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Abstract: An adaptive wavelet algorithm (AWA) is presented, applied to classifying transitory events caused by faults in
transmission lines. The algorithm generates the wavelets on the basis of the fundamental definitions of discrete wavelet
transform (DWT) using a classification method based on probability such as the Bayesian linear discrimination analysis. A
discriminant criterion shows the capacity of the method for distinguishing between fault types (classes). In order to do this, it
only uses the current measurements of just one phase of the transmission line. The algorithm can be applied to high-speed
transient-based protection (TBP) schemes that employ data windows shorter than one-fourth cycle of the fundamental
frequency of the system. The results show a high level of success in the classification, even higher than the approach using
mother wavelets pertaining to known families, such as Daubechies.

1 Introduction

The objective of protection systems is to detect and eliminate
faults as fast as possible to minimise damage to the equipment
and hazardous conditions for personnel. A simultaneous goal
is to reduce the restoration time of the system and the costs
associated with the fault. In order to achieve these
objectives, the smallest number of equipment or electrical
zones should be isolated so as to minimally affect both the
continuity and quality electric service.

In general, the basic components of protection systems are:

† DC source: it ensures the operation of the protection
system by isolating it from phenomena arising in the AC
power system.
† Measurement transformer: it converts the sensed signals
into the operative format of the protection relays.
† Protection relay: it receives the signals sent by the
measurement transformers; it processes them and, finally,
issues the commands to be executed.
† Circuit breaker: it is governed by the protection relay by
means of auxiliary DC and AC circuits to switch-off the
faulted component(s).

Since the transmission lines of a power system are the
equipment where most faults arise [1], the emphasis will be
laid on their protection system. Fig. 1 shows a basic
representation of a protection system located at one of the
transmission lines.

This work is focused on reducing the total fault-clearing
time by decreasing the time required by the tasks of fault
detection and classification. According to this aim, the data
window used is more reduced (less than one-fourth cycle)

than that of a 20 ms window (fundamental power frequency
50 Hz) for voltage and current measurement. These latter
values are required by the distance digital relays using
protection algorithms based on Fourier transforms. In the
present proposal, processing is given, under the principle of
transient-based protection (TBP) detailed in [2], only the
current signals are processed, taking into account all their
frequency components and using the concepts of discrete
wavelet transform (DWT) and multi-resolution analysis
(MRA) [3, 4].

In order to generate the wavelets to be used in the
classification function, a mathematic algorithm called
adaptive wavelet algorithm (AWA) [5] was implemented
with MATLABTM.

The algorithm allows generating wavelets that classify the
faults with a high level of success, closer to 100%, on the
basis of the data obtained by measuring only the current of
one of the phases of the transmission line for different
kinds of faults.

Finally, with the purpose of highlighting the advantages of
adaptive wavelets in the classification function, the results are
contrasted with those obtained with mother wavelets procured
from the Daubechies and Symlet families.

This paper is organised as follows. Section 2 offers a brief
description of distance digital relays used currently to protect
transmission lines. Section 3 describes the DWT and one of
its variants known as Wavelet Packet. Section 4 gives brief
details of the main features of the AWA and the associated
tools. Section 5 indicates the modelled power system and
describes the transmission line where the various fault types
are simulated using the ATP/EMTP programme. In
addition, aspects are also described as regards the data
window, the sampling rate and the prior probabilities of
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each fault type needed to classify them. Section 6 shows the
results for two applications. Finally, Section 7 presents the
main conclusions of the work.

2 Distance relay

Since distance relays measure impedance, and that impedance
is defined at a given frequency, distance relay filters must save
only the fundamental frequency [6]. Analogical low-pass
filters are combined with digital filters to make the voltage
and current phasors at the fundamental system frequency, as
shown in Fig. 2 for a distance relay.

Finite impulse response (FIR) filters are used in protective
relays, and the most common FIR filters are Fourier recursive
filters and Walsh-related filters. Least-squares and Kalman
filters have been proposed for protection functions, without
practical applications up to date [7].

FIR filters with less than a one-cycle window cannot reject
all harmonics [6]. For this reason, only one-cycle window FIR
filters are used. With voltage and current phasors calculated
with one-cycle window data, evaluating the protection
function inside of relay takes some microseconds. To sum
up, the main component in relay operation time is the
one-cycle window.

