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Abstract

In this paper we analyze the ground-state-to-ground-state two-neutrino double beta (2νββ) decays and
single EC and β− decays for the A = 100 (100Mo–100Tc–100Ru), A = 116 (116Cd–116In–116Sn) and
A = 128 (128Te–128I–128Xe) triplets of isobars. We use the proton–neutron quasiparticle random-phase
approximation (pnQRPA) with realistic G-matrix-derived effective interactions in very large single-particle
bases. The purpose is to access the effective value of the axial-vector coupling constant gA in the pnQRPA
calculations. We show that the three triplets of isobars represent systems with different characteristics of
orbital occupancies and cumulative 2νββ nuclear matrix elements. Our analysis points to a considerably
quenched averaged effective value of 〈gA〉 ≈ 0.6 ± 0.2 in the pnQRPA calculations.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Proton–neutron quasiparticle random-phase approximation; Two-neutrino double beta decays; Cumulative
nuclear matrix elements; Single beta decays; Orbital occupancies; Renormalization of the axial-vector coupling
constant

1. Introduction

Reliable calculation of the nuclear matrix elements (NMEs) related to the neutrinoless double
beta (0νββ) decays of atomic nuclei is without doubt of paramount importance for extrac-
tion of quantitative information about the neutrino masses from the possible detection of this
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mode of weak decay [1,2]. Such calculations have been pursued mostly in the framework of
the quasiparticle random-phase approximation (QRPA) [3], in particular in its proton–neutron
variant (pnQRPA). A host of other models, ranging from the interacting shell model (ISM) to
various mean field theories, have also been used in the calculations. The resulting NMEs have
been analyzed in the review article [4]. The following are recently studied central issues in
the calculations of the NMEs: (a) the role of the chosen single-particle valence space and or-
bital occupancies [5–7], (b) the role of shell-closure effects [4,8], (c) the role of deformation
[9–12] and (d) the effective value of the axial-vector coupling constant gA of weak interactions
[13–17].

The various nuclear-structure aspects related to the 0νββ NME calculations can be con-
veniently studied in the context of the simpler two-neutrino double beta (2νββ) decays. The
simplification is based on the facts that (i) the Gamow–Teller type of virtual transitions dominate
the decay amplitude, (ii) the lowest virtual decays can be related to measured rates of single beta
decays [18] and (iii) the associated half-lives have been measured for a number of 2νββ-decaying
nuclei [19]. Yet it has to be kept in mind that the momentum transfer of the 2νββ and 0νββ de-
cays is rather different and may lead to qualitative differences between them.

In the case of the 2νββ decays the by far most popular model in use is the pnQRPA [3]
or some renormalized versions of it [20–23]. Also the interacting shell model (ISM) has been
very successful in 2νββ calculations, e.g. by predicting the 2νββ-decay half-life of 48Ca in [24],
later verified by experiment in [25]; for a recent review see [26]. A particular problem with the
pnQRPA calculations, not present in the ISM calculations, is the unsettled value of the particle–
particle interaction parameter gpp describing the strength of the proton–neutron interaction in
the 1+ channel. Since the introduction of this parameter [27,28] its values have been tried to fix
by the inspection of the measured single-beta-decay rates [18,29] or 2νββ decay rates [30–33].
Contrary to these approaches, we make now an attempt to relate the values of gpp to the values
of gA through the data on the 2νββ half-lives and beta-decay rates.

In the present article we touch the issues (a) and (d) mentioned above by analyzing the 2νββ

and single beta decays by the pnQRPA method in the following three triplets of isobars, namely
100Mo–100Tc–100Ru, 116Cd–116In–116Sn and 128Te–128I–128Xe. The double and single beta de-
cays of these triplets are presented in Fig. 1. In these three cases the 2νββ decay proceeds from
the even–even mother nucleus to the even–even grand-daughter ground state and the beta decays
proceed from the 1+ ground state of the intermediate odd–odd nucleus to the ground states of
the neighboring even–even nuclei, electron capture (EC) decay to the left and β− decay to the
right. The associated experimental half-lives of the 2νββ decays and the comparative half-lives
(logf t values) of the beta decays are given in the figures. Based on these data we analyze in this
paper the possible quenching of the axial-vector coupling constant gA for Gamow–Teller type
of spin–isospin transitions. At the same time we investigate the basic nuclear-structure proper-
ties of the involved nuclei in terms of their orbital occupancies and fine structure of their 2νββ

