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ABSTRACT
Several cellular responses depend on translational regulation and in most cases, this involves the
formation of cytoplasmic granules that contain repressed mRNAs. In neurons, numerous mRNAs
travel along dendrites to be locally regulated upon synapse activity and we have recently shown
that the exoribonuclease XRN1 forms dynamic aggregates at the post synapse that respond to
specific stimuli.1 These foci were termed SX-bodies and are distinct from stress granules (SGs),
processing bodies (PBs) and other RNA granules previously described. Together with Smaug1-foci
and FMRP-granules, the SX-bodies contribute to dynamically shape the transcriptome available for
translation at the post-synapse.
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It is a growing concept that translational repression is
linked to the formation of large supramolecular complexes
that contain silenced mRNAs in association with RNA-
binding proteins and additional repressor factors. Process-
ing bodies (PBs) and Stress granules (SGs) are the founding
members of this novel family of cytosolic assemblages, that
we collectively termed mRNA-silencing bodies. Both PBs
and SGs are highly dynamic and it is believed that their
remodeling or dissolution releases transcripts thus allowing
their translation.2-6 A large number of cellular responses
are regulated at the translational level and synapse plasticity
greatly depends on the regulation of mRNAs localized at
the post-synaptic compartment. The importance of local
translation in memory consolidation and learning was
shown in a wide range of organisms including Aplysia, Dro-
sophila and mammals.7-9 Paralleling the formation of PBs
or SGs in other cellular contexts, specific mRNA-silencing
bodies were shown to dynamically form at the post-syn-
apse. Among others, the RNA regulator Smaug1/Samd4a
and Fragil X Mental Retardation Protein (FMRP) form
related bodies collectively termed SyAS-foci, as they are
dependent on synapse activity.4,10 The Smaug1 bodies,
named S-foci, respond to NMDAR stimulation dissolving
and releasing CamKIImRNA and likely several other tran-
scripts. Interestingly, NMDA induces a global translational

silencing and the formation of specific bodies upon
NMDAR stimulation was hypothesized.10 In following up
these studies, we have recently described a new type of
SyAS-foci apparently linked to NMDAR activation, that we
termed SX-bodies, as they contain the 50-30 exoribonuclease
XRN1. Remarkably, although in most cell types XRN1 is
present in PBs –which include several molecular complexes
involved in decapping, repression and decay– we found
that the SX-bodies present in hippocampal synapses lack
several PB components, including DCP1a, an obligate
cofactor for decapping. These recent findings open new
questions that remain to be solved.

First, which is the mechanism of mRNA repression that
operates at the SX-bodies? XRN1 recognize monophos-
phate 50 ends, as those produced by decapping of mRNAs.
The apparent absence of DCP1/2 decapping activity at the
SX-bodies is puzzling and suggests that the SX-bodies are
not linked to mRNA decay. However, other decapping
activities may be involved and recently, the decapping mol-
ecule DCPS1 and XRN1 were shown to work together in
the degradation of specific long noncoding RNAs. DCPS1
activity is blocked by RG3039—a drug with therapeutic
potential against spinal muscular atrophy—and a few non-
coding RNAs affected by this inhibitor are targeted by
XRN1.11 Regulation by non-coding RNAs is an important
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mechanism for the modulation of local protein synthesis
upon synapse activity and the possibility that the SX-bodies
are involved in this pathway should be considered. How-
ever, decapping and decay might not be connected to SX-
bodies and these might operate as RNA storage centers.
Which specific RNAs are repressed and protected in these
silencing bodies remains a mystery.

Alternatively, the accumulation of XRN1 at the post-
synaptic density could be linked to the storage or regulation
of XRN1 activity. Recent work in yeast cells shows the
unexpected presence of XRN1 at unusual locations. As in
most mammalian cells, the yeast homolog XRN1p localizes
at PBs and SGs when these are induced upon acute stress
insults. Recent findings show that after glucose exhaustion,
yeast XRN1p reversibly accumulates in cortical clusters, at
the cytosolic side of specific membrane compartments
termed eisosomes.12 Eisosomes are multiprotein complexes
a priori not involved in mRNA metabolism, and similar to
the SX-bodies in neurons, the yeast eisosome contains
XRN1 but no other PB component, opening the question
on the functional relevance of XRN1 recruitment to these
specific subcellular sites. The work in S. cerevisiae is inspir-
ing as eisosomes are involved in signal transduction and
sensing of environmental stresses. A tempting hypothesis is
that both, the eisosome and the post-synaptic density are
signaling knobs that regulates XRN1 activity upon external
stimuli.