This research proposes to increase the operative speed of
the relay using sample windows of less than one-cycle,
considering all frequencies of electrical signals and
analysing them with a variant of the DWT called wavelet
packet.

3 Wavelet transform

The wavelet transform is a linear transform likewise the fast
Fourier transform, although differing in that the window
function (mother wavelet) used here is moved and dilated
automatically during the analysis.

As a result, a better time–frequency resolution is attained
for a given signal, as compared with the results given by
the fast Fourier transform.

The wavelet transform has capabilities of providing
accurate time location and classification of electrical
transients in power systems [3], given the fact that it

discloses the location in time domain of frequency
components existing in a signal.

Continuous wavelet transform (CWT) for a given function
f (t) can be calculated as follows [8]

CWT(f , a, b) = 1��
a

√
∫1

−1

f (t)c∗ t − b

a

( )
dt (1)

where a and b are the scaling (dilation) and translation (time
shift) constants, respectively, and c is the mother wavelet
function. The DWT is given by
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am

o

√
∑

k

f [k]c∗ n − kam
o

am
o

( )
(2)

where f [k] Q1is the sampled waveform (p × 1 vector), a ¼ ao
m

and b ¼ kao
m are the discretised parameters of scaling and

translation, respectively.
The DWT is based on MRA or sub-band coding, which are

detailed in Fig. 3. A discrete signal f [k] passes through two
mid-band digital filters, one high-pass filter g[z] and another
low-pass filter h[z], which produce the detail (cDj) and
approximation (cAj) coefficients, respectively. These filters
cover various frequency ranges depending on the
decomposition level of the original signal (see Fig. 3b)

The analysis can be made up to a maximum level jo stated
by the size p of the signal f [k]. The pair of filters used for the
analysis represent the mother wavelet of the DWT.

There is an ample range of mother wavelets: Haar,
Daubechies, Morlet, Coiflet, bi-orthogonals etc, which can
be chosen according to the specific application [9].

Fig. 2 Filters for distance relay

Fig. 3 Q2
a Wavelet filters bank and MRA
b Sub-band encoding for a signal f [k] with sampling rate equal to 2p

Fig. 1 Line protection system
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3.1 Wavelet packet

The wavelet packet (WP) method is a generalisation of the
wavelet decomposition that offers a more convenient
analysis for the signals, because both the approximation
coefficient (low frequency) and the detail (high frequency)
coefficients are processed through the pair of filters h[z] and
g[z] shown in Fig. 3. In this way, it is possible to represent
the signal f [k] with a greater number of frequency bands as
compared with the number of bands used in DWT.

For the WP case, the frequency bands have the same size
but cover different ranges.

Fig. 4a shows how the resulting signals from each filter are
decomposed again by both filters (low- and high-pass), and
action that can be repeated up to a maximum
decomposition level jo determined likewise done in case of
the DWT. This way, what is known as the WP tree is
developed.

For the example of Fig. 4a, the signal analysis is made up
to level 3. The original signal is represented by the
coefficients of zero level and zero band (0, 0).

If the decomposition level is l and the highest frequency
present in the original signal is p Hz, then the width of
each frequency band corresponding to each node of the WP
tree is p/2l [10]. Fig. 4b shows the various frequency bands
that correspond to the resulting coefficients (l, t) of the WP,
where l is the decomposed level 3 and t is the frequency
band (t [ 0, . . . , 7).

For research applications, the packet method is preferable
because it allows analysing the high-frequency signals with
finer detail, such as the currents arising in transient events
caused by faults [11–14].

4 Adaptive wavelet algorithm

The adaptive wavelet algorithm (AWA) used in this paper is
based on the work of [5]. It can be used for discriminant
analysis.

Main features of this algorithm are:

† It is capable of generating wavelets composed by m filters,
in contrast to the usual mother wavelets that employ only two
filters.

† Through the DWT, it reduces the dimensionality of data
and, at the same time; it keeps the greatest number of
discriminant information.

The dimensionality is reduced by selecting some band of
coefficients of DWT, or wavelet packet for our application.
Then, the discriminant criterion will be based on the same
coefficients.

4.1 Discriminant criterion

The adaptive wavelets are used to represent the signal in such
a way that the discriminatory information be optimised.
Therefore the adaptive wavelets are optimised in relation to
a measurement that reflects the differences among classes
[15]. The measure or discriminant criterion selected is the
so-called ‘leave-one-out’ cross-validated quadratic
probability measure (CVQPM), related to the classification
methods based on probability; these allow attaining
information on the accuracy of the classification and they
can also reflect the capability they have to distinguish
among classes.