NMEs.
The article is organized as follows: In Section 2 the basic theoretical framework is briefly

reviewed. In Section 3 the model-space aspects and adjustment of the model parameters are
explained. In addition, the orbital occupancies of the key orbitals in the involved even–even
nuclei are given. In Section 4 we associate the values of the parameter gpp to the values of gA

and study the behavior of the fine structure of the 2νββ NMEs as functions of these parameters.
In Section 5 an account of the investigations on the quenching of gA is given and finally, in
Section 6, we summarize and draw the conclusions.
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Fig. 1. Double and single beta decay characteristics of the presently studied triplets of isobars. The double-beta half-lives
and logf t values of the single beta decays are given above the transition arrows.

2. Outline of theory

We begin by defining the comparative half-lives (logf t values) of the 1+ → 0+ Gamow–
Teller transitions that are of interest in this work. The logf t value is defined as [34]

logf t = log
(
f0t1/2[s]
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[
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for the EC or β− type of transitions. Here the half-life has been given in seconds to enable
taking the logarithm and t±k is the flavor-changing operator for the k-th nucleon in the EC or β−
direction and f0 is the leptonic phase-space factor for the allowed EC or β− decays as defined
in [34].

The 2νββ-decay half-life can be compactly written in the form

[
t
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where gA is the weak axial-vector coupling constant and G2ν stands for the leptonic phase-space
factor without including gA in a way defined in [35]. Values of these factors are listed in Table 1.
The initial ground state is denoted by 0+

i and the final ground state by 0+
f . The involved NME is

written as

M(2ν) =
∑
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M(2ν)
(
1+
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)
, (3)

where
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Table 1
Adopted values of the phase-space factors in (2). The values are taken from [35]
and they are given in units of inverse years.

Triplet A = 100 A = 116 A = 128

G2ν (yr−1) 3.31 × 10−18 2.76 × 10−18 2.69 × 10−22

M(2ν)
(
1+
m

) = MF(1+
m)MI(1+

m)

[ 1
2 (Δ + E(1+
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, (4)

and the involved transition amplitudes are
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In the case of the pnQRPA the expression (4) has to be written in the form

M
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where the quantity Dm is the energy denominator containing the average energy of the 1+ states
emerging from the two pnQRPA calculations, one for the initial nucleus and the other for the
final nucleus. The denominator can thus be written as

Dm =
(
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where Δ is the nuclear mass difference of the initial and final 0+ ground states, Ẽ(1+
m) is the

energy of the mth 1+ state in a pnQRPA calculation based on the initial ground state, E(1+
m) the

same for a calculation based on the final ground state and Mic
2 is the mass energy of the initial

nucleus. The quantity 〈1+
m|1+

n 〉 is the overlap between the two sets of 1+ states written as

〈
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(8)

and it takes care of the matching of the corresponding states in the two sets of states based on the
initial and final even–even reference nuclei. The amplitudes X and Y (X̄ and Ȳ ) come from the
pnQRPA calculation starting from the final (initial) nucleus of the double beta decay.

3. Model spaces and parameters

In the present calculations we have adopted the no-core approach and have included all the
single-particle states from the very bottom of a spherical Coulomb-corrected Woods–Saxon (WS)
potential well with the standard parametrization of Bohr and Mottelson [36], optimized for nuclei
near the line of beta stability. All bound states and a number of resonant states with small decay
widths have been included in the calculations for both protons and neutrons. The single-particle
orbitals numbered 25 for the A = 100 and A = 128 systems and 26 for the A = 116 system. Small
modifications of the WS energies were done for 100Mo, 100Ru, 128Te and 128Xe at the vicinity of
the proton and neutron Fermi surfaces to allow for a better reproduction of the one-quasiparticle
type of spectra of the neighboring odd-A nuclei. In particular, the basis set ‘EXPWS’ of Ref. [37]
was adopted for 100Mo. All the used single-particle energies are reviewed in Table 2 for neutrons
and in Table 3 for protons.
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Table 2
Neutron single-particle energies of the mean-field orbitals (first column) for nuclei of interest in
the present calculations. The energies are given in units of MeV.

