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Abstract

For the case of public transport, we consider the problem of demand estimation. Given an origin-destination matrix representing
the public transport demand, the distribution of flow among different lines can be obtained assuming that it corresponds to a
certain equilibrium characterized by an optimization problem. In particular we will focus on the assignment model proposed by
Cepeda et al. (2006). However the knowledge of origin-destination matrix is expensive and sometimes unaffordable in practice.
Traditionally, it is estimated using statistical or econometrical considerations. In this work, we explore the estimation through the
numerical solution of a bilevel optimization problem. One disadvantage of this formulation is the difficulty of obtaining descent
directions, hence, for the resolution of the optimization problem we use a derivative-free method. This method was applied for
small networks getting good results.
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1. Introduction

Transit assignment models have become an interesting research area because knowing the passenger behavior
allows comparing different planning scenarios in terms of network performance. Such models typically assume that
the transport demand is known.

Many models for passenger behavior have been proposed. Most of them consider that when a passenger decides
to travel between certain O-D pairs and is waiting for a vehicle at a stop, he must decide which transit line he should
take to minimize his total expected travel time (including access, wait and in-vehicle time). Other models consider
that passengers seek to minimize his generalized cost, which includes not only the total travel time but also in-vehicle
crowding and fares, among others. Among the first models that considered congestion effects, we can cite Spiess and
Florian (1989) that work with the concept of hyperpath composed by “strategies of attractive lines”, but failed to be
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realistic in cases of high demand because waiting times are considered flow independent, assuming that passengers
always can take the first bus that arrives at the stop. This is not necessarily true in a congested network.

De Cea and Fernández (1993) began to consider the congestion effects at bus stops and inside the bus. This model
was improved in Cominetti and Correa (2001) formulating a transit equilibrium problem that uses effective frequencies
functions that vanish if the in-vehicle flow exceeds its capacity (see 3). The main limitation of these methods is that
the technical assumptions are very limiting in the first case and there no efficient algorithms to compute the solution
in both cases.

Cepeda et al. (2006) decided to continue this idea and reformulated the equilibrium problem as the minimization
of a nonconvex and nondifferentiable gap function. To solve this problem a heuristic method was proposed, using
an adaptation of the Method of Successive Averages (MSA) and obtaining the lines flow vector. This method can be
applied on high scale networks without computational drawbacks but can generate line flows that exceed the capacity
when the demands are high. To improve this method, Codina and Rosell (2017) presented an algorithm with strict
capacities that finds the solution of the fixed point inclusion formulation derived from the problem of variational
inequality proposed by Codina (2013). At each iteration an assignment problem is solved, using Lagrangian duality
and a cutting-planes method.

The use of the previous models of transit assignment in any planning study requires the knowledge of the transport
demand, commonly known as the origin-destination matrix. Obtaining that matrix could be very expensive and some-
times unaffordable in practice. As has been made for the case of traffic assignment (see Walpen et al. (2015)), in this
work we explore its estimation through some directly measurable quantities like the real frequencies of the buses. As
we know how to compute, given the demand, the flows, and hence the frequencies, we pose a kind of inverse problem
whose solution estimates the actual demand. As far as we know, there is no previous work about public transport
demand estimation using this approach. Most of them are based on statistical or econometrical considerations, see
Ortuzar and Willumsen (2001); Cascetta; Dike et al. (2018); Garcı́a-Ferrer et al. (2006).

In the next section, we present a detailed description of the assignment model following the one presented in
Cepeda et al. (2006). In section 3 we pose the inverse problem used for demand estimation and in section 4 we present
the numerical experiments made with the example given in Cepeda et al. (2006).

2. Transit assignment model

Following the notation of previous works as Spiess and Florian (1989); Cominetti and Correa (2001); Cepeda et al.
(2006); Codina (2013) we consider a directed graph G = (N, A) where N is the node set and A the set of arcs, each one
with cardinality NN and NA. The set of nodes is composed of the bus-stop nodes Ns and the line nodes Nl. The arcs
are divided in the alighting and boarding arcs connecting the bus-stop nodes with the line nodes, the on-board arcs (or
line segments) connecting line-nodes and the walk arcs connecting bus-stop nodes, see Figure 1 for a sketch.

boarding arc
alight arc
walk arc
line node
bus stop

Fig. 1. Public transport network.