The CVQPM is the average of an appreciation quadratic
index aQ that operates by comparing the probabilities of
belonging of a given object to a pre-defined class r [
1, . . . , R [16], and is formulated as follows

aQ/i(i) =
1

2
+ P/i

(
r|x[l]

i(r)(t)
)
− 1

2

∑R

r=1

P/i

(
r|x[l]

i (t)
)2

(3)

CVQPM = 1

n

∑n

i=1

aQ/i(i) (4)

where xi(r)
[l ] (t) is the object for which the probabilities of

belonging to each class are calculated, P/i(r|x
[l]
i(r)(t)) is the

posterior probability for the true class of xi(r)
[l ] (t) and

P/i(r|x
[l]
i (t)) is the posterior probability for xi

[l ](t) belonging
to class r.

With the ‘leave-one-out’ CVQPM (CVQPM from here on) Q3,
the posterior probability that a given object belongs to a given
class is attained when the co-variance matrices and the mean
vectors have been computed in the absence of the mentioned
object [4]. The sub-index /i in every equation it appears,
represents the absence of the object xi(r)

[l ] (t) in the calculus.
The values of CVQPM range from zero to one. High values
of CVQPM mean that the classes can be better
distinguished [15].

4.2 Bayesian classification

In order to compute the posterior probabilities needed to
obtain the factor aQ the Bayesian classification is used,
which considers the problem of assigning the object xi(r)

[l ] (t)
within one of the predefined R classes.

For the case under study, each object represents a fault
current consisting of p discrete measurements, and it is
represented by the vector xi ¼ (x1i, . . . , xpi)

T. These data
objects arising from the same r class (fault type) are stored
as columns in the p × nr matrix X, where nr is the number
of objects. Then, the object to be classified xi(r)

[l ] (t)
represents the coefficient set (l, t) of current signal xi

belonging to class r.

Fig. 4Q2
a Wavelet packet analysis
b Frequency-domain division of WP at level 3
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The Bayesian rules assign the object under classification
into the class that maximises the posterior probability

P
(

r|x[l]
i(r)(t)

)
=

p
(

x[l]
i(r)(t)| r

)
P(r)

S
R
r=1p

(
x[l]

i(r)(t)| r
)

P(r)
(5)

where P (r) is the prior probability of each class that is
assigned according to the statistical information of historical
data, for our case. The probability density of class
p(x[l]

i(r)(t)|r) is assumed by following a multivariate normal
distribution and is computed as

p
(

x[l]
i(r)(t)|r

)
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(6)

The mean vector �x[l]
r/i(t) is calculated for each class, when the

vector xi(r)
[l ] (t) is not present, and is expressed as follows

�x[l]
r/i(t) =

1

nr − 1

∑nr−1

j=1

x[l]
j(r)(t) (7)

The Bayesian linear discriminant analysis assumes that the
co-variance matrices of class Sr/i are equal to each other.
Therefore in (6) they are substituted by a combined
co-variance matrix Spooled, calculated as

Sr/i =
S

nr
i=1

(
x[l]

i(r)(t) − �x[l]
r/i(t)

)(
x[l]

i(r)(t) − �x[l]
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)T

nr

(8)

Spooled =
S

R
r=1nrSr/i

n
(9)

The leave-one-out CVQPM is used because the classification
of an object is done without interfering in the process, thus
achieving an objective quantification of the classification.

Only the mathematical tools complementary to AWA have
been described in this work. For more details about AWA
refer to [5].

5 Application to the fault classification on
transmission lines

In contrast to the distance digital relays that supervise the
three phases of a transmission line, it is proposed here to
measure only the current of just one phase, namely, phase A.

Regardless of whether or not the supervised phase
participates in the fault, the generated wavelets must allow
for correctly classifying the signals that build the databases
for training and validation (see Section 5.2) in their
respective classes.

5.1 Modelled transmission line

A 390 km, 500 kV transmission line called Mercedes-Colonia
Elia was modelled, which is part of the Argentine Electrical
System (fundamental power frequency 50 Hz). The
electromagnetic transients programme ATP/EMTP was used,
with the respective system generation and load equivalents
for a normal operative state, and the frequency-dependent
model was employed to model the transmission line [17].

