the associated free boundary developed by Caffarelli in the series of trail-
blazing works [13], [14] and [15]. We must refer the reader to [28], [31] and [52] for comprehensive
modern essays on the subject.

Minimizers of the functional Jp have been also considered by Danielli and Petrosyan in [21],
in which the regularity of the free boundary near flat points was addressed. Recently, Lipschitz
estimates of the minimizers of the functional Jp has been addressed by DiPierro and Karakhanyan
in [37], where the authors also supplied the proof of the Lipschitz regularity when p = 2 without
making use of monotonicity formulaes.

We must also recall Martinez-Wolanski’s work [46], which consider the optimization problem
of minimizing

JG,λ(u,Ω) :=

∫

Ω

(

G(|∇u|) + λχ{u>0}

)

dx

in the classW 1,G(Ω) with u−φ0 ∈ W 1,G
0 (Ω), for a bounded function φ0 ≥ 0 and λ > 0. The authors

prove that solutions to the optimization problem are locally Lipschitz continuous. Moreover, such
solutions satisfy the corresponding free boundary problem of Bernoulli-type, thereby extending the
Alt-Caffarelli’s results for the scenario of Orlicz-Sobolev framework. Additionally, they address
the Caffarelli’s classification scheme: flat and Lipschitz free boundaries are locally C1,α for some
α(universal) ∈ (0, 1). In [7] the authors extend these results to quasilinear singular/degenerate
operators in the nonhomogeneous setting (i.e. with a nonzero right hand side).

Furthermore, viscosity approaches for one-phase problems driven by the p−Laplace and p(x)−Laplace
operators has been developed in [44] and [40] respectively. Additionally, in [20], the authors ob-
tain the Lipschitz regularity of viscosity solutions of one-phase problems with non-homogeneous
degeneracy (fully nonlinear operators with double phase signature) and some regularity properties
of their free boundaries were addressed.

Now coming back to the setting of almost minimizers, we observe that since almost minimizers
only fulfill a variational inequality, see (1.2), but not a proper PDE, the main obstacle in facing
their regularity properties is the lack of a monotonicity formula as minimizers do (cf. [3]). In this
regard, it seems to be challenging to derive such techniques to the setting almost minimizers (cf.
[23] and [22] for related topics). In particular, in the quite recent article [34], De Silva and Savin
developed a non-variational approach, based on Harnack-type inequality, for profiles that do not
necessarily satisfy an infinitesimal equation.

We highlight that almost minimizers of J2 were widely investigated recently by several authors.
In effect, we must cite the David et al’ work [23], where by developing an original approach
combining techniques from potential theory and geometric measure theory, the authors obtain
uniform rectifiability of the free boundary and, in the one-phase scenario, the corresponding C1,α

almost everywhere regularity. Therefore, the Alt-Caffarelli’s classical results in [3] were extended
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to the framework of almost minimizers. We refer the reader to [22] for generalizations concerning
variable coefficients. Moreover, the analysis of the semilinear scenario with variable coefficients

Fγ(v; Ω) =
∫

Ω

(〈A(x)∇v,∇v〉 + q+(v
+)γ + q−(v

−)γ)dx, for 0 ≤ γ ≤ 1 and q± ≥ 0,

where A is a matrix with Hölder continuous coefficients was explored in [29], thereby proving sharp
gradient estimates.

In [33], using non-variational techniques, De Silva and Savin provided a different approach from
that of [23] and [24] to deal with almost minimizers of J2 and their free boundaries. Precisely,
based on ideas developed by them in [34], they showed that almost minimizers of J2 are viscosity
solutions in a more general sense. Once this was confirmed, the regularity of the free boundary
for almost minimizers follows by applying the De Silva’s techniques first developed in [30].

Recently, Dipierro et al in [36] obtained a Lipschitz continuity result to nonnegative almost

minimizers for the nonlinear framework, namely for Jp in B1, in the case max
{

1, 2n
n+2

}

< p <∞.

Precisely, there exists a universal constant C = C(p, n, β, κ) > 0 such that

‖∇u‖L∞(B1/2) ≤ C
(

1 + ‖u‖W 1,p(B1)

)

Additionally, u is uniformly Lipschitz continuous in a neighborhood of contact set {u = 0}. In
effect, the authors’ approach was strongly inspired by the method introduced by De Silva and
Savin in [33]. In their setting, the main obstacles faced in are concerned the lack of linearity
and the loss of exact descriptions of p−harmonic profiles in terms of mean value properties. To
overcome such complication, the authors exploit some regularity estimates available in the classical
literature.

For the vectorial scenarios we must quote the following contributions:

1. For a singular system with free boundary, De Silva et al in [32] study the regularity properties
of vector-valued almost minimizers of the functional

J2(u; D) =

∫

D

(

|∇u(x)|2 + 2|u|
)

dx,

which is strongly related to a version of the classical obstacle problem (see [41]).

2. For the weakly coupled vectorial p−Laplacian, given constant λ > 0 and a bounded Lipschitz
domain D ⊂ Rn (for n ≥ 2), Shahgholian et al in [5, Theorem 1.1] address local optimal
Lipschitz estimates for almost minimizers of

Jp(v; D) =

∫

D

m
∑

i=1

|∇vi(x)|p + λχ{|v|>0}(x)dx, (for 1 < p <∞),

where v = (v1, · · · , vm), and m ∈ N.

Taking into account the above results, we will derive uniform Lipschitz estimates for a general
class of almost minimizers of functionals with non-standard growth. Even if our approach is
inspired by the works [33] and [36], we highlight that the non-homogeneous nature of our functional
entails several difficulties that add to the nonlinear character of the problem already present in
the p−Laplace case. The lack of sharp embedding results and the hard task of handling modulars
and norms (for instance when applying Hölder’s inequality) are two of these challenges which are
successfully tackled in this manuscript, together with the general technical difficulty of dealing
with general behavior different from a power and hence not necessarily homogeneous.

Another gap that we needed to fill was the absence of Campanato-type results dealing with
modulars instead of norms. We consider this point to be of independent mathematical interest,
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as the results proved here (see Appendix) may be useful in other contexts that pertain regularity
in Orlicz-Sobolev settings.

The main regularity result of this proposal is the following (see Section 2 for details on the
hypothesis):

Theorem 1.1. Let G : [0,∞) → [0,∞) be a Young function such that g = G′ is convex and

satisfies (1.1) with
n(δ + 1)

n− (δ + 1)
> g0 + 1.

Let u ∈ W 1,G(Ω) be an almost minimizer of JG with exponent β > 0 and constant κ ≥ 0. Then,

u is Lipschitz continuous in the interior of Ω. Moreover, for any Ω′ ⊂⊂ Ω one has

‖∇u‖L∞(Ω′) ≤ CG−1

(

1 +

∫

Ω

G(|∇u|) dx
)

for any Ω′ ⊂⊂ Ω.

where C = C(δ, g0,Ω
′, β, κ) > 0.

We stress that the nonlinear setting driven by JG(u,Ω) provides further technical obstacles,
e.g. the sum of two weak solutions is no longer a weak solution. Therefore, it plays an essential
role to develop a theory of g−harmonic replacements for our nonlinear scenario to overcome such
complications.

Furthermore, we point out that the regularity results in this work do not follow from the nowa-
days classical literature from calculus of variations for operators with Orlicz-Sobolev structure:
Indeed, the integrand of the G−energy functional has a discontinuous signature, instead, the non-
standard growth scenarios that dealt with continuous integrand or even Lipschitz continuous one,
see e.g. [1] and [45] for such related topic.

Concerning the strategy of the proof of Theorem 1.1: a dichotomy result is the main step
to establishing the optimal Lipschitz continuity. In effect, the dichotomy property ensures that
either the average of the G−energy of an almost minimizer to JG decreases in a suitable ball or
the Luxemburg norm between its gradient and a fixed vector becomes sufficiently small in a proper
sense.

Summarizing, either the average of the G−energy of an almost minimizer decreases in a smaller
domain, or the almost minimizer is close enough to a linear profile (with good a priori estimates).
Once this dichotomy is proved, the next step is to show that one of such alternatives might be
improved. Precisely, it will hold a kind of geometric improved of flatness, namely, if an almost
minimizer is close to (in the sense of the average of the G−energy) a suitable linear profile, in a
ball, then it will be closer to a possibly other linear profile in a smaller ball. Therefore, by iterating
such a reasoning, together with the dichotomy property, provides the desired Lipschitz regularity
of almost minimizers to JG,

Finally, in our scenario, we need to show that the sum of G−harmonic replacements solve an
equation for which C1,α estimates hold. In effect, this holds true using a linearization strategy,
together with the assumptions of the dichotomy. The main difficulty appears in the proof of the
improvement of dichotomy’s second alternative. The original strategy to solve such an obstacle
strongly relies on De Silva-Savin’s work [33], where the authors often use harmonic replacements
as competitors. This property holds, for harmonic replacements allowing achieve estimates for the
average of their energy, exploiting Schauder estimates instead of gradient estimates.