Orbital Single-particle energy in MeV
100Mo 100Ru 116Cd 116Sn 128Te 128Xe

0s1/2 −39.07 −40.33 −39.28 −40.38 −39.18 −40.18
0p3/2 −33.21 −34.43 −33.89 −34.95 −34.08 −35.05
0p1/2 −32.29 −33.50 −33.12 −34.17 −33.40 −34.36
0d5/2 −26.56 −27.74 −27.71 −28.73 −28.21 −29.15
0d3/2 −24.43 −25.57 −25.90 −26.90 −26.60 −27.51
1s1/2 −23.59 −24.72 −24.91 −25.90 −25.54 −26.45
0f7/2 −19.31 −20.42 −20.92 −21.90 −21.73 −22.63
0f5/2 −15.55 −16.59 −17.68 −18.61 −18.81 −19.67
1p3/2 −15.36 −16.39 −17.09 −18.01 −18.01 −18.86
1p1/2 −13.92 −14.92 −15.81 −16.71 −16.84 −17.67
0g9/2 −11.58 −12.62 −13.63 −14.56 −14.75 −15.60
1d5/2 −8.30 −8.19 −9.28 −10.11 −10.43 −11.19
0g7/2 −4.50 −6.83 −8.66 −9.50 −10.23 −11.01
2s1/2 −6.50 −6.39 −7.47 −8.22 −8.59 −9.30
1d3/2 −5.80 −5.62 −6.98 −7.74 −8.27 −8.99
0h11/2 −5.50 −6.50 −5.96 −6.83 −8.70 −9.40
1f7/2 0.00 −0.60 −1.85 −2.52 −3.07 −3.72
2p3/2 0.13 0.20 −0.83 −1.28 −1.69 −2.19
1f5/2 2.72 2.17 0.92 0.46 −0.22 −0.74
0h9/2 3.95 3.24 0.84 0.13 −1.08 −1.77
0i13/2 4.72 3.90 1.96 1.18 0.30 −0.43
2p1/2 5.72 6.43 −0.14 −0.46 −0.85 −1.26
1g9/2 8.00 6.50 4.57 4.00 3.31 2.84
0i11/2 10.60 10.60 10.20 9.65 8.08 7.55
1g7/2 10.80 10.80 10.80 10.10 9.80 7.90
2d5/2 – – 5.01 4.51 7.62 8.56

Here it has to be noted that from the point of view of the present study such large model
space is not necessary to describe the low-energy characteristics of the present nuclei. Also the
properties of the Gamow–Teller giant resonance region do not need such a large number of
single-particle states. The results for the single and double beta decays converge even when
only the truly bound states, with negative single-particle energy, are included in the calculations.
However, if e.g. the strength distribution of the isovector spin monopole excitations is studied,
then such single-particle spaces, and even larger, are called for [38].

The Bonn-A G-matrix has been used as the starting point for the nucleon–nucleon interaction
and it has been renormalized in the standard way [39,40]: The quasiparticles are treated in the
BCS formalism and the pairing matrix elements are scaled by a common factor, separately for
protons and neutrons. In practice these factors are fitted such that the lowest quasiparticle en-
ergies obtained from the BCS match the experimentally deduced pairing gaps for protons and
neutrons respectively. The corresponding values of the pairing gaps and the resulting pairing
strengths are cited in Table 4 for the nuclei of interest in this work. It should be noted, how-
ever, that applying the BCS approach to the A = 128 system is at the limits of applicability of
this method due to the vicinity of the Z = 50 shell closure for Te [41]. Similar considerations
concern the A = 116 system as well, 116Sn being even semi-magic.
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Table 3
Proton single-particle energies of the mean-field orbitals (first column) for nuclei of interest in the
present calculations. The energies are given in units of MeV.