Fig. 5 is a rather simplified representation of the modelled
system in ATP/EMTP. In fact, the modelled system in ATP/
EMTP represents the Argentine Electrical System as an
electric network containing 22 buses, 32 transmission lines,
13 equivalents circuits of smaller networks, 7 transformers
and 9 generators.

Various fault types were simulated for every 5 km stretch
of the line, which represented a total of 546 faults resulting
from the current signals needed to build the database. These
currents were metered by the relay R1, shown in Fig. 5.

5.2 Database

Since the current transformers show better frequency
response than voltage transformers [18, 19], the
methodology in this work will be applied only to current
signals, although that, for simulations, there would be no
problem in using voltage signals.

Taking the sinusoidal voltage signal of phase A as
reference, a 308 (thirty degree) insertion fault angle is
considered randomly to generate two current databases, one
called the training database and the other the validation
database.

The training base is composed by current signals of the
various fault types simulated every 10 km that is kilometres
5, 15, 25, . . . , 385.

Likewise, the validation database is composed of the
signals resulting from the faults simulated on kilometres 10,
20, 30, . . . , 390.

The various simulated fault types are:

† Single-phase faults with fault resistance Rf ¼ 0 V
† Single-phase faults with fault resistance Rf ¼ 15 V
† Single-phase faults with fault resistance Rf ¼ 40 V
† Isolated two-phase faults
† Two-phase faults to ground with fault resistance Rf ¼ 5 V
and
† Three-phase faults.

Using the training database and the AWA algorithm
modified for our application, the wavelets are generated,
which allow classifying the current signals with a success
level coming close to 100%.

The validation database is useful to define more clearly the
success level thus achieved by classifying the signals with the
wavelets found in the procedure.

5.3 Sampling rate and time window

In order to capture all the information from fault-caused
transient events simulated on the modelled line, after trying
with several combinations from among the various
sampling rates and different time windows, it was
determined that a 2.048 ms window at a 500 KHz sampling
rate (i.e. a 250 KHz Nyquist frequency) was needed to

Fig. 5 Simplified system configuration studied
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achieve the target. In this way, the size of the discrete current
signals corresponds to a vector of order 1024 × 1.

Fig. 6 shows five signals of each training data class with
phase A under fault and the previously defined window
time and sampling rate values.

5.4 Prior probabilities

The prior probabilities with regard to each class (fault type)
were obtained from a study performed on Swedish and
American power grids from 1967 to 1973.

Therefore using the statistical base of [20], the percentages
of occurrence with regard to each fault type were considered
as their respective prior probabilities. Table 1 summarises this
for a 500 kV line.

6 Results

In order to better understand the adaptive wavelet
methodology, first their concepts are applied to a database
(training and validation) of four classes:

† Single-phase faults with fault resistance Rf ¼ 40 V
† Isolated two-phase faults
† Two-phase faults to ground with fault resistance Rf ¼ 5 V
and
† Three-phase faults.

In a following step, the analysis is also made for the
complete databases, that is, the set conformed by the six
classes.

Both applications use as classifier the Bayesian linear
discriminant analysis. The results achieved with the
adaptive wavelets are compared with those produced with
the corresponding Symlet and Daubechies mother wavelets.

After a previous analysis to determine the best level to
distinguish between classes, the decomposition level l ¼ 3
for the two applications was selected.

Previously performed analysis showed that for the chosen
decomposition level (level 3), prior probabilities are only a
requirement of the math model indicated in (5) since they
have no influence on the fault classification. In this case,
the classification only depends on the probability density
given in (6). Therefore the posterior probability of whether
or not a fault belongs to one of the fault types considered
depends only on the probability density.

On the other hand, for decomposition levels equal to or
greater than level 6, for each established frequency band,
the fault classification is not possible since the probability
density exerts no influence on the posterior probabilities. In
these cases, the posterior probabilities are equal to the prior
probabilities.

Thus, by choosing a suitable decomposition level, the fault
classification algorithm proposed can be applied in a power
system with different prior probabilities.

6.1 Database of four classes

The training and validation data have 39 samples or signals in
each class.

As previously mentioned, the size of each discrete signal is
1024 × 1, corresponding to a 2.048 ms time window.