Some extensions and further comments

We will present a number of interesting building-block models in which our results work as well.

1. Models arising of non-autonomous functionals:

First, by considering the quantitative results (e.g. regularity estimates, Harnack inequality,
see references below) we can to deal with the following model cases:
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• Problems with (p&q)−growth.

u0 +W 1,p
0 (Ω) ∋ w 7→

∫

Ω

(

H0(x,∇w) + χ{w>0}

)

dx,

as long as the integrand H0 enjoys an appropriate double phase type structure

L1 ·
(

1

p
|ξ|p + 1

q
|ξ|q
)

≤ H0(x, ξ) ≤ L2 ·
(

1

p
|ξ|p + 1

q
|ξ|q
)

,

where 0 < L1 ≤ L2 < ∞ and 1 < p < q < ∞, which make possible to access available
existence/regularity results for weak solutions. We recommend to reader see the series
of fundamental manuscripts [4], [19], [25] , [26] and [27] for related topics.

• Problems with Uhlenbeck’s type structure.

We also stress that our approach is particularly refined and quite far-reaching in order
to be employed in other classes of problems. Indeed,

We can also extended our results for Musielak–Orlicz Spaces with non-homogeneous
term as follow (see [35, §2.3])

u0 +W 1,ϕ(Ω) ∋ v 7→
∫

Ω

(

ϕ(x, |∇v|) + χ{v>0}

)

dx

for (x, ξ) 7→ ϕ(x, |ξ|) with particular structure, including:

X p−growth, i.e., ϕ(x, |t|) = 1
p |t|p;

X Orlicz growth, i.e., ϕ(x, |t|) = G(|t|);

X Multi phase growth, i.e., ϕ(x, |t|) = 1

p
|t|p +

k
∑

i=1

ai(x)
1

qi
|t|q for ≤ ai ∈ C0,1(Ω);

just to mention a few, (see [18] and [43, Section 2]).

In this case, ϕ must satisfy the Uhlenbeck’s structure: for constants 1 < p ≤ q <∞

t 7→ ϕ(x, t) is in C1([0,∞))∩C2((0,∞)) and p− 1 ≤ tϕ′′(x, t)

ϕ′(x, t)
≤ max

1≤i≤k
{qi − 1}.

2. Models with generalized doubly degenerate growth.

Finally, we may consider a wide class of nonlinear degenerate models with non standard
growth properties (cf. [11], and [18] for a survey). An archetypical example we have in mind
concerns models of the form

JGG,H(u,Ω) :=

∫

Ω

(

GG,H(x, |∇u|) + χ{u>0}

)

dx

where
GG,H(x, ξ) := G(|ξ|) + a(x)H(|ξ|) with 0 ≤ a ∈ C0,1(Ω),

for Young functions G,H : [0,∞) → [0,∞) with G,H ∈ ∆2 ∩ ∇2, G ≺ H ≺ G1+ 1
n , and

satisfying the Lieberman’s condition: there exist constants cG, c
′
G, cH, c

′
H ≥ 1 such that

c′G ≤ tG′(t)

G(t)
≤ cG and c′H ≤ tH′(t)

H(t)
≤ cH for all t > 0.

The rest of the paper is organized as follows: in Section 2 we present the preliminary definitions
and results that will be needed throughout the paper; Section 3 is devoted to the proof of the
most important technical results of the paper, namely Lemmas 3.1 and 3.3 and, as a consequence,
the crucial interior gradient estimate in Corollary 3.4. In Section 4 we prove the main result of
this paper, i.e. Theorem 1.1. Finally, the Appendix contains the proof of the Campanato-type
regularity result that is used in Corollary 3.4, summarized in Theorem 4.3.
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2 Preliminaries

In this section we present some preliminary definitions and results that will be used in the proofs
of the main results of the manuscript. We start with some basic facts regarding Young functions
and Orlicz-Sobolev spaces; these are rather well known but we include them for the sake of
completeness.

2.1 Young functions

An application G: [0,∞) −→ [0,∞) is said to be a Young function if it admits the integral

representation G(t) =

∫ t

0

g(τ) dτ , where g is a right continuous function defined on [0,∞) and

satisfying:







g(0) = 0, g(t) > 0 for t > 0,
g is nondecreasing on (0,∞),
lim
t→∞

g(t) = ∞.

From these properties it is easy to see that a Young function G is continuous, nonnegative,
strictly increasing and convex on [0,∞). Further, we recall that we may extend g to the whole
R in an odd fashion: for t < 0 g(t) = −g(−t). And we may (and will) assume without loss of
generality that G(1) = G−1(1) = 1. Note that G is strictly increasing and hence G−1 is well
defined.

In this work we will consider the class of Young functions such that g = G′ is an absolutely
continuous function that satisfies the condition

(2.1) δ ≤ tg′(t)

g(t)
≤ g0

for some constants 1 < δ ≤ g0. This condition was first considered in the seminal work of G.
Lieberman [45] and is the analogous to the ellipticity condition in the linear theory. For our
purposes, we will make the (rather standard assumption) that

(2.2) (δ + 1)∗ > g0 + 1

where (δ + 1)∗ is the Sobolev conjugate of (δ + 1), i.e. (δ + 1)∗ = n(δ+1)
n−(δ+1) . We will also assume

that
g is convex.

This last assumption is analogous to the degenerate setting in the homogeneous problem, i.e. the
case where p ≥ 2.

Equation (2.1) implies that that G satisfies

(2.3) δ + 1 ≤ tg(t)

G(t)
≤ g0 + 1;

this condition is equivalent to ask G and G̃ to satisfy the ∆2 condition or doubling condition, i.e.,

(2.4) G(2t) ≤ 2g0+1G(t), G̃(2t) ≤ 21+
1
δ G̃(t),

where the complementary function of a Young function G is the Young function G̃ defined as

G̃(t) = sup{ta−G(a) : a > 0}.

The doubling condition allow us to split sums as

(2.5) G(a+ b) ≤ 2g0(G(a) + G(b)).

7



Moreover, integrating (2.3) we have that

tg0+1 ≤ G(t) ≤ tδ+1, if 0 < t ≤ 1(2.6)

tδ+1 ≤ G(t) ≤ tg0+1, if t > 1.

As mentioned in the Introduction, the lack of homogeneity is a serious technical difficulty in
our context. The following lemma gives the alternatives that hold in this scenario; its proof is
elementary so we omit it.

Lemma 2.1. For θ ∈ [0, 1] and t ≥ 0

G(θt) ≤ θG(t),

and for θ ≥ 1 and t ≥ 0
G(θt) ≥ θG(t).

More generally, for any, θ, t ≥ 0

G(t)min
{

θδ+1, θg0+1
}

≤ G(θt) ≤ G(t)max
{

θδ+1, θg0+1
}

,(2.7)

G−1(t)min
{

θ
1
δ+1 , θ

1
g0+1

}

≤ G−1(θt) ≤ G−1(t)max
{

θ
1
δ+1 , θ

1
g0+1

}

.(2.8)

2.2 Orlicz-Sobolev spaces

Given a Young function G and a bounded open set Ω ⊂ Rn, we consider the spaces LG(Ω) and
W 1,G(Ω) defined as follows:

LG(Ω) = {u : R → R measurable such that ΦG,Ω(u) <∞}
W 1,G(Ω) = {u ∈ LG(Ω) such that ΦG,Ω(|∇u|) <∞}

where the modular ΦG,Ω(u) stands for

ΦG,Ω(u) =

∫

Ω

G(|u|)dx.

These spaces are endowed with the so-called Luxemburg norm defined as follows:

‖u‖LG(Ω) = inf
{

λ > 0 : ΦG,Ω

(u

λ

)

≤ 1
}

and
‖u‖W 1,G(Ω) = ‖u‖LG(Ω) + ‖∇u‖LG(Ω)

In general, it is easy to see that

(2.9) ‖w‖LG(Ω) ≤ max
{

ΦG,Ω(w)
1

g0+1 ,ΦG,Ω(w)
1
δ+1

}

.

2.3 Technical results concerning g−harmonic functions

The notion of g−harmonic function will of course be of great importance in our work; In effect,
g−harmonic functions are weak solutions of the equation ∆gv = 0 where ∆g is the g−Laplacian
operator given by

∆gv = div

(

g(|∇v|) ∇v
|∇v|

)

.

More precisely, we will be interested in unique weak solutions of the Dirichlet problem

(2.10)

{

∆gv = 0 in Ω
v = h on ∂Ω

8



Such weak solutions can be constructed as minimizers of the energy functional u→
∫

Ω

G(|∇u|)dx
(with fixed Dirichlet boundary condition) via the Direct Method of the Calculus of Variations.