Orbital Single-particle energy in MeV
100Mo 100Ru 116Cd 116Sn 128Te 128Xe

0s1/2 −35.30 −33.37 −35.12 −33.40 −35.27 −33.67
0p3/2 −29.74 −27.89 −30.07 −28.41 −30.53 −28.98
0p1/2 −28.60 −26.76 −29.10 −27.44 −29.65 −28.11
0d5/2 −23.26 −21.48 −24.09 −22.49 −24.86 −23.37
0d3/2 −20.67 −18.92 −21.85 −20.26 −22.83 −21.34
1s1/2 −19.57 −17.81 −20.54 −18.94 −21.40 −19.90
0f7/2 −16.07 −14.37 −17.39 −15.85 −18.47 −17.03
0f5/2 −11.54 −9.89 −13.43 −11.92 −14.86 −13.44
1p3/2 −9.20 −8.00 −12.61 −11.10 −13.76 −12.33
1p1/2 −7.50 −6.50 −11.06 −9.58 −12.33 −10.92
0g9/2 −6.40 −6.70 −10.11 −8.63 −11.50 −10.11
1d5/2 −2.81 −1.40 −4.56 −3.15 −5.94 −4.60
0g7/2 −1.47 0.00 −4.03 −2.62 −5.91 −4.57
2s1/2 −0.59 0.79 −2.19 −0.86 −3.46 −2.24
1d3/2 0.20 1.60 −1.74 −0.40 −3.23 −1.97
0h11/2 −0.11 1.41 −2.33 −0.94 −4.02 −2.70
1f7/2 4.97 6.19 3.24 4.47 1.79 2.99
2p3/2 6.25 7.42 5.18 6.17 4.16 5.18
1f5/2 8.75 9.87 7.09 8.14 5.65 6.73
0h9/2 9.10 10.40 6.04 7.32 3.79 5.04
0i13/2 8.41 9.81 5.79 7.11 3.85 5.11
2p1/2 7.80 9.80 6.37 7.37 5.43 6.38
1g9/2 10.40 14.40 10.40 11.80 9.02 10.02
0i11/2 15.40 17.40 14.20 15.40 12.00 13.40
1g7/2 16.50 18.10 14.80 16.00 12.80 13.80
2d5/2 – – 9.00 10.20 7.00 8.00

Table 4
Values of pairing gaps for protons and neutrons (second and third columns), the values of
the associated pairing strengths (fourth and fifth columns) and the value of the particle–
hole strength parameter (last column) for the nuclei listed in the first column.

Nucleus Δp (MeV) Δn (MeV) g
(p)
pair g

(n)
pair gph

100Mo 1.374 1.255 0.895 0.865 0.90
100Ru 1.484 1.400 0.875 0.895 0.90
116Cd 1.477 1.373 0.941 0.889 1.00
116Sn – 1.159 0.941 0.817 1.00
128Te 1.094 1.295 0.811 0.860 1.00
128Xe 1.291 1.269 0.874 0.860 1.00

The wave functions of the 1+ states of the intermediate nuclei have been produced by using
the pnQRPA with the particle–hole and particle–particle degrees of freedom [27] included. The
particle–hole and particle–particle parts of the proton–neutron two-body interaction are sepa-
rately scaled by the particle–hole (gph) and particle–particle (gpp) parameters. The particle–hole
parameter affects the position of the Gamow–Teller giant resonance (GTGR) and its value was
fixed by the available systematics [34] on the location of the resonance. The resulting values
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Table 5
Occupancies of the proton and neutron orbitals close to the respective
Fermi surfaces in the nuclei 100Mo and 100Ru.