Using the training database for the case in which the
supervised phase is under fault, the CVQPM produced
using the coefficients {X [l](t)}t=2l−1

t=0 both for the

Fig. 6 Five samples from each class of the training data with phase under fault

Table 1 Prior probability of each type of fault to line of 500 kV

Fault Percent, %

single-phase faults 93

isolated two-phase faults 2

two-phase faults to ground 4

three-phase faults 1
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initialisation and the completion of the algorithm, with l ¼ 3
can be seen in Fig. 7a.

The wavelets of this work resulted from two filters, one
low-pass and another high-pass filter, of eight filter
coefficients. Bands 0, 2, 3 and 4 of the WP produce the
highest values of the CVQPM for initialisation because they
are equal to 1. The remaining bands produce CVQPM
values smaller than 1, but band 7 produces the lowest value
of all, 0.9757. This means that the classifier would
experience greater difficulties to distinguish among classes
if the coefficients from this band were used.

For wavelet optimisation, then t ¼ 7 is the chosen band so
that when the algorithm finishes, the discriminant
measurement for the coefficients (3, 7) is equal to 1. This
also causes that the discriminant measurements of the
remaining bands also get increased up to the value 1,
except for band (3, 5) which reaches up to 0.9911. The fact
that the CVQPM values of all bands are increased is a
desirable result because the adaptive wavelet has been
designed to optimise the CVQPM(X [3](7)).

In order to test the classification performance of the
adaptive wavelets, coefficients were used from each band of
level 3 of the WP as input data for the classifier, both for
the initialisation and the completion of the algorithm. The
results are summarised in Table 2. In the initialisation for
the training data, the coefficients of band (3, 5) and (3, 7)
give the lowest classification ratios, just 97.4%. In the
completion, the classification percentage gets improved for
all those bands whose initial classifications were lower than
100%.

To the same databases of phase under fault, Fig. 7b shows
the discriminant measurement for each band of the level 3 of
the WP using mother wavelets of eight filter coefficients:
Daubechies 4 and Symlet 4. Table 2 shows the
classification performance of these mother wavelets for each
band (3, t), both for the training and the validation data.

Therefore by comparing the classification percentages, the
benefits attained with the optimised adaptive wavelet become
evident, over the performance shown with Daubechies 4 and
Symlet 4.

A similar analysis with two-band wavelets and eight filter
coefficients was made for the databases built with the
current signals of phase C, which had no fault for all cases
except for the three-phase fault.

The results associated with the wavelet designed to
optimise the CVQPM of band (3, 2) are listed in Table 3,
and those obtained with the predefined wavelets appear in
Table 3.

The fact that current signals from phase C were used does
not change the initial proposal of supervising only one of the
line phases, because phase C would represent – in this case –
the phase A free of fault in most cases except in three-phase
fault.

This first application corresponds to a specific case where
the signals that conform the database can be classified with
high percentages, using the coefficients of any (3, t) band.
On these accounts, the optimisation was performed
considering the band having the lowest CVQPM.

For more general applications, with CVQPM values less
than 1 for all WP bands, the usual procedure of the
adaptive wavelet methodology regards the wavelet design
on the CVQPM optimisation corresponding to the
coefficients that produce the highest value in the
initialisation. This fact will be explained furthermore in the
following section, using the databases built with six classes.

6.2 Database of six classes

One of the main reasons for the importance of a correct
classification of transmission line faults is the possible
re-connection or auto-reclosure for single-phase fault,
occurring as either the disconnection of the three phases of
the line or just one phase when using single-pole circuit
breakers Q4.

The auto-reclosure improves the power system transient
stability [21], mainly if the line, where the single-phase
fault occurs, is a member of the main high-voltage network.

In the case of a single-phase fault on a line where the auto-
reclosure is possible, the system transitory stability is
improved both by correctly discerning the fault type and by
reducing the time taken in discerning this condition. In

Fig. 7 CVQPM for the coefficients {x[3](t)t¼0
t¼7}

a At initialisation and at completion of the AWA, optimisation of the
discriminant measure was based on the coefficients x[3](7) from band (3, 7)
b Using wavelets from the Daubechies and Symlet families

Table 2 Percentage Q5of correctly classified samples, using the coefficients {X[3](t)}t¼0
t¼7