The following proposition will be used, its proof is contained in the Lieberman’s fundamental
work [45, Section 5]. Before stating it, we recall that a constant will be called universal if it
depends only on n, δ and g0 (and eventually β or κ in Definition 2.7); multiplicative constants will
be denoted by C and in the proofs they may change from line to line.

Proposition 2.2. Let v ∈W 1,G(BR) be a g−harmonic function. Then,

1. there exists a universal constant C > 0 such that for any x ∈ BR/2

(2.11) sup
BR/4(x)

G(|∇v|) ≤ C

∫

BR/2(x)

G(|∇v|) dx.

2. there exist universal constants C > 0 and α ∈ (0, 1) such that

(2.12) osc
Bρ

|∇v| ≤ C sup
BR

|∇v|
( ρ

R

)α

, 0 < ρ < R.

Remark 2.3. The estimates in Proposition (2.2) still hold under the more general assumption that
v satisfies div(A(x)∇v) = 0 with x 7→ A(x) satisfying the structural condition:

λ
g(|z|)
|z| |ξ|2 ≤ A(x)ξ · ξ ≤ Λ

g(|z|)
|z| |ξ|2.

See [45] for details.

Another important concept that will be used is that of harmonic replacement in a ball, which
roughly speaking is the g−harmonic that coincides with a given function on the boundary of a
ball:

Definition 2.4. The g−harmonic replacement of a function u ∈ W 1,G(Ω) in Br(x) is the unique
g−harmonic function v ∈W 1,G(Br(x)) that coincides with u on ∂Br(x) in the sense of traces, i.e.
the unique weak solution of (2.10) with Ω = Br(x) and h = u.

The following technical lemmas will be used later: the first one is a bound on the energy of
difference between and function and its g−harmonic replacement and the other one is needed to
ensure the desired ellipticity (in the sense of Remark 2.3) so that interior estimates apply:

Lemma 2.5. Let G a Young function satisfying (2.1) and such that G′ = g is a convex function,

u ∈ W 1,G(Br) and v the g−harmonic replacement of u in Br. Then the following inequality holds

for a universal constant C > 0

∫

Br

G(|∇u −∇v|) dx ≤ C

∫

Br

G(|∇u|)−G(|∇v|) dx.

Proof. As v is a weak solution of ∆gu = 0, we know that

(2.13)

∫

Br

g(|∇v|) ∇v
|∇v|∇ϕdx = 0,

for all ϕ ∈ W 1,G
0 (Br).

We consider the following convex combination

us(x) = su(x) + (1− s)v(x) 0 ≤ s ≤ 1

9



Observe that u0 = v and u1 = u. Now using that u− v ∈W 1,G
0 (Ω) and (2.13), we have

∫

Br

G(|∇u|)−G(|∇v|) dx =

∫

Br

G(|∇u1|)−G(|∇u0|) dx

=

∫

Br

(∫ 1

0

d

ds
G(|∇us|) ds

)

dx

=

∫

Br

(∫ 1

0

g(|∇us|) ∇us
|∇us| · ∇(u− v) ds

)

dx

=

∫

Br

∫ 1

0

(

g(|∇us|) ∇us
|∇us| − g(|∇v|) ∇v

|∇v|

)

· ∇(u − v) ds dx.

Next, note that us(x) − v(x) = su(x)− sv(x) = s(u(x) − v(x)); then using that

(

g(|a|) a|a| − g(|b|) b|b|

)

· ∇(a− b) ≥ CG(|a− b|)

for a constant C = C(δ) > 0 (see [16, Lemma 3.1] for a proof) and (2.7) the last above term is
bounded in the following way

∫

Br

1

s

∫

1

0

(

g(|∇u
s|)

∇us

|∇us|
− g(|∇v|)

∇v

|∇v|

)

· ∇(us − v) ds dx ≥ C

∫

1

0

1

s

∫

Br

G(|∇u
s −∇v|) dx ds

≥ C

∫

1

0

sg0+1

s

∫

Br

G(|∇u−∇v|) dx ds

≥
C

g0 + 1

∫

Br

G(|∇u−∇v|) dx

and the desired inequality follows.

Lemma 2.6. Let q ∈ Rn and |h(x)| < |q|
2 . If

−→
F (z) = g(|z|) z|z| for a Young function satisfying

(2.1) and

A(x) :=

∫ 1

0

D
−→
F (q + th(x)) dt

then

(2.14) λ
g(|q|)
|q| |ξ|2 ≤ A(x)ξ · ξ ≤ Λ

g(|q|)
|q| |ξ|2

for any ξ ∈ Rn \ {0} and for some constants 0 < λ ≤ Λ depending only on δ and g0.

Proof. We start by computing D
−→
F : if i 6= j

Di
−→
F j(z) = Di

(

g(|z|) zj|z|

)

= g′(|z|)zizj|z|2 − g(|z|)zizj|z|3

while

Di
−→
F i(z) = Di

(

g(|z|) zi|z|

)

= g′(|z|) z
2
i

|z|2 + g(|z|)
(

1

|z| −
z2i
|z|3

)

.
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Then,

D
−→
F (z)ξ · ξ =

∑

i6=j

(

g
′(|z|)

zizj

|z|2
− g(|z|)

zizj

|z|3

)

ξiξj +
∑

i

(

g
′(|z|)

z2i

|z|2
+ g(|z|)

(

1

|z|
−

z2i

|z|3

))

ξ
2
i

=
∑

i6=j

(

g
′(|z|) −

g(|z|)

|z|

)

zizjξiξj

|z|2
+ g

′(|z|)|ξ|2

=

(

g
′(|z|) −

g(|z|)

|z|

)

1

|z|2
(z · ξ)2 +

g(|z|)

|z|
|ξ|2

≥

(

g(|z|)

|z|
−

(

g
′(|z|) −

g(|z|)

|z|

))

|ξ|2

≥ g0
g(|z|)

|z|
|ξ|2

≥ g
′(|z|)|ξ|2.

This implies

A(x)ξ · ξ ≥
∫ 1

0

g′(|q + th(x)|) dt|ξ|2 ≥ g′
( |q|

2

)

|ξ|2 ≥ δ
g
(

|q|
2

)

|q|
2

|ξ|2 ≥ λ
g (|q|)
|q| |ξ|2

where λ := 21−g0δ, and we have used that |q + th(x)| ≥ |q|
2 by hypothesis, that g′ is increasing

and the doubling condition for g. This gives the lower bound on (2.14).
Similarly, we find that

D
−→
F (z)ξ · ξ ≤

(

g(|z|)
|z| +

(

g′(|z|)− g(|z|)
|z|

))

|ξ|2 = g′(|z|)|ξ|2

and

A(x)ξ · ξ ≤ g′
(

3|q|
2

)

|ξ|2 ≤ g0
g
(

3|q|
2

)

3|q|
2

|ξ|2 ≤ Λ
g (|q|)
|q| |ξ|2

now with Λ :=
(

3
2

)g0−1
g0, this time using that |q + th(x)| ≤ 3|q|

2 .

2.4 Almost minimizers

In this section we give the rigorous definition of an almost minimizer and show that they satisfy
a nice scaling property:

Definition 2.7. A function u ∈W 1,G(Ω) is an almost minimizer of JG with exponent β > 0 and
constant κ ≥ 0 if

1. u ≥ 0 a.e. in Ω;

2. for any ball Br(x) such that Br(x) ⊂ Ω and any v ∈W 1,G(Br(x)) such that v = u on ∂Br(x)

in the sense of traces (i.e. v − u ∈W 1,G
0 (Br(x))) it holds that

JG(u,Br(x)) ≤ (1 + κrβ)JG(v,Br(x)).

Almost minimizers satisfy the following scaling property:

Lemma 2.8. If u ∈ W 1,G(B1) is an almost minimizer of JG in B1 with exponent β > 0 and

constant κ and 0 < r < 1 then ur(x) :=
u(rx)
r is an almost minimizer of JG in B1/r with exponent

β > 0 and constant rβκ.
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Proof. Assume u is an almost minimizer of JG in B1 with exponent β > 0 and constant κ. Let
x̄ ∈ B1/r and ρ > 0 be such that Bρ(x̄) ⊂ B1/r and v ∈W 1,G(Bρ(x̄)) such that v = ur on ∂Bρ(x̄)
in the sense of traces.

Denoting ȳ = rx̄ we have

Bρ(x̄) ⊂ B1/r ⇒ Brρ(ȳ) ⊂ B1, x ∈ ∂Brρ(ȳ) ⇒ x

r
∈ ∂Bρ(x̄).

Then, by hypothesis

rv
(x

r

)

= rur

(x

r

)

= u(x)

when x ∈ ∂Brρ(ȳ) and therefore

JG(u,Brρ(ȳ)) ≤ (1 + κ(rρ)β)JG

(

rv
( ·
r

)

, Brρ(ȳ)
)

.