For some origin-destination (od) pairs (i, d) ∈ W ⊂ N × N, there is a transport demand called gd
i , and we call D

the set of all nodes d that are destinations of some od pair. For a node i we call A+i the set of outgoing arcs and A−i the
incoming arcs set. We also define the node-arc incidence matrix A ∈ RNN×NA where Aia = 1 iff a ∈ A+i , Aia = −1 iff
a ∈ A−i and otherwise zero.
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We call vd
a the flow through arc a with destination d ∈ D. For each destination d we define the set of feasible flows

with destination d and the set of total feasible flows as

Vd =
{
vd ∈ RNA

+ : Avd = gd
}
, V =

v ∈ R
NA
+ : v =

∑
d

vd, vd ∈ Vd,∀d ∈ D

 . (1)

We call V(g) the set of feasible flows for the demand g, that is the set of all vd
a ≥ 0 such that vd

a = 0 for all a ∈ A+d
and satisfying the flow conservation constraints:

gd
i +
∑
a∈A−i

vd
a =
∑
a∈A+i

vd
a, ∀i � d. (2)

Two functions of the full flow vector v are associated to each arc, the travel time function ta(v) and the effective
frequency fa(v). Both have non negative values and the frequencies can have the constant value +∞. As mentioned
in Cepeda et al. (2006) the case when ta and fa are constants is called the uncongested case and the case where only
the frequencies fa are fixed is called the semicongested case. Here we will consider a third case where the travel time
function is constant but the frequencies are not. To model the impact of the bus load on the frequency the function 3
is used.

fa(v)



µ
[
1 −
(

va
µc−va′+va

)β]
, if va′ < µc,

0, otherwise,

(3)

where va =
∑

d∈D vd
a is the total flow boarding at stop and using arc a and va′ is the total flow after the stop (va′ ≥ va).

The parameter µ is the nominal frequency of the lines and c is the physical capacity of the buses, thus, µc − va′ is the
residual capacity waiting at the stop.

The rationale behind the model is that each passenger at each node chooses an arc to continue its trip. The decision
is based on minimizing the total travel time. Thus, at each node a Common Line Problem should be solved: passengers
select a nonempty subset of common lines s ⊆ A and board the first vehicle that arrives at the stop and belongs to this
set. The chosen strategy minimizes their total expected travel time. In addition, now the frequencies depend on the
flows. In the paper Cepeda et al. (2006) it is shown that the corresponding (equilibrium) flow v ∈ V∗(g) is the global
minimizer of the so-called gap function G of the flow v, that we write here also as a function of the demand g,

G(v, g) =
∑
d∈D


∑
a∈A

ta(v)vd
a′ +
∑
i�d

max
a∈A+i

vd
a

fa(v)
−
∑
i�d

gd
i τ

d
i (v)

 , (4)

where ta is the travel time, τd
j is the total expected travel time from j to d, A+i is the set of arcs emerging from i, fa

models the impact of the congestion on the frequency, µ is the nominal frequency of the line and c its capacity, β is a
calibrated parameter and va′ is the on-board flow right after the stop.

Then the transit assignment for a given demand g is obtained minimizing G(v, g) over the flows in V(g). It is known,
also by the work Cepeda et al. (2006), that the optimal value is 0. This is because function G is the difference between
the total time experienced by passengers (travel time + maximum waiting time at stops) and the total expected travel
time of the system. A detailed explanation about the construction and interpretation of gap function and its optimal
value can be found in Cepeda et al. (2006).

To solve the assignment problem in Cepeda et al. (2006); Codina and Rosell (2017) the authors propose the MSA
(Mean Successive Average) method. It means that starting with an all-or-nothing assignment, at each iteration travel
times are updated and a new assignment (for fixed travel times and frequencies) is averaged with the previous one.
Interestingly enough, in contrast to the traffic assignment problem, here we have a computable stopping criterium as
we know that G(v, g) = 0 for an equilibrium. The assignment with fixed travel times and frequencies is made using
the Hyperpath Dijkstra method as it was proposed in Cepeda et al. (2006); Spiess and Florian (1989).
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For the sake of completeness we reproduce the MSA algorithm below:
Result: Flow at equilibrium
Let αk ∈ (0, 1) such that αk → 0 and

∑∞
k=0 αk = ∞;

Find v0 ∈ V(g) and let k = 0;
while G(vk) > εG(v0) do

Compute ta = ta(vk) and fa = fa(vk);
Compute the shortest hyperpath for each d ∈ D;
Compute the induced flows v̂d

a;
Update vk+1 = (1 − αk)vk + αkv̂;
Set k = k + 1;

end
In order to obtain the first flow v(0), an all-or-nothing assignment is made computing the shortest hyperpath for

ta = ta(0) and fa = fa(0). If fa(v0) = 0 for some arc a, then the next iteration will be unfeasible. To avoid this situation,
the effective frequency can be augmented to f̃a(v) = max{ fa(v), ε}, for a small enough ε > 0. In this way, even for a
large flow, there will always be a feasible arc.