(i) % Correctly classified at initialisation % Correctly classified at completion

t 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

train 100 99.4 100 100 100 97.4 98.1 97.4 100 100 100 100 100 98.7 100 100

test 100 99.4 99.4 99.4 100 98.1 98.7 97.4 100 99.4 100 100 100 98.1 100 99.4

(ii) % Correctly classified with Daubechies 4 % Correctly classified with Symlet 4

t 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

train 100 98.7 98.7 100 98.1 100 100 100 100 97.4 100 97.4 100 99.4 100 99.4

test 100 99.4 99.4 100 98.7 100 98.7 99.4 100 98.7 99.4 99.4 99.4 100 100 99.4

Note: (i) At initialisation and at completion of the AWA, optimisation of the discriminant measure was based on the coefficients x[3] (7)

from band (3 ,7); (ii) using wavelets from the Daubechies and Symlet families
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order to do this, data windows of smaller than one-fourth
cycle of the fundamental frequency and the TBP principle
are used.

At this point, it is worth remarking that purpose of this
research is to build wavelets that allow appropriate
classification of the current signals arising in different fault
types in the shortest time possible.

Likewise, as done with the first application, the training and
validation sets for each class are built using 39 discrete
current signals of phase A. Each signal meets the
requirements stated in Section 5.3.

In this example, it would also be important to highlight the
advantages of using adaptive wavelets, rather than the
predefined wavelets from Daubechies and Symlets families.
With the first example, it was demonstrated that
these predefined wavelets allow finding interesting results;
but the adaptive wavelets have an even greater potential to
keep improving the results. This is explained by the
capability of these wavelets to become adapted to the
problem at hand.

The example that now expounded is the optimisation of the
discriminant measurement performed on band t of the WP,
producing the highest CVQPM values in the initialisation of
the algorithm, where t [ 0, 1, . . . , 2l 2 1.

According to adjustments performed, the number of filter
coefficients (Nf) of two-band adaptive wavelets is 8 and 16,
respectively. The number of band coefficients (Ncoef ¼ p/2l)
used for classification is 128, which correspond to the
decomposition level l ¼ 3 of the WP.

Table 4 shows the various wavelets used to classify the
databases, the decomposition levels of signals, the
frequency bands of greater CVQPM and therefore the band
on which the adaptive wavelet was optimised, the number
of band coefficients that are used as input data to the

classifier, the number of filter coefficients, the CVQPM of
each wavelet and the percentage of correct classification of
training and validation signals. As can be noted from this
table, the CVQPM resulting from adaptive wavelets is
greater than that achieved with Daubechies and Symlet
families. All the training and validation signals are
classified correctly by the adaptive wavelets, in contrast to
the classification percentages attained with predefined
wavelets.

Although in practical cases, this research is more interested
in knowing the fault type occurring on the line, regardless of
the fault resistance value, the CVQPM values presented here
render information on the potential of wavelets, adaptive and
traditional, used them with Bayesian linear discriminant
analysis as classifier of signals pre-processed by WP tool.
As a result of this, it attained to distinguish between faults
of the same kind with various fault resistance.

Table 4 shows the results obtained with two-band wavelets
and eight filter coefficients. Again, the CVQPM produced by
the adaptive wavelet is greater than that achieved with the
Daubechies and Symlet wavelet families.

Finally, Table 5 shows the results attained from the similar
analysis done for the databases of phase C current signals.

Faults with various insertion angles were analysed using
the adaptive wavelets found with eight filter coefficients,
both for phase under fault and to fault-free phase, taking
the coefficients of the band t ¼ 1 to classify. Table 6 shows
the results of this.

Only, when the supervised phase is not in fault, faults with
an insertion angle of 2408 present a CVQPM lower than 1 and
its percentage of classification is 89.74%. The posterior
probabilities indicate that all single-phase fault and three-
phase fault were classified correctly, but some isolated two-
phase faults and two-phase faults to ground were confused

Table 3 Percentage of correctly classified samples for a fault-free phase, using the coefficients {X[3](t)}t¼0
t¼7

(i) % Correctly classified at initialisation % Correctly classified at completion

t 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

train 98.1 99.4 94.9 99.4 99.4 99.4 100 98.1 100 100 100 100 99.4 100 100 99.4

test 98.7 98.7 94.9 99.4 99.4 99.4 99.4 99.4 98.7 100 99.4 100 100 99.4 99.4 99.4