But changing variables we have that

JG(u,Brρ(ȳ)) =

∫

Brρ(ȳ)

G(|∇u(y)|) + χ{u>0} dy

= rn
∫

Bρ(x̄)

G(|∇u(rx)|) + χ{u>0}(rx) dx

= rn
∫

Bρ(x̄)

G(|∇ur|) + χ{ur>0} dx

= rnJG (ur, Bρ(x̄))

and a similar computation can be done to show that

JG

(

rv
( ·
r

)

, Brρ(ȳ)
)

= rnJG (v,Bρ(x̄))

and get the desired inequality.

3 Dichotomy lemmas

In this section we prove the main technical results needed in the proof of Theorem 1.1. We being
with the following dichotomy lemma:

Lemma 3.1. There exists ε0 ∈ (0, 1) such that for every 0 < ε ≤ ε0 there exist η ∈ (0, 1), M > 1
and σ0 ∈ (0, 1) depending on ε, n, δ and g0 such that: if σ ≤ σ0, a > M, u ∈ W 1,G(B1) and the

following inequality holds for all v ∈ W 1,G(B1) such that v = u on ∂B1:

JG(u,B1) ≤ (1 + σ)JG(v,B1)

then, if we denote

(3.1) G(a) :=

∫

B1

G(|∇u|) dx

the following dichotomy holds: either

(3.2)

∫

Bη

G(|∇u|) dx ≤ G
(a

2

)

or

(3.3)

∫

Bη

G(|∇u− q|) dx ≤ G(εa)
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where q ∈ Rn verifies

(3.4) G−1

(

1

C
G
(a

4

)

)

< |q| < C0a.

Proof. Let v be the g−harmonic replacement of u in B1. We start by computing, with the aid of
Lemma 2.5 and the definition of almost minimizer,

∫

B1

G(|∇u −∇v|) dx ≤ C

∫

B1

(G(|∇u|)−G(|∇v|)) dx

≤ C

(∫

B1

G(|∇u|) + χ{u>0} dx−G(|∇v|) dx
)

= C

(

JG(u,B1)−
∫

B1

G(|∇v|) dx
)

≤ C((1 + σ)JG(v,B1)−
∫

B1

G(|∇v|) dx)

= C

(

σ

(∫

B1

G(|∇v|) dx + |{v > 0} ∩B1|
)

+ |{v > 0} ∩B1|
)

≤ C

(

σ

∫

B1

G(|∇v|) dx + 1

)

≤ C

(

σ

∫

B1

G(|∇u|) dx + 1

)

,

the last inequality owing to the fact that v minimizes the energy. Taking average and recalling
(3.1) we have

∫

B1

G(|∇u −∇v|) dx ≤ C(σG(a) + 1).

On the other hand, if we fix x ∈ B 1
2
, by (2.11) in Proposition 2.2 we have

G(|∇v(x)|) ≤ sup
B 1

4
(x)

G(|∇v|) ≤ C

∫

B 1
2
(x)

G(|∇v|) dy ≤ C

∫

B1

G(|∇u|) dy ≤ CG(a)

so that

(3.5) G (|∇v|) ≤ CG(a) in B1/2.

Further, if we denote q = ∇v(0), and recall (2.12) in Proposition 2.2 we have

∫

Bη

G(|∇v − q|) dx ≤
∫

Bη

G



C

(

η
1
2

)α

sup
B 1

2

|∇v|



 dx

≤
(

C

(

η
1
2

)α)δ+1∫

Bη

G



sup
B 1

2

|∇v|



 dx

= Cηα(δ+1)G



sup
B 1

2

|∇v|





and by (3.5)
∫

Bη

G(|∇v − q|) dx ≤ Cηα(δ+1)G(a) for all η ≤ 1

2
.
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Now, using the ∆2 condition (see (2.4)),

∫

Bη

G(|∇u− q|) dx ≤ C

(

∫

Bη

G(|∇u−∇v|) dx +

∫

Bη

G(|∇v − q|) dx
)

= I+ II

These two terms are bounded using the previous estimates:

I ≤ 1

|Bη|

∫

B1

G(|∇u −∇v|) dx ≤ C

ηn
(σG(a) + 1).

and
II ≤ Cηα(δ+1)G(a).

So we get

(3.6)

∫

Bη

G(|∇u − q|) dx ≤ Cη−nσG(a) + Cη−n +CG(a)ηα(δ+1)

and

(3.7)

∫

Bη

G(|∇u|) dx ≤ Cη−nσG(a) + Cη−n +CG(a)ηα(δ+1) +CG(|q|).

Next, we choose σ = ηn+1

Cη−nσG(a) + Cη−n +CG(a)ηα(δ+1) = CηG(a) + Cη−n +CG(a)ηα(δ+1)

and a such that

(3.8) CηG(a) + Cη−n +CG(a)ηα(δ+1) ≤ G(εa).

The inequality (3.8) holds if

a ≥ G−1

(

Cη−n

εg0+1 − Cη − Cηα(δ+1)

)

.

(Note that the denominator is positive if η is small enough.) Then,
∫

Bη

G(|∇u|) dx ≤ G(εa) + CG(|q|).

Next we split the two possible cases; if

|q| ≤ G−1

(

1

C
G
(a

4

)

)

making ε < 1/4 we get
∫

Bη

G(|∇u|) dx ≤ 2G
(a

4

)

≤ 2

2δ+1
G
(a

2

)

≤ G
(a

2

)

which is the first alternative in the Lemma.
On the other hand, if

|q| > G−1

(

1

C
G
(a

4

)

)

then by (3.6)
∫

Bη

G(|∇u − q|) dx ≤ G(εa).

Noting that (3.5) implies the bound on |q| we finish the proof.
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Remark 3.2. Using the ∆2 condition (see in particular (2.7)) we can replace (3.3) by

(3.9)

∫

Bη

G(|∇u − q|) dx ≤ εδ+1G(a).

The following lemma can be seen as an improvement of the previous one in the case where ε
and σ are (universally) small enough.

Lemma 3.3. Let 0 < a0 < a1 and G a Young function satisfying (2.1) such that G′ = g is a

convex function. Let u ∈W 1,G(B1) with u ≥ 0 and:

JG(u,B1) ≤ (1 + σ)JG(v,B1)

for all v ∈ W 1,G(B1) such that v = u on ∂B1. Define G(a) be as in (3.1) and assume

a0 ≤ a ≤ a1.

Assume also that
∫

B1

G(|∇u− q|) dx ≤ G(a) εδ+1

for ε small enough with q ∈ Rn satisfying

(3.10) G−1

(

1

C
G
(a

8

)

)

≤ |q| ≤ 2C0a

with C0 given in (3.4).
Then there exist universal constants ε0, α, r ∈ (0, 1) such that if ε < ε0 and σ ≤ c0G(ε) then

∫

Br

G(|∇u − q̃|) dx ≤ rα(δ+1)G(a)εδ+1

where q̃ ∈ Rn verifies

|q − q̃| ≤ C̃ετa where τ =
δ + 1

g0 + 1

Proof. Let v̂ be the g−harmonic replacement of u in B1/2 and define

{

v = v̂ in B1/2,

v = u in B1 \B1/2.

Since v ∈W 1,G(B1) and v = u on ∂B1 we have

JG(u,B1/2) + JG(u,B1 \B1/2) = JG(u,B1)

≤ JG(v,B1) + σJG(v,B1)

= JG(v,B1/2) + JG(v,B1 \B1/2) + σJG(v,B1).

so
JG(u,B1/2) ≤ JG(v,B1/2) + σJG(v,B1).

Now using the definition of JG on the previous inequality we have
∫

B1/2

G(|∇u|) dx+ |{u > 0} ∩B1/2| ≤
∫

B1/2

G(|∇v|) dx + |B1/2|+ σJG(v,B1)

and hence
∫

B1/2

G(|∇u|)−G(|∇v|) dx ≤ |B1/2| − |{u > 0} ∩B1/2|+ σJG(v,B1).
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Using Lemma 2.5, the fact that

|B1/2| − |{u > 0} ∩B1/2| = |{u = 0} ∩B1/2|

and that

JG(v,B1) ≤
∫

B1

G(|∇u|) dx + |B1| ≤ |B1| (G(a) + 1)

we arrive at the following inequality:

(3.11)

∫

B1/2

G(|∇u−∇v|) dx ≤ Cσ(G(a) + 1) + |{u = 0} ∩B1/2|.

Next we will prove that

(3.12) |{u = 0} ∩B1/2| ≤ Cεδ+1εγ

for some γ ∈ (0, 1). We start out by defining

l(x) := q · x+ b

with

b :=

∫

B1

u(x) dx.

Notice that
∫

B1

(u(x)− l(x)) dx = −
∫

B1

q · x dx = 0.