Another important finding related to our observations is
that XRN1p is imported to the yeast nucleus to directly reg-
ulate gene expression.13 A complex including XRN1p and
other decay factors interacts with the chromatin to couple
decay with transcription, accounting for a robust mecha-
nism to control mRNA levels in a narrow range, where
more decay is followed by more transcription and more
transcription is followed by more decay. Whether XRN1
has a role in transcription in neurons is unknown. Interest-
ingly, several transcription factors are present at dendrites
and post-synapses, opening the unexplored possibility of an
interaction between transcription factors and XRN1, which
would link synapse function, mRNA decay and gene
expression in an hypothetical regulatory network.

Nevertheless, our recent work suggests that the synaptic
XRN1 clusters help the translational silencing triggered by
NMDAR stimulation. NMDA induces the accumulation of
SX-bodies and XRN1 KD impairs the translational silenc-
ing.1 In contrast to the effect elicited by NMDA, the SX-
bodies slowly dissolve upon stimulation of metabotropic
receptors, which induces a concomitant stimulation of den-
dritic protein synthesis. Altogether these observations sup-
port a role for SX-bodies as mRNA-silencing centers that
respond to synaptic activity.

SX-bodies are different from canonical PBs and from
S-foci and moreover, both SX-bodies and S-foci are

different from granules containing FMRP.1,14 Along with
additional RNA granules, the 3 types of bodies are pres-
ent at hippocampal synapses and display different
responses to different stimuli. Whereas the S-foci rapidly
dissolve upon activation of NMDA or metabotropic
receptors, the FMRP granules do not respond to NMDA
but they rapidly dissolve upon metabotropic receptor
stimulation. More recently, we found that a Smaug1
splicing variant, termed DEIII, which has a shorter
RNA-binding domain and however display a normal
repressor activity, is expressed in neurons together with
the full length Smaug1 and the highly homologous
Smaug2, and moreover, the 3 Smaug isoforms form cyto-
solic bodies (Fernandez-Alvarez et al., this issue).
Whether Smaug variants are present in distinct dendritic
mRNA-silencing bodies that control specific subsets of
transcripts and/or respond to different stimuli remains
to be investigated. In a recent work, Amadei et al
reported that Smaug2 is expressed in cortical neuron
precursors, whereas Smaug1 levels increase later during
development. Thus, developmental regulation adds
another layer of complexity to the universe of RNA-
silencing bodies.15

We speculate that the aggregation and dissolution of
these diverse mRNA-silencing bodies would affect the
local repertoire of transcripts that are available to enter
translation. In addition, granules containing stalled ribo-
somes are present in dendrites and furthermore, the
stimulation of specific receptors has consequences on the
activity of a number of translation factors (reviewed in
refs. 16, 17). As a result of this complex regulatory net-
works, specific translational changes are expected to be
achieved for each stimulation pattern (Fig. 1).17,18

In addition to the open questions on the biological
significance of the different mRNA-silencing bodies
present at synapses, another point that remains to be
unraveled is which are the molecular determinants and
pathways that govern their aggregation and dissolution.
Similarly to the formation of SGs, which requires the
action of microtubule and microfilament-dependent
molecular motors,19 we anticipate that the assembly of
silencing bodies at the synapse surroundings involves the
active transport of molecules and/or particles. Substan-
tial advances have been made in identifying the molecu-
lar motors involved in the transport of RNA granules
along dendrites as well as in their entrance to dendritic
spines.20 All this knowledge will inspire future studies on
the subcellular transport involved in the aggregation and
dispersion of synaptic mRNA-silencing bodies.