Proton occupancies Neutron occupancies

Orbital 100Mo 100Ru Orbital 100Mo 100Ru

0f5/2 5.79 5.61 1d5/2 5.32 3.16
1p3/2 3.61 3.31 2s1/2 0.70 0.20
1p1/2 1.32 1.03 1d3/2 0.66 0.30
0g9/2 3.03 5.91 0h11/2 1.03 1.24
1d5/2 0.09 0.07 0g7/2 0.46 1.48
0g7/2 0.16 0.13
0h11/2 0.06 0.05
1d3/2 0.02 0.02

Table 6
Occupancies of the proton and neutron orbitals close to the respective
Fermi surfaces in the nuclei 116Cd and 116Sn.

Proton occupancies Neutron occupancies

Orbital 116Cd 116Sn Orbital 116Cd 116Sn

0f5/2 5.82 6.00 1d5/2 5.54 5.57
1p3/2 3.87 4.00 0g7/2 6.96 7.02
1p1/2 1.82 2.00 2s1/2 1.33 1.05
0g9/2 8.31 10.00 1d3/2 2.02 1.27
1d5/2 0.05 0 0h11/2 2.17 1.14
0g7/2 0.13 0 1f7/2 0.07 0.04
0h11/2 0.04 0 2p3/2 0.01 0.006
2s1/2 0.005 0 2p1/2 0.005 0.002
1d3/2 0.01 0 0h9/2 0.07 0.04

1f5/2 0.02 0.01

of gph are listed in the last column of Table 4. The determination of the values of gpp, together
with the determination of the values of the axial-vector coupling constant, are presented in Sec-
tion 5.

At this point it is of interest to have a look at the occupancies of the relevant orbitals for the
nuclei involved in the present calculations. The occupancy of a given orbital with total single-
particle angular momentum j is obtained from the corresponding BCS occupation amplitude vj

by

occupancy(j) = (2j + 1)v2
j . (9)

These occupancies are presented in Tables 5–7 for the nuclei under discussion in this work.
It should be stated that the present occupancies are based on the BCS approximation. A more

consistent approach would be to compute the occupancies at the QRPA level. An attempt to this
direction was done in [43] by the use of a self-consistent renormalized QRPA method (SRQRPA).
In that work it was found for the A = 76 (Ge,Se) system that the differences between the BCS-
and SRQRPA-predicted occupancies are generally small, except for some orbitals with large
orbital angular momentum l, like 0g9/2, for which notable differences can sometimes occur.
However, for A = 128 the vicinity of the Z = 50 shell closure makes the use of standard BCS



8 J. Suhonen, O. Civitarese / Nuclear Physics A 924 (2014) 1–23
Table 7
Occupancies of the proton and neutron orbitals close to the respective Fermi surfaces in the nuclei
128Te and 128Xe. The experimental neutron occupancies for 128Te were extracted from the data
of [42].

Proton occupancies Neutron occupancies

Orbital 128Te 128Xe Orbital 128Te (th) 128Te (exp) 128Xe

1d5/2 0.78 1.52 1d5/2 5.63 5.52
0g7/2 1.09 2.09 0g7/2 7.34 8.00 7.15
0h11/2 0.20 0.49 0h11/2 9.20 8.66 8.06
2s1/2 0.02 0.05 2s1/2 1.41 1.28 1.23
1d3/2 0.05 0.13 1d3/2 2.40 2.04

1f7/2 0.06 0.07
2p3/2 0.01 0.01
0h9/2 0.08 0.09
2p1/2 0.004 0.004
1f5/2 0.02 0.02
1d3/2 + 1d5/2 8.03 7.94 7.56

questionable (since the protons are in the normal phase). Thus, we rely on the known systematics
for single-particle energies and occupation factors and take them as phenomenological values.