Denote
∫

B1

(u(x) − l(x)) dx = (u− l)B1

we have by Poincaré inequality

(3.13) ‖u− l− (u− l)B1‖LG(B1) = ‖u− l‖LG(B1) ≤ C‖∇(u− l)‖LG(B1).

Now, we want to use the fact that
∫

B1

G(|∇u− q|) dx ≤ CG(a) εδ+1

so we need to compare modulars and norms. Applying (2.9) to w = ∇(u − l) and using the
previous inequality we have

(3.14) ‖∇(u− l)‖LG(B1) ≤ CετG(a)
1

g0+1 .

and by (3.13)

‖u− l‖LG(B1) ≤ CετG(a)
1

g0+1 .

Next, we point out that if we denote l− := min{0, l} then l− ≤ |u− l| and hence

G

(

l−

λ

)

≤ G

( |u− l|
λ

)

and we get

(3.15) ‖l−‖LG(B1) ≤ ‖u− l‖LG(B1) ≤ CετG(a)
1

g0+1 .
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Next, we claim that

(3.16) l(x) ≥ c̃G(a)
1

g0+1

in B1/2 for sufficiently small ε and some constant c̃. Let us denote

σ := G(a)
1

g0+1

to ease notation and suppose that (3.16) does not hold, i.e. for any c there exists x0 ∈ B1/2 such
that

l(x0) < cσ.

Since l(x0) = q · x0 + b and hence

l(x) − b ∈
[−|q|

2
,
|q|
2

]

this yields

cσ > b− |q|
2

or

(3.17) cσ +
|q|
2
> b.

Let

B :=

{

x = − tq

|q| + η, t ∈
[

6

8
,
7

8

]

, η ∈ B1/8

}

so that, in particular, B ⊂ B1.
Now, for x ∈ B and using (3.17)

l(x) = −t|q|+ η · q + b < cσ +
|q|
2

− 6

8
|q|+ 1

8
|q| = cσ − 1

8
|q|

but then (3.10) gives

l(x) < cσ − 1

8
G−1

(

1

C
G
(σ

8

)

)

from which we get the bound

l(x) < cσ − C

64
σ.

which taking c > 0 small enough gives l(x) < −C̄σ for a positive constant C̄. Inserting this into
(3.15) gives

ετσ ≥ ‖l−‖LG(B1) > ‖C̄σ‖LG(B1)

which is a contradiction if ε > 0 is small enough. Therefore (3.16) must hold.
The next step of the proof is divided into two cases according to the embedding properties of

Orlicz-Sobolev spaces (see [1, Sections 8.27-8.35]). First, if

∫ ∞

1

G−1(τ)

τ1+
1
n

dτ = ∞

we consider the the Sobolev conjugate of G

(G∗)−1(t) :=

∫ t

0

G−1(τ)

τ1+
1
n

dτ.
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Then, we have that
‖u− l‖LG∗(B1) ≤ C‖∇(u− l)‖LG(B1)

(here we have also used (3.13)) which combined with (3.14) gives

‖u− l‖LG∗(B1) ≤ CετG(a)
1

g0+1 .

On the other hand, (3.16) gives that

‖l−‖LG∗(B1) ≥ cG(a)
1

g0+1 ‖χ{u=0}∩B1/2
‖G∗ ≥ cG(a)

1
g0+1 |{u = 0} ∩B1/2|1/(δ+1)∗

and putting both inequalities together we obtain

cG(a)
1

g0+1 |{u = 0} ∩B1/2|1/(δ+1)∗ ≤ CετG(a)
1

g0+1

or
|{u = 0} ∩B1/2| ≤ Cετ(δ+1)∗ = Cεδ+1εγ

which is (3.12) with γ = τ(δ + 1)∗ − (δ + 1) > 0 (being positive owing to (2.2)).
The second case is when

∫ ∞

1

G−1(τ)

τ1+
1
n

dτ <∞,

in which the Morrey-type embedding holds and (again using Poincaré)

sup
B1

|u− l| ≤ C‖∇(u− l)‖LG(B1)

so that
sup
B1

|u− l| ≤ CετG(a)
1

g0+1 .

But then, using again (3.16), we have that in B1/2

c̃G(a)
1

g0+1 − u ≤ l− u ≤ sup
B1

|u− l| ≤ CετG(a)
1

g0+1

so that, for x ∈ B1/2

G(a)
1

g0+1 (c̃− Cετ ) ≤ u(x)

which means that u(x) > 0 if ε > 0 is small enough. In this case

|{u = 0} ∩B1/2| = 0

and (3.12) is therefore proved.
With the aid of (3.12), (3.11) reads

(3.18)

∫

B1/2

G(|∇u −∇v|) dx ≤ Cσ(G(a) + 1) + C0ε
δ+1εγ .

This readily implies, using (2.5) and the hypothesis, that

∫

B1/2

G(|∇v − q|) dx ≤ C

(

∫

B1/2

G(|∇u− q|) dx +

∫

B1/2

G(|∇u −∇v|) dx
)

≤ Cεδ+1G(a) + Cσ(G(a) + 1) + C0ε
δ+1εγ .
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Now using the fact that σ ≤ c0ε
δ+1 (c0 > 0 to be chosen later) and recalling that εγ ≤ G(a) and

a ∈ [a0, a1] and the we arrive at

(3.19)

∫

B1/2

G(|∇v − q|) dx ≤ Cεδ+1G(a).

The next step is to show that (3.19) implies

(3.20) |∇v(x) − q| dx ≤ C · (εa)ν , ∀x ∈ B1/2

for some C > 0, ν ∈ (0, 1) and ε small enough.
Assume that (3.20) is false, then there exists x̂ ∈ B1/2 such that

|∇v(x̂)− q| dx > C · (εa)ν .

By interior regularity, for any x ∈ B1/8(x̂) we have

|∇v(x) −∇v(x̂)| dx ≤ C|x− x̂|α

with a constant C > 0 that, thanks to (2.11), depends only on n, g0 and a1. Then,

|∇v(x) − q| ≥ |∇v(x̂)− q| − |∇v(x) −∇v(x̂)|
> C · (εa)ν − C|x− x̂|α

≥ C · (εa)ν
2

as long as x ∈ B
(C·(εa)ν

2 )
1/α(x̂) which is contained in B1/2 for ε small enough. Then

∫

B1/2

G(|∇v(x) − q|) dx ≥
∫

B
(C·(εa)ν

2C )
1/α (x̂)

G(|∇v(x) − q|) dx

≥ G

(

C · (εa)ν
2C

) ∣

∣

∣

∣

C · (εa)ν
2C

∣

∣

∣

∣

n/α

|B1|.

This, together with (3.19) gives

G

(

C · (εa)ν
2

)(

C · (εa)ν
2

)n/α

|B1| ≤ Cεδ+1G(a)

or, using (2.6),
(

C · (εa)ν
2

)g0+1+ n
α

|B1| ≤ εδ+1G(a)

which gives a contradiction choosing ν appropriately and for ε small enough thus proving (3.20).

Next we consider the vectorial function
−→
F : Rn −→ Rn given by

−→
F (z) := g(|z|) z|z|

and compute

−→
F (∇v)−−→

F (q) =

∫ 1

0

d

dt

−→
F (q + t(∇v − q)) dt

=

∫ 1

0

D
−→
F (q + t(∇v − q)) · (∇v − q) dt

= A(x)(∇v − q)
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with A(x) :=

∫ 1

0

D
−→
F (q + t(∇v − q)) dt. Nonetheless, we have that

div
−→
F (∇v) = div

−→
F (q) = 0

and hence
div (A(x)(∇v − q)) = 0.

Applying interior estimates (i.e. using Proposition 2.2 with Remark 2.3 and Lemma 2.6) and using
(3.19) we have that

G(|∇v(x) − q)|) ≤ sup
BR/4(x)

G(|∇v − q|) ≤ C

∫

BR/2(x)

G(|∇v − q|) dx ≤ CG(a)εδ+1.

or, since G is increasing,
|∇v(x)− q| ≤ CG−1

(

G(a)εδ+1
)

.

In particular,
|q̄| := |∇v(0)− q| ≤ CG−1

(

G(a)εδ+1
)

so that
|∇v(x) − q − q̄| ≤ 2CG−1

(

G(a)εδ+1
)

, x ∈ B1/2.

This, using again (2.12) in Proposition 2.2 we have

∫

Br

G(|∇v − q − q̄|) dx ≤
∫

Br

G



C

(

r
1
2

)µ

sup
B 1

2

|∇v − q − q̄|



 ≤ Crµ(δ+1)G(a)εδ+1.