(ii) % Correctly classified with Daubechies 4 % Correctly classified with Symlet 4

t 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

train 99.4 99.4 100 100 98.7 99.4 98.7 99.4 100 99.4 98.7 99.4 100 99.4 98.7 98.7

test 98.7 99.4 99.4 100 97.4 99.4 100 100 98.1 100 97.4 98.7 99.4 99.4 99.4 99.4

Note: (i) At initialisation and at completion of the AWA, optimisation of the discriminant measure was based on the coefficients X [3] (7)

from band (3,7); (ii) using wavelets from the Daubechies and Symlet families

Table 5 Classification results of faults supervising fault-free

phase using adaptive wavelets, and wavelets from the Daubechies

and Symlet family

Wavelet l t Ncoef Nf CVQPM % Correctly

classified

Train Test

(i) Nf ¼ 16

adaptive 3 1 128 16 1.00 100 100

Daubechies 3 5 128 16 0.98 98.9 97.8

Symlet 3 2 128 16 0.99 99.2 98.5

(ii) Nf ¼ 8

adaptive 3 1 128 8 1.00 100 100

Daubechies 3 7 128 8 0.99 99.6 98.5

Symlet 3 2 128 8 0.99 99.3 98.5

Table 4 Classification results of faults supervising phase under

fault using adaptive wavelets, and wavelets from the Daubechies

and Symlet family

Wavelet l t Ncoef Nf CVQPM % Correctly

classified

Train Test

(i) Nf ¼ 16

adaptive 3 1 128 16 1.00 100 100

Daubechies 3 3 128 16 0.98 97.8 98.2

Symlet 3 6 128 16 0.98 98.5 97.8

(ii) Nf ¼ 8

adaptive 3 1 128 8 1.00 100 100

Daubechies 3 3 128 8 0.98 98.2 98.5

Symlet 3 6 128 8 0.98 97.8 98.2
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between them. This means that the auto-reclosure will be
possible without any problem because the algorithm
proposed never confuses multi-phase faults with single-
phase to ground faults and all single-phase faults are not
confused with another type of fault.

6.3 Comparison with existing techniques

The previous sections provide an AWA for fault classification
on transmission lines. The existent classification techniques
employ different math tools such as decision-tree (DT),
support vector machine (SVM), artificial neural networks
(ANN), fuzzy logic (FL), expert systems (ES), wavelet
transform (WT) and combinations of them.

Results of some previous work, which use these tools, are
summarised in Table 7. Results of the algorithm proposed in
this paper, specifically with regard to the case in which the
supervised phase is under fault, are also included.

The AWA shows superiority for the following reasons:

† Its high accurate fault classification that has been obtained
by using the current signal of only one phase of the protected
transmission line;
† The width of data window depends on length of the
transmission line. Even though transmission line modelled
in this work is the largest, the AWA uses a time window

shorter than those used in other techniques and produces
good accuracy.

6.4 Observation

Although the advantages of auto-reclosure were noted on the
stability in the case of single-phase fault, this work has
contemplated the use of three-pole circuit breakers for the
transmission line, because no allowance was made in
identifying the faulted phase when supervising only one of
the line phases. This may constitute a subject of work for
the future.

7 Conclusions

This work remarks the advantages of using adaptive wavelets
as analysis filters of a high-speed protection system for
transmission lines.

Considering a protection system based on the TBP
principle, the databases formed by the current signals from
one of the phases of a system under fault conditions, the
use of adaptive wavelets attain classification rates higher
than those obtained with predefined wavelets originated in a
known wavelet family.

For the 50 Hz power system modelled here, a significant
decrease in the operation time of the protection relay is
attained, because data windows of approximately 2 ms are
required, as opposed to the 20 ms windows needed by the
distance protection systems based on Fourier filters.

The high-speed protection systems are widely demanded at
present owing to the expansion of power systems through
international interconnections, or the inclusion of distributed
generation into their grids, for safety and service quality
issues.

The next research project will be oriented towards
developing fast digital algorithms that include adaptive
filters and their advantages for processing and classifying
signals originating in faults.

Future research will involve an extension of this proposal
that will regard additional considerations to that pointed out
in Section 6.4, such as fault localisation, zone and
directionality.

8 Acknowledgments

The authors acknowledge the National University of San Juan
(UNSJ) and the German Academic Exchange Service
(DAAD) for their financial support.

9 References
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