The occupancies of the three isobaric triplets under discussion cover major shells that are
configured in three different ways. Considering only occupancies of one particle or more, for the
A = 100 nuclei, Mo and Ru, protons occupy orbitals up to and including the 1p–0f–0g9/2 major
shell and neutrons up to and including the orbitals 1d5/2, 0g7/2 and 0h11/2. For the A = 116
nuclei, Cd and Sn, protons occupy orbitals up to and including the 1p–0f–0g9/2 major shell (as
in the case of A = 100) and neutrons up to and including the 1d–2s–0g–0h11/2 major shell. For
the A = 128 nuclei, Te and Xe, protons occupy orbitals up to and including the 0g7/2 and 1d5/2
orbitals whereas neutrons occupy the complete 1d–2s–0g–0h11/2 major shell (as in the case of
A = 116).

Comparison of the occupancies of Tables 5–7 with experimental data would be extremely in-
teresting. Such a comparison has been done for the A = 76 double beta system (76Ge decaying
to 76Se) e.g. in [5–7] since experimental information about the proton and neutron occupancies
is available [44,45]. A comparison for the A = 130 system was very recently performed in the
experimental paper [42]. In that article also the neutron vacancies in 128Te were given. The cor-
responding occupancies have been listed in the second last column of Table 7. It has to be noted
that in [42] only the combined vacancy for the 1d orbitals is given. Comparing the corresponding
calculated and experimental occupancies of Table 7 one notices that the agreement for the 1d
and 2s1/2 orbitals is good. In the calculations the occupancy of the 0g7/2 orbital is depleted a bit
while in experiment the orbital is full. Furthermore, in theory the 0h11/2 orbital seems to host an
extra half a neutron that is coming from the depletion of the occupancy of the 0g7/2 orbital.

4. Double-beta properties of the studied nuclei

For each of the three studied nuclear systems, A = 100,116,128, one can perform an analy-
sis of the behavior of the corresponding 2νββ NME in several different ways. We can start by
creating a sample of the NMEs by starting from a given value of gA and then extracting, by using
this value of gA, the experimental value of the 2νββ NME. We then fix the value of the particle–
particle strength parameter gpp by reproducing the value of the just extracted experimental NME
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Table 8
Correspondence between the values of gA and gpp in the studied three
isobaric triplets.

A = 100 A = 116 A = 128

gA gpp NME gpp NME gpp NME

1.25 0.868 0.132 0.855 0.073 0.755 0.028
1.00 0.857 0.206 0.834 0.114 0.748 0.044
0.80 0.829 0.322 0.788 0.178 0.735 0.069
0.70 0.790 0.421 0.725 0.232 0.723 0.090
0.60 0.610 0.573 0.455 0.316 0.701 0.123

in a pnQRPA calculation using this particular value of gpp. In this way we create a one-to-one
correspondence between the values of gA and gpp. This correspondence is presented in Table 8
for the studied three isobaric triplets.

As can be seen in Table 8 the values of gA and gpp correlate perfectly such that increasing
value of gpp corresponds to increasing value of gA. One can, in addition, study the behavior of
the 2νββ NMEs as functions of the parameter gpp. This has been done in Fig. 2 for the three cases
under discussion. Comparing the ranges of NMEs in Table 8 and the curves in Fig. 2 one realizes
that the experimental magnitudes of the NMEs are achieved within a very small interval of gpp
values for the 2νββ decays of 100Mo and 128Te whereas for 116Cd a much wider gpp interval
is required. This stems from the fact that in the region of interest the 2νββ NME is a very flat
function of gpp for 116Cd.

For 100Mo and 116Cd the NME curves are quite steep for gpp > 0.7 indicating that the collapse
point of the pnQRPA is approaching. In fact, the NME collapses at about gpp ≈ 0.8 for 128Te and
at about gpp ≈ 0.9 for 100Mo and 116Cd. Near a collapse point the ground-state correlations of the
pnQRPA grow too strong and the basic QRPA premise of small-amplitude collective motion is
lost. Thus, being too close to the collapse point can produce unphysical results. In the present case
the gpp regions of interest, indicated in Table 8, are safe regions and the ground-state correlations
do not enhance the backward-going amplitudes of the pnQRPA too much. In fact, as can be seen
later in this paper, the gpp regions of interest for A = 116,128 are far from the collapse point and
only for A = 100 the relevant region of gpp is in the neighborhood of the collapse point but still
at safe distance from it.