This and (3.18), together with the doubling condition, give

∫

Br

G(|∇u − q − q̄|) dx ≤ C

(∫

Br

G(|∇u−∇v|) dx+

∫

Br

G(|∇v − q − q̄|) dx
)

≤ C

rn
(

σ(G(a) + 1) + C0ε
δ+1εγ

)

+Crµ(δ+1)G(a)εδ+1

≤ C̃r−nσ(G(a) + 1) + C̃r−nεδ+1εγ + C̃rµ(δ+1)G(a)εδ+1.

Now defining α0 := µ and for α < α0, we set

rδ+1 = (3C̃)
1

α−α0 , ε0 :=

(

rα(δ+1)+nG(a0)

3C̃

)

1
γ

, c0 :=
rα(δ+1)+nG(a0)

3C̃(G(a1) + 1)

so that

C̃rµ(δ+1)G(a)εδ+1 = C̃r(α0−α)(δ+1)rα(δ+1)G(a)εδ+1 =
1

3
rα(δ+1)G(a)εδ+1

C̃r−nεδ+1εγ ≤ C̃r−n
rα(δ+1)+nG(a0)

4C̃
εδ+1 ≤ 1

3
rα(δ+1)G(a)εδ+1

C̃r−nσ(G(a) + 1) ≤ C̃r−n
rα(δ+1)+nG(a0)

4C̃(G(a1) + 1)
εδ+1(G(a) + 1) ≤ 1

3
rα(δ+1)G(a)εδ+1.

All this gives
∫

Br

G(|∇u− q − q̄|) dx ≤ rα(δ+1)G(a)εδ+1

and hence the desired result with q̃ := q + q̄.
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As a consequence of the previous lemma we obtain the crucial L∞ estimate for the gradient of
an almost minimizer for sufficiently small κ.

Corollary 3.4. Let a1 > a0 > 0 and let u be an almost minimizer of JG in B1 with constant κ
and exponent β. Set

G(a) :=

∫

B1

G(|∇u|) dx

and assume there exist q ∈ Rn and constants C0,C1 > 0 such that

(3.21) G(a) ∈ [a0, a1],

∫

B1

G(|∇u− q|) dx ≤ C1ε
δ+1G(a), G−1

(

1

C
G
(a

4

)

)

< |q| < 2C0a.

Then there exist ε0, κ0 > 0 and γ ∈ (0, 1) depending on n, δ, g0, β, a0 and a1 such that for

0 < ε ≤ ε0 and 0 < κ ≤ κ0ε
δ+1 there exists a linear function

l(x) := q · x+ b

such that

‖u− l‖C1,γ(B1/2) ≤ CG−1
(

Cρ−n−α(δ+1)εδ+1G(a)
)

where C = C(n, δ, g0) > 0.
Moreover

(3.22) ‖∇u‖L∞(B1/2) ≤ Ĉa

where Ĉ > 0 is a universal constant.

Proof. We may assume that u is an almost minimizer in B2 with the same constant and exponent.

The goal is to iterate Lemma 3.3 with α := min
{

α0

2 ,
β

g0+1

}

, α0 from Lemma 3.3.

We are going to show by induction that for some ρ ∈ (0, 1), C̃ > 0 universal and all k ≥ 0
there exists qk ∈ Rn such that

∫

B
ρk

G(|∇u− qk|) dx ≤ Cρkα(δ+1)εδ+1G(a),(3.23)

G−1

(

1

C
G
(a

8

)

)

− C̃ετa

(

1− ρkατ

1− ρατ

)

≤ |qk| ≤ 2C0a+ C̃ετa

(

1− ρkατ

1− ρατ

)

,(3.24)

G

( |q|
2

)

≤
∫

B
ρk

G(|∇u|) dx ≤ 2G (|q|)(3.25)

with

τ :=

(

δ + 1

g0 + 1

)

.

For k = 0, pick q0 := q; then (3.23) and (3.24) follow just from the corresponding inequalities
in (3.21).

Now for the inductive step let r := ρk and ur(x) :=
1
ru(rx) and get, by inductive hypothesis,

that
∫

B1

G(|∇ur − qk|) dx ≤ C1ρ
kα(δ+1)εδ+1G(a) = C1ε

δ+1
k G(a)

if we set εk := ρkαε. Then, Lemma 3.3 implies that there exists qk+1 ∈ Rn such that

∫

Bρ

G(|∇ur − qk+1|) dx ≤ C1ε
δ+1
k G(a)ρ(δ+1)α = C1ρ

(k+1)α(δ+1)εδ+1G(a)
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and

(3.26) |qk − qk+1| < C̃aετk = Caετρkατ .

But, rescaling the integral back (and recalling the definition of r), we have that

∫

Bρ

G(|∇ur − qk+1|) dx =
1

ρn|B1|

∫

Bρ

G(|∇ur − qk+1|) dx

=
1

(rρ)n|B1|

∫

Brρ

G(|∇u− qk+1|) dx

=

∫

B
ρk+1

G(|∇u − qk+1|) dx

so (3.23) is proved. Incidentally, we point out that the application of Lemma 3.3 is where the
smallness restriction on κ appears.

Regarding (3.24), we can compute, using the inductive hypothesis and (3.26),

|qk+1| ≤ |qk+1 − qk|+ |qk|

≤ Caετρkατ + 2C0a+ C̃ετa

(

1− ρkατ

1− ρατ

)

.

Then, we have that

(3.27) |qk+1| ≤ 2C0a+ C̃ετa

(

ρkατ +
1− ρkατ

1− ρατ

)

= 2C0a+ C̃ετa

(

1− ρ(k+1)ατ

1− ρατ

)

which is the upper bound on (3.24). For the lower bound, recall again that the inductive hypothesis
and (3.26) give

|qk+1| ≥ |qk| − |qk+1 − qk|

≥ G−1

(

1

C
G
(a

8

)

)

− C̃ετa

(

1− ρkατ

1− ρατ

)

− C̃aετρkατa.

It remains to prove (3.25).

∫

B
ρk+1

G(|∇u|) dx−G(|q|) ≤ C

2

(

∫

B
ρk+1

G(|∇u − qk+1|) dx+G(|qk+1|)−G(|q|)
)

≤ C

2



Cρ(k+1)α(δ+1)εδ+1G(a) +
k
∑

j=0

|G(|qj+1|)−G(|qj |)|



 .

Now, for some q∗j between qj+1 and qj we have

|G(|qj+1|)−G(|qj |)| = g
(

|q∗j |
)

|qj+1 − qj |
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and recalling that g is increasing we have

k
∑

j=0

|G(|qj+1|)−G(|qj |)| ≤
k
∑

j=0

g (|qj+1|) |qj+1 − qj |

≤ C

k
∑

j=0

(cg(a) + cεδτg(a))a(ερjα)τ

= C(cg(a)aετ + cεδτg(a)aετ )
k
∑

j=0

ρjατ

≤ C
(

G(a)ετ + ε(δ+1)τG(a)
) 1

1− ρατ

= C

(

1 +
1

1− ρατ

)

ετG(a)

Putting this inequality together with the previous one, we wind up with
∣

∣

∣

∣

∣

∫

B
ρk+1

G(|∇u|) dx −G(|q|)
∣

∣

∣

∣

∣

≤ C(ετ + εδ)G(a) ≤ G

( |q|
2

)

as desired.
Now we want to apply the Campanato-type estimate in the Appendix (Theorem 4.3) with

Ω = B1/2 and λ = n+ α(δ + 1) > n; for that, we must first show that

(3.28) ̺−λ inf
ξ∈Rn

∫

B1/2∩B̺(x0)

G(|∇u − q − ξ|) dx ≤ Cεδ+1G(a).

For that we split the cases ̺ ∈ (0, 1) and ̺ ≥ 1.
In the latter case the bound is obtained by

̺−λ inf
ξ∈Rn

∫

B1/2∩B̺(x0)

G(|∇u − q − ξ|) dx ≤
∫

B1/2

G(|∇u − q|) dx ≤ |B1|
∫

B1

G(|∇u − q|) dx

and the hypothesis.
If ̺ ∈ (0, 1) then we use a ρ−adyc argument: let ρk+1 ≤ ̺ ≤ ρk and use the (3.23) to bound

̺−λ inf
ξ∈Rn

∫

B1/2∩B̺(x0)

G(|∇u − q − ξ|) dx ≤ ρ−λ(k+1)

∫

B1/2∩Bρk (x0)

G(|∇u− qk|) dx

≤ ρ−λ(k+1)+kn|B1|
∫

B
ρk

(x0)

G(|∇u − qk|) dx

≤ Cρ−(n+α(δ+1))(k+1)+kn+kα(δ+1)|B1|εδ+1G(a)

= Cρ−n−α(δ+1)|B1|εδ+1G(a)

and we get (3.28).

Since we already have a bound on

∫

B1/2

G(|∇u− q|)dx, Theorem 4.3 says that ∇u− q belongs

to C0,γ(B1/2) and

(3.29) [∇u− q]C0,γ(B1/2) ≤ CG−1
(

ρ−n−α(δ+1)εδ+1G(a)
)

.