Work from several labs in several organisms point to
the common observation that several PB and SG compo-
nents contain prion-related domain or low complexity
regions (LCR) that mediate homotypic protein-protein
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interactions thus helping the formation of RNP aggre-
gates that behaves as liquid droplets.4-6,17,21-23 The con-
served presence of aggregation modules in RBPs linked
to neuron physiology is somehow surprising given that
protein aggregation is connected to neurodegeneration.
The current view is that RNA-silencing bodies and gran-
ules are reversible and their transformation into irrevers-
ible hydrogels or amyloid-like fibers drives toxicity. For
example, mutant hnRNPA1 or mutant FUS (Fused in
Sarcoma) form anomalous RNP aggregates that disturb
the normal dynamics of RNA granules thus affecting
local translation.23,24 The biophysics of these phase-

separation processes driven by normal and mutant
prion-like domains and related aggregation modules has
been discussed elsewhere and open important questions
on how aggregation and dispersion are controlled down-
stream of synaptic activity. Phosphorylation of multiple
residues in the oligomerization domain is emerging as an
important mechanism to control aggregation in several
cell systems.21,25-27

In addition to mRNA repression, controlled oligomer-
ization of RNA-binding proteins may also be linked to
mRNA activation. A recent report in Drosophila indi-
cates that the oligomerization of Orb2—which is driven

Figure 1. Multiple mRNA-silencing bodies regulate the transcriptome at the post-synapse. The exoribonuclease XRN1, together with
Smaug, FMRP and additional RNA-binding proteins including decapping factors; Pumilio; RNG105; ZBP1; TDP43 and FUS/TLS (not
depicted) among other molecules involved in post-transcriptional regulation form specific bodies at dendrites and post-synapses. These
bodies may respond to synaptic stimulation by dissolving and releasing transcripts to allow their translation, or with an increased assem-
bly linked to translation repression (see text). Remarkably, the SX-bodies (in red) are the only ones described to date to increase in size
and number upon NMDAR stimulation, which triggers a global translational silencing. In contrast, NMDAR stimulation triggers the disso-
lution of Smaug1-foci (in blue) and similarly affects specific bodies containing DCP1a and termed dendritic P-body-like structures
(dlPbodies) (in green), with no effect on FMRP granules (orange). The activation of metabotropic receptors provokes the rapid dissolu-
tion of the S-foci and FMRP granules, and a much slower dissolution of the SX-bodies. At least 3 Smaug isoforms exist in mature neu-
rons, namely Smaug1, Smaug1 DEIII –a splicing variant with a shorter RNA-binding domain– and the highly homologous Smaug2,
product of a different gene. Whether these major Smaug isoforms have redundant or specific functions, and whether they form different
dendritic bodies remain unknown. The SX-bodies exclude decapping molecules, which are present in dlPBs. Conversely, dlPBs exclude
XRN1, suggesting that both types of bodies are connected to mRNA storage rather than decay.1,30
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by a polyQ region—helps translation of target mRNAs,
whereas the Orb2 monomeric form mediates mRNA
repression. It is believed that Orb2 behaves as a prion
and oligomeric Orb2 drives the oligomerization of more
Orb2 molecules, thereby perpetuating a local response
and helping synapse consolidation.28 In the case of
XRN1, aggregation into SX-bodies correlates with trans-
lational silencing. Vertebrate XRN1 contains several
LCRs at the C-terminal end, and their contribution to
SX-body aggregation is likely (discussed in ref. 1). Inter-
estingly, the XRN1 C-terminus is not fully conserved
along evolution and the insect proteins contain multiple
short Q-rich regions, which are absent from vertebrate
XRN1 molecules, including human, zebrafish and xeno-
pus (Fig. 2). The presence of polyQ regions seems to be a
common feature in several other yeast and insect PB
components and it is less frequent in vertebrates.28 It has
been suggested that mammalian cells are particularly
sensitive to the presence of polyQ aggregates, all these
suggesting that polyQ-mediated aggregation has evolu-
tionary constrains likely connected to the toxicity of
these aggregates.29 We hypothesized that the LCRs at the
C-terminal domain can facilitate the self-aggregation of
XRN1. In addition, the interaction with other yet-
unknown SX-body components is expected to help their
assembly. Likewise, the molecular determinants of
Smaug aggregation remain unknown. We recently found
that Smaug1 splicing variants and the highly homolo-
gous Smaug2 also aggregate when overexpressed in cell
lines, and moreover, all these Smaug molecules colocalize

in specific cytosolic assemblages that exclude XRN1, sug-
gesting that the molecular determinants of aggregation
are distinct for Smaug and XRN1 (Fernandez Alvarez
et al., this issue). Future work will help understanding
common and specific pathways that control the forma-
tion and dissolution of an increasing number of synaptic
RNA bodies involved in local translation and ultimately,
synapse plasticity and memory formation.
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