Figure 2 shows the typical performance of MSA, computed for the second example described in section 4, using
the parameters defined therein.

(a) Relative gap. (b) Sum of the differences between T d
s and τdi .

Fig. 2. MSA algorithm performance for the example 2 in section 4.

3. Demand estimation problem

Assuming that the model carefully represents the real dynamic of the passengers, it is possibly to use it to detect
anomalies or changes in the demand data when the observed flow or frequencies are different from the computed ones.

Here we focus on correcting the given demand to comply with the observed frequencies. That is, given a nominal
demand ḡ and a subset of arcs Aobs ⊂ A over which the frequency f̄ is measured (observed), we look for the demand
g that minimizes

min
g,v

∑
a∈Aobs

(
f̄a − fa

f̄a

)2
+ γ
∑
a∈A

(
ḡa − ga

ḡa

)2
(5)

s.t.

v ∈ V(g), (6)
G(v, g) = 0. (7)
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(a) γ = 1/5 (b) γ = 1/100

Fig. 3. Level curves (log scale)

More general quadratic criteria can be considered, for example including coefficients for each arc that represent
the confidence of the measures on that arc. The regularization parameter γ represents the trade-off between adjusting
the observed flows and conserving the nominal demand; in Figure 3 we show the level curves computed for different
values of γ in the case of the first example in section 4. The regularization term has a beneficial effect on the convexity
of the problem and also on the uniqueness of its solution (see again Figure 3, where sublevel sets are “more convex”
for γ higher), but large values of γ make the problem to ignore the observations.

Nevertheless, even for large values of γ, i.e, for a more convex problem, the numerical solution of this bilevel
problem is rather involved because the flow v(g) is given implicitly by G(v, g) = 0 and there is not an easy way to
compute variations of v with respect to g.

4. Numerical experiments

For a first numerical experiment we consider the small example that is proposed in Cepeda et al. (2006) (Section
4.1.1) in order to reproduce it and analyze if our flow assignment are consistent with theirs. If our assignment proce-
dure is correct we can use it during the estimation of the O-D matrix. We assume that we have the real frequency data
and the objective is to estimate the O-D matrix that induces these frequencies.

To find the minimizers in 5 we use the Nelder-Mead method (see Lagarias et al. (1998)). It is a derivative free
method included in Matlab through the command fminsearch (MATLAB (2017)), and we considered a precision
value of 0.01.

4.1. Cepeda et al. network

Consider the network in Figure 4 with three nodes and two transit lines connecting them: L1 (local line, connecting
nodes 1, 2 and 3) and L2 (express line, connecting node 1 with node 3). Suppose that we have demands of 10 trips
from node 1 to node 2, 100 trips from node 1 to node 3 and 10 trips from node 2 to node 3. Considering that the

1 2 3
L1

L2

L1

Fig. 4. Small network proposed by Cepeda et al. (2006)
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capacity of each bus is 20 passenger by bus, the dwell time at stops is 0.01 minutes and the effective frequencies are
defined by 3 with β = 0.2.

Finally suppose that the frequencies of lines L1 and L2 are 6 and 16 vehicles per hour, respectively, and travel times
over each arc are t12 = 20.01, t23 = 20.01 and t13 = 24.01 minutes.

In order to obtain the equilibrium assignment we applied the MSA Algorithm. It is important to note that demands
g2

1 and g3
2 can only use the line L1 while demand g3

1 can choose L1 or L2. Taking this into account we obtained the
following arc volumes:

v12 = 25.7, v23 = 25.7, v13 = 84.3

where it can be seen that passengers who want to travel from node 1 to node 3 choose a strategy that considers both
lines, local and express.