Now if we define l(x) = u(0) + x · q then in B1/2 it holds

|u(x)− l(x)| =
∣

∣

∣

∣

d

dt

∫ 1

0

(∇u(tx)− q) · x dt
∣

∣

∣

∣

≤ CG−1
(

ρ−n−α(δ+1)εδ+1G(a)
)
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and therefore
‖u− l‖L∞(B1/2) ≤ CG−1

(

ρ−n−α(δ+1)εδ+1G(a)
)

which together with (3.29) and a standard interpolation inequality (see for instance [39, page 9])
gives the first part of the result.

As for (3.22), simply note that

‖∇u‖L∞(B1/2) ≤ ‖∇(u− q)‖L∞(B1/2) + |q|

But taking limit in (3.27) we have

|q| ≤ 2C0a+ C̃ετa

(

1

1− ρατ

)

and therefore

‖∇u‖L∞(B1/2) ≤ CG−1
(

Cρ−n−α(δ+1)εδ+1G(a)
)

+ 2C0a+ C̃ετa

(

1

1− ρατ

)

≤ Ĉa

as desired.

4 Proof of the Theorem 1.1

In this section we give the proof of Theorem 1.1. As is customary we reduce the proof to the case
where Ω is a ball, the general case following from a covering procedure.

Proof of Theorem 1.1. Let us define

G (a(τ)) :=

∫

Bτ

G(|∇u|) dx

and for r ∈ (0, η] we want to show that

(4.1) G(a(r)) ≤ C(η,M) (1 + G(a(1))) ,

Let consider the set K ⊂ N = {0, 1, 2, · · · } containing all the k such that

(4.2) G(a(ηk)) ≤ η−nM+ 2−kG(a(1)).

It is easy to check that 0 ∈ K, then K 6= ∅. So, we have two different possibilities: K = N or
K ⊂ N and K 6= N.

In the case K = N we have that for r ∈ (0, 1) there exists a (minimum) value of k ≥ 0 such
that ηk+1 ≤ r < ηk. Then

G(a(r)) =

∫

Br

G(|∇u|) dx

≤ |Bηk |
|Br|

∫

B
ηk

G(|∇u|) dx

≤ η−nG(a(ηk))

≤ η−n
(

η−nM+ 2−kG(a(1))
)

≤ C(η,M)(1 + G(a(1)))

so (4.1) holds.
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In the other case, there exists a minimum integer k + 1 for which the inequality fails (4.2).
Further, it must happen that

(4.3) G(a(ηk)) >M;

if not, we have that

G(a(ηk+1)) ≤ η−nG(a(ηk)) ≤ η−nM ≤ η−nM+ 2−(k+1)G(a(1))

and (4.2) is also satisfied for k + 1.
Now, G(a(ηk)) >M gives, owing to Lemma 3.1 in Bη we have that either

G(a(ηk+1)) ≤ G

(

a(ηk)

2

)

or
∫

B
ηk+1

G(|∇u − q|) dx ≤ εδ+1G(a(ηk))

where q ∈ Rn verifies
1

C
G

(

a(ηk)

4

)

< G(|q|) < CG(a((ηk)).

Suppose that G(a(ηk+1)) ≤ G(a(η
k)

2 ) ≤ G(a(ηk))
2 . Since

(4.4) G(a(ηk+1)) > η−nM+ 2−(k+1)G(a(1)) ≥ η−nM+ 2−kG(a(1))

2
≥ G(a(ηk))

2

this leads to a contradiction.
If the second alternative holds true, then we are in situation to apply Corollary 3.4. Observe

that by (4.3) and (4.4) we have that

G(a(ηk+1)) ≥ M

2
.

On the other hand,

G(a(ηk+1)) ≤ η−nG(a(ηk)) ≤ η−n(η−nM+ 2−kG(a(1))) ≤ η−n(η−nM+G(a(1))).

Now, we apply Corollary 3.4, with a0 = M
2 and a1 = η−n(η−nM+G(a(1))) and taking 2ε instead

ε. Then
∫

Bk+1
η

G(|∇u− q|) dx ≤ (2ε)δ+1G(a(ηk))

and

(4.5) ‖∇u‖
L∞

(

B
ηk+1

2

) ≤ Ca(ηk).

By (4.5), for all r ∈
(

0, η
k+1

2

)

.

G(a(r)) =

∫

Br

G(|∇u|) dx ≤ CG(a(ηk)) ≤ C(η−nM+ 2−kG(a(1)))

≤ C(η−nM+G(a(1))) ≤ C(M, η)(1 + G(a(1))).

If r ∈
[

ηk+1

2 , η
)

then there exists kr such that ηkr+1 < r ≤ ηkr . Then

1

ηkr
≤ 1

r
≤ 2

ηkr+1
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and
kr ≤ k +C∗

So, there are two cases, first suppose that kr ∈ {0, · · · , k} then

G(a(r)) =
1

|Bηkr+1 |

∫

Bkrη

G(|∇u|) dx ≤ η−nG(ηkr ) ≤ η−n(η−nM+ 2−krG(a(1)))

≤ η−n(η−nM+G(a(1))) ≤ C(M, η)(1 + G(a(1))).

If kr > k then

G(a(r)) =
1

|Bηk+C∗+1 |

∫

Bkη

G(|∇u|) dx ≤ η−n(C∗+1)G(ηk) ≤ η−n(C∗+1)(η−nM+ 2−kG(a(1)))

≤ η−n(C∗+1)(η−nM+G(a(1))) ≤ C(M, η)(1 + G(a(1))).

so, the proof of (4.1) is completed.
Now, we extend (4.1) for balls with center x0 and radius small enough. So, for all r ∈ [0, η] we

have

(4.6) G(a(r, x0)) ≤ C(η,M) (1 + G(a(1))) ,

where

G (a(r, x0)) :=

∫

Br(x0)

G(|∇u|) dx

For x0 ∈ B 1
2

G(|∇u(x0)|) = lim
r→0

G(a(r, x0)) ≤ C(η,M)(1 + G(a(1)) = C ·
(

1 +

∫

B1

G(|∇u|) dx
)

Finally, we obtain

‖∇u‖
L∞

(

B 1
2

) ≤ G−1

(

1 +

∫

B1

G(|∇u|) dx
)

Appendix: a Campanato-type estimate

In this section we prove a Campanato-type result in the context of Orlicz modulars, i.e. that
functions with appropriate average decay are Hölder continuous. As far as the authors’ are con-
cerned, this result is new in the specialized literature and hence has independent interest. The
proof follows Fernández Bonder’s personal notes [38] for the homogeneous setting.

Let us denote

Ωx0,̺ := Ω ∩B̺(x0) and ux0,̺ :=
1

|Ωx0,̺|

∫

Ωx0,̺

u(x) dx =

∫

Ωx0,̺

u(x)dx.

For our purposes, the analogous of the Lp norm and Campanato seminorm (see for instance [42])
will be given, for λ ≥ 0, by

(4.7) Φ(u) :=

∫

Ω

G(|u|) dx, Φλ(u) := sup
x0∈Ω
̺>0

̺−λ
∫

Ωx0,̺

G(|u− ux0,̺|) dx

These quantities are not homogeneous and hence not a norm/seminorm, but they capture the
essential properties that will be used to prove the desired continuity.
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We will work with functions satisfying

(4.8) Φ(u) + Φλ(u) ≤ CΦ

for some constant CΦ. The first step is to prove that every point in Ω is a Lebesgue point of u:

Proposition 4.1. If u satisfies (4.8) and λ > n then there exists ũ = u a.e. such that

lim
r→0+

ux0,r = ũ(x0)

uniformly in Ω.

Proof. Step 1. Let 0 < r1 < r2. Then for y ∈ Br1(x0) and using (2.5) we have that

G(|ux0,r1 − ux0,r2 |) ≤ 2g0 (G(|ux0,r1 − u(y)|) + G(|ux0,r2 − u(y)|)) .

Integrating over Br1(x0) we get that

|B1|rn1G(|ux0,r1 − ux0,r2 |) ≤ 2g0Φλ(u)(r
λ
1 + rλ2 )

and we get

G(|ux0,r1 − ux0,r2 |) ≤ 2g0
rλ1 + rλ2
|B1|rn1

Φλ(u).

or

(4.9) |ux0,r1 − ux0,r2 | ≤ G−1

(

2g0
rλ1 + rλ2
|B1|rn1

Φλ(u)

)

.

Step 2. We will iterate (4.9) dyadically; for j ∈ N0 and fixed r > 0 we have

G(|ux0,2−(j+1)r − ux0,2−jr|) ≤ 2g0
2−(j+1)λrλ + 2−jλrλ

|B1|2(−j−1)nrn
Φλ(u).