To have an idea how the NMEs of Table 8 are built state by state we show in Figs. 3 and 4 the
cumulative sums of the NMEs for the isobaric triplets of interest and for the gpp values indicated
in Table 8. The cumulative sums are defined as

M(2ν)(K) =
K∑

k=1

M(2ν)
(
1+
k

)
, (10)

where K is the upper limit in state number up to which the summing in Eq. (3) is to be carried
out. Since EK corresponds to the excitation energy of the last included 1+ state in the sum
the cumulative sum can be presented as a function of the excitation energy EK in the odd–odd
intermediate nucleus.

As can be seen in the left panel of Fig. 3 the cumulative sum for the A = 100 system is qual-
itatively the same up to gpp = 0.790 (gA = 0.70) but then flattens out for smaller values of gpp.
In all cases the first 1+ state gives the dominant contribution and beyond it there are smaller
canceling contributions up to about 10 MeV of excitation energy. For the very low values of gpp
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Fig. 2. The 2νββ NMEs as functions of the particle–particle interaction strength parameter gpp.

Fig. 3. Cumulative sums for the 2νββ NMEs of the A = 100 (left panel) and A = 116 (right panel) isobaric triplet as
functions of the 1+ excitation energy in 100Tc and 116In for five values of the interaction strength parameter gpp.

(or of gA) the cancellation effect seems to disappear and essentially a single-state dominance
(SSD) situation is achieved [46,47]. On the other hand, for the A = 116 system of isobars the
cumulative sum shows SSD down to rather low values of gpp (gA), as seen in the right panel of
Fig. 3. However, even for the very low values of gpp (gA) the deviation from the SSD is quite
small.

The structure of the cumulative sum for the decay of 128Te is the most interesting one, as
shown in Fig. 4. Judging by the similarity of the value of the contribution of the first 1+ state
and the value of the saturated NME at high excitation energy one could think that again one has
a situation of SSD at hand. However, in the region between 3 MeV and 12 MeV one has strong
contributions which cancel each other in the end. This pattern persists for values gpp > 0.74
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Fig. 4. Cumulative sums for the 2νββ NMEs of the A = 128 isobaric triplet as functions of the 1+ excitation energy in
128I for five values of the interaction strength parameter gpp.

Fig. 5. Definition of the two toy bases Toy1 and Toy2 for the A = 128 isobaric triplet.

(gA > 0.8). For gpp < 0.74 (gA < 0.8) the situation changes and the final value of the 2νββ NME
is notably larger than the contribution coming from the first 1+ state. Also the cancellation effect
becomes weaker and disappears finally, leaving a sort of step at about 4 MeV of excitation. To
shed further light to this situation we have examined the cumulative sum in smaller single-particle
spaces, called toy model 1 and toy model 2 (Toy1 and Toy2 in Fig. 5) defined as

Toy1 basis: 2s1/2,1d3/2,1d5/2,0g7/2,0h11/2,

Toy2 basis: Toy1 basis + 0g9/2 + 0h9/2. (11)

These toy bases are also depicted in Fig. 5.
In the left panel of Fig. 6 we depict the cumulative sum computed in the Toy1 basis. Since the

model space is now restricted to only one major shell the corresponding values of gpp are larger
than for the calculations in the full single-particle space in Fig. 4. However, the corresponding
values of gA are the same in both cases. The effect of the size of the single-particle space on
model parameters was studied in detail in [6,7]. As can be seen in the left panel of Fig. 6 there
is a setting in of strong contributions to the cumulative sums in the energy region starting from
3 MeV. From the right panel of Fig. 6 we notice that activation of the spin–orbit partners 0g9/2
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Fig. 6. Cumulative sums for the 2νββ NMEs of the A = 128 isobaric triplet as functions of the 1+ excitation energy in
128I for five values of the interaction strength parameter gpp. The toy models Toy1 (left panel) and Toy2 (right panel) of
(11) have been used in the calculations.

and 0h9/2 of the orbitals 0g7/2 and 0h11/2 shifts the cumulative sums to larger values as a whole
and adds the negative contributions canceling the strong contributions built in the Toy1 basis. The
final pattern of the cumulative sums in the Toy2 basis is then close to the pattern encountered in
Fig. 4 for the full basis. This feature is a strong evidence of the importance of including all the
spin–orbit partners in the 2νββ-decay calculations. This was pointed out earlier in the context of
0νββ-decay calculations in [6,7].

The conclusions of the above study of the role of the spin–orbit partners in building the 2νββ

NME differs notably from the conclusions drawn based on the study of the intermediate 1+ con-
tributions to the NME of the 128Te decay in [48]. There calculations were done by the use of
the IBA model and its extensions to include both bosonic and fermionic degrees of freedom in
building the wave functions of the 2νββ initial, intermediate and final states. A single-particle
basis corresponding to the present Toy1 basis was used in the calculations and practically a SSD
pattern of the cumulative 2νββ NME was obtained. A claim was made that most probably the left
out spin–orbit partners do not alter the situation because of the weak right leg of the intermediate
transitions [48]. Contrary to this, in the present calculations notable 1+ contributions between
3 MeV and 12 MeV have been recorded. It should further be noted that these contributions arise
from states that reside below the Gamow–Teller giant resonance region. The above-mentioned
contradictory features between the two calculations are highly interesting and merit further stud-
ies in the future.

5. Quenching of the effective value of gA

In this section we study the possible quenching of the values of the axial-vector coupling
constant gA in model calculations using the pnQRPA approach. The present study is complemen-
tary to the earlier work of [18] which discussed the incompatibility of the pnQRPA-computed
2νββ-decay and single-beta-decay half-lives for the same nuclei and for the typical values
gA = 1.00–1.25 of the axial-vector coupling constant.



J. Suhonen, O. Civitarese / Nuclear Physics A 924 (2014) 1–23 13
Table 9
Extracted values of gpp and gA for the three discussed isobaric chains. For comparison are shown
the effective values of gA obtained in the IBFFM-2 and IBA-2 theory frameworks. In the last column
SSD = single-state dominance and CA = closure approximation.

A This work IBFFM-2 [48] IBA-2 [15]

gpp gA(β) gA(ββ) gA(β) gA(ββ) gA(ββ)

100 0.820–0.838 0.61–0.70 0.75–0.85 – – 0.46(1) [SSD]
116 0.440–0.616 0.66–0.81 0.59–0.65 – – 0.41(1) [SSD]
128 0.524–0.532 0.330–0.335 0.38–0.43 0.25–0.31 0.293 0.55(3) [CA]

5.1. Effective value of gA from β and ββ decays

The most ambitious aim would be to find three sets of values of gA and gpp in such a way as to
reproduce the three sets of 2νββ- and beta-decay data depicted in Fig. 1. As already mentioned in
the introduction, in these three cases the 2νββ-decay half-life is known, as also the comparative
half-lives (logf t values) of the electron capture (EC) decay on the left and of the β− decay on
the right.

We can start by the procedure of Section 4, i.e. we start from a given value of gA and then
extract, by using this value of gA, the experimental value of the 2νββ NME. We then fix the
value of the particle–particle strength parameter gpp in such a way that by using this gpp the
pnQRPA calculation reproduces the value of the extracted experimental NME. In this way we
create a one-to-one correspondence between the values of gA and gpp shown in Table 8. The next
question is whether we can reproduce the logf t values of the EC and β− decays by any pair
(gA, gpp). In [16] it was shown that this is almost possible, but not quite.

Next one can relax the constraints a bit and ask if one can find three sets of values (gA, gpp)

such that the logf t values of the EC and β− decays of the three cases A = 100,116,128 are
reproduced. It now turns out that indeed such triple of pairs can be found leading to three sets of
values (gA(β), gpp(β)). With the obtained value of gpp(β) one can evaluate the 2νββ NME in
a pnQRPA calculation and then demand that this NME corresponds exactly to the experimental
NME extracted