For this assignment the total time (travel + wait) of each strategy for each demand gd
i satisfies the equilibrium

condition T d
s = τ

d
i . In the particular case of g3

1 the total travel time is equal to 40.02 minutes.
The effective frequencies based on these assignment are f12 = 0.0265, f23 = 0.0374 y f13 = 0.0625.
Suppose we can measure the current effective frequencies and based on them and a nominal demand we want to

estimate the current O-D matrix. Consider, for example, the following observed frequencies:

f̄12 = 0.0215, f̄23 = 0.0362, f̄13 = 0.0624

These frequencies are obtained when we perform the flow assignment with g2
1 = 10, g3

1 = 110 and g3
2 = 10. Taking

into account these frequencies and considering the nominal O-D matrix ḡ2
1 = 10, ḡ3

1 = 100 and ḡ3
2 = 10 we solve the

problem 5 with γ = 1/5 and obtain the estimated O-D matrix g2
1 = 10.05, g3

1 = 109.5 and g3
2 = 9.98, which can be

considered a good approach to the assumed real O-D matrix ḡ2
1 = 10, ḡ3

1 = 110 and ḡ3
2 = 10. The progress of the

objective function of problem 5 during the O-D matrix estimation can be seen in Figure 6.

4.2. Example 2

In order to reproduce the previous methodology in another network with a small increase in difficulty we consider
a new example with four nodes and four lines serving it as shown in Figure 5. The data of each line are summarized
in Table 1. Considering demands g3

1 = g4
1 = g3

4 = 100 the MSA Algorithm was applied and the results are exposed in
Table 2. Table 3 summarizes the arc flows obtained summing over all destinations and considering all demands. The
effective frequencies obtained for this assignment are also shown there.

1 2 3

4

L1

L4

L2

L1

L3
L2

L3

Fig. 5. Network with 4 nodes and 4 lines
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Table 1. Service data
Line Route Travel times (min) Frequencies (veh/h)
L1 1→ 2→ 3 t12 = t23 = 20.01 8
L2 1→ 4→ 3 t14 = t43 = 22.01 16
L3 2→ 4→ 2 t24 = t42 = 5.01 16
L4 1→ 3 t13 = 28.01 10

Table 2. Disaggregated flows resulting for assignment in example 2.
Demand Arc flows Lines used Total cost
g4

1 v4
12 = 32.54, v4

14 = 67.46, v4
24 = 32.54 L1, L2, L3 T 4

s = 39.1260

g3
4 v3

23 = 6.37, v3
43 = 93.63, v3

42 = 6.37 L1, L2, L3 T 3
s = 41.0354

g3
1 v3

12 = 21.69, v3
23 = 21.69, v3

14 = 39.38 v3
43 = 39.38, L1, L2, L4 T 3

s = 45.1520
v3

13 = 38.93, v3
43 = 39.38, v3

13 = 38.93

Table 3. Total flows and effective frequencies resulting for assignment in example 2.

Results
Arc (i, j)

(1,2) (2,3) (1,4) (4,3) (2,4) (4,2) (1,3)

Arc flows 54.24 28.06 106.83 133.01 32.54 6.37 38.93
Effective frequencies 0.0259 0.0613 0.0525 0.0526 0.0978 0.1448 0.0465

In order to estimate the O-D matrix we have the measured frequencies:

f12 = 0.0243, f23 = 0.0591, f14 = 0.0489, f43 = 0.0515
f24 = 0.0977, f42 = 0.1419, f13 = 0.0428,

that are obtained when an assignment is made with g3
1 = 120 and g4

1 = g3
4 = 100.

Using the nominal demands g3
1 = g4

1 = g3
4 = 100 we solved the problem (5-7) with γ = 1/100 and observed

frequencies obtained for a demand of g3
1 = 120 and g4

1 = g3
4 = 100, obtaining the following demand estimation

g3
1 = 118.86, g4

1 = 100.75 and g3
4 = 100.18. The progress of the objective function of problem (5-7) during the O-D

matrix estimation can be seen in Figure 6.

(a) Example 1 (b) Example 2

Fig. 6. Progress of objective function in (5).
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5. Conclusions

In this work, we have proposed an approach to public transport demand estimation. Given a model of flow distribu-
tion for public transport according to its demand, we propose the solution of an inverse problem to update the demand
for observed flow variations. Preliminary results show that it can be done with derivative-free optimization algorithms
over small-sized networks. We present two examples in which the estimated O-D matrix is good and very close to
the O-D matrix that generates the observed frequencies after making the assignment. A disadvantage of the proposed
numerical solution is the local convergence of the method. Indeed, even if the use of a nominal target demand could
improve these properties, the nominal demand is also unknown in practice. When the target demand is too far from the
demand that effectively uses public transport, the results will not be very accurate. The numerical analysis for larger
networks and the search for analytical derivation of descent directions are currently under work.
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