This means that

|ux0,2−(j+1)r − ux0,2−jr| ≤ G−1

(

2g0

|B1|
Φλ(u)

)

r
λ−n
g0+1 2

j(n−λ)
g0+1

and since

|ux0,r − ux0,2−kr| ≤
k
∑

j=0

|ux0,2−(j+1)r − ux0,2−jr|

we get

(4.10) |ux0,r − ux0,2−kr| ≤ G−1

(

2g0

|B1|
Φλ(u)

)

r
λ−n
g0+1

k
∑

j=0

2
j(n−λ)
g0+1

Step 3. Now we can use (4.10) in the following way

|ux0,2−kr − ux0,2−(k+i)r| ≤ G−1

(

2g0

|B1|
Φλ(u)

)

( r

2k

)
λ−n
g0+1

i−1
∑

j=0

2
j(n−λ)
g0+1

≤ CG−1

(

2g0

|B1|
Φλ(u)

)

( r

2k

)
λ−n
g0+1
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where C > 0 depends only on g0, n and λ. In particular
{

ux0,2−kr

}

k
is a Cauchy sequence

(uniformly in x0) and hence has a limit which we call ũ(x0):

lim
k→∞

ux0,2−kr =: ũ(x0).

Notice that: a) for almost every x0 Lebesgue’s Differentiation Theorem says that ũ(x0) = u(x0);
and b) ũ does not depend on the specific choice of r. Indeed, passing to the limit as i→ ∞ above
we obtain that

|ux0,2−kr − ũ(x0)| ≤ CG−1

(

2g0

|B1|
Φλ(u)

)

( r

2k

)
λ−n
g0+1

and then, if we consider a r′ > 0, we can bound, using (4.9) and the previous inequality

|ux0,2−kr′ − ũ(x0)| ≤ |ux0,2−kr′ − ux0,2−kr|+ |ux0,2−kr − ũ(x0)|

≤ G−1

(

2g0
r′
λ
+ rλ

|B1|r′n
Φλ(u)2

−k(λ−n)

)

+CG−1

(

2g0

|B1|
Φλ(u)

)

( r

2k

)
λ−n
g0+1

≤ 2−k
λ−n
g0+1

(

G−1

(

2g0
r′
λ
+ rλ

|B1|r′n
Φλ(u)

)

+CG−1

(

2g0

|B1|
Φλ(u)

)

r
λ−n
g0+1

)

which goes to 0 as k → ∞.
Finally, we go from discrete to continuous: we pass to the limit on k to obtain in (4.10) to get

(4.11) |ux0,r − ũ(x0)| ≤ G−1

(

2g0

|B1|
Φλ(u)

)

r
λ−n
g0+1

∞
∑

j=0

2
j(n−λ)
g0+1

and taking the limit r → 0+ we get the desired uniform convergence.

Next we want to show that u is indeed Hölder continuous in Ω. We identify it with ũ and drop
the ˜ for simplicity.

Proposition 4.2. If u satisfies (4.8) and λ > n then there exists C = C(n, g0, λ) > 0 such that

sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|γ ≤ CG−1

(

2g0

|B1|
Φλ(u)

)

with γ = λ−n
g0+1 .

Proof. We start with the following claim: if x, y ∈ Ω and r = 2|x− y| then

|ux,r − uy,r| ≤ CG−1

(

2g0

|B1|
Φλ(u)

)

|x− y|γ

with γ = λ−n
g0+1 .

To prove the claim we note that for z ∈ Br(x) ∩Br(y) it holds that

G(|ux,r − uy,r|) ≤ 2g0 (G(|ux,r − u(z)|) + G(|uy,r − u(z)|))

and so integrating over Br(x) ∩Br(y) we get that

|Br(x) ∩Br(y)|G(|ux,r − uy,r|) ≤ 2g0

(

∫

Br(x)

G(|ux,r − u(z)|) dz +
∫

Br(y)

G(|uy,r − u(z)|) dz
)

≤ 2g0+1rλΦλ(u)
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which leads to

|ux,r − uy,r| ≤ G−1

(

1

|Br(x) ∩Br(y)|
2g0+1rλΦλ(u)

)

.

The claim follows simply by noting that B r
2
(x) ⊂ Br(x) ∩Br(y).

Since
|u(x)− u(y)| ≤ |u(x)− ux,r|+ |ux,r − uy,r|+ |uy,r − u(y)|

the proposition follows using the claim and (4.11).

We remark that Φλ(u) is equivalent to

sup
x0∈Ω
̺>0

̺−λ inf
ξ∈R

∫

Ωx0,̺

G(|u(x)− ξ|) dx;

indeed, one inequality being trivial, the other one follows by noting that Jensen’s inequality gives

G(|ux0,̺ − ξ|) = G

(∣

∣

∣

∣

∣

∫

Ωx0,̺

(u(x)− ξ) dx

∣

∣

∣

∣

∣

)

≤
∫

Ωx0,̺

G(|u(x)− ξ|) dx

from where

∫

Ωx0,̺

G(|u(x)− ux0,̺|) dx ≤ 2g0

(

∫

Ωx0,̺

G(|u(x)− ξ|) dx+

∫

Ωx0,̺

G(|ξ − ux0,̺|) dx
)

≤ 2g0+1

∫

Ωx0,̺

G(|u(x)− ξ|) dx.

In summary, we have the following theorem:

Theorem 4.3. Let u be a measurable function satisfying

∫

Ω

G(|u|) dx+ sup
x0∈Ω
̺>0

̺−λ inf
ξ∈R

∫

Ωx0,̺

G(|u(x) − ξ|) dx ≤ C0

for some positive constant C0 and λ > n. Then, u ∈ C0,γ(Ω) with γ = λ−n
g0+1 and

sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|γ ≤ CG−1



 sup
x0∈Ω
̺>0

̺−λ inf
ξ∈R

∫

Ωx0,̺

G(|u(x)− ξ|)dx





Remark 4.4. One could consider λ = n+ g0 + 1 in the previous theorem and obtain u ∈ C0,1(Ω),
i.e. u is Lipschitz continuous in Ω.

Definition 4.5 ([49, Definition 1.2]). Let p ∈ [1,∞) and a ψ : (0,∞) → (0,∞) be a continuous
function. We define the generalized Campanato space

Lp,ψ(Ω) :=







f : Ω → R : ‖f‖Lp,ψ(Ω) := sup
Br(x0)⊂Ω

1

ψ(r)

(

∫

Br(x0)

|f(x)− fBr(x0)|pdx
)

1
p

<∞







.

Remark 4.6. Observe that ‖f‖Lp,ψ(Ω) is a norm (modulo constant functions), thus Lp,ψ(Ω) defines
a Banach space. Moreover, if p = 1 and ψ ≡ 1, then L1,1(Ω) = BMO(Ω). Finally, if p = 1 and
ψ(r) = rγ (for some 0 < γ ≤ 1), then L1,rγ (Ω) coincides with standard spaces C0,γ(Ω).
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We also consider now the following functional space

BMO∗(Ω) :=







u : Ω → R : ‖u‖BMO∗(Ω) := sup
x0∈Ω
ρ>0

∫

Ωx0,ρ

|u− ux0,ρ|dx <∞







.

Now, we will suppose that Ω satisfies a ĉ0−uniform positive density (ĉ0−UPD for short), i.e.,
there exists a universal constant ĉ0 ∈ (0, 1) such that

|Ωx0,ρ|
|Bρ(x0)|

=
|Ω ∩Bρ(x0)|
|Bρ(x0)|

≥ ĉ0 ∀ x0 ∈ Ω and ρ > 0.

Remember we are assuming that Ω is a bounded Lipschitz domain, thus it fulfils ĉ0−UPD property
for some ĉ0 ∈ (0, 1).

Finally, taking into account the above definitions and using Jensen’s inequality for concave
functions, we can conclude in the borderline case, i.e., λ = n (see (4.7) and (4.8)) the following:

‖u‖BMO∗(Ω) := sup
x0∈Ω
ρ>0

∫

Ωx0,ρ

|u− ux0,ρ|dx

= sup
x0∈Ω
ρ>0

∫

Ωx0,ρ

G−1 (G(|u− ux0,ρ|)) dx

≤ sup
x0∈Ω
ρ>0

G−1

(

∫

Ωx0,ρ

G(|u − ux0,ρ|)dx
)

≤ G−1



 sup
x0∈Ω
ρ>0

∫

Ωx0,ρ

G(|u − ux0,ρ|)dx





≤ G−1



ĉ−1
0 ω−1

n sup
x0∈Ω
ρ>0

1

ρn

∫

Ωx0,ρ

G(|u − ux0,ρ|)dx





≤ G−1
(

ĉ−1
0 ω−1

n CΦ

)

.

Therefore, u ∈ BMO∗(Ω) provided λ = n and Ω fulfils a ĉ0−UPD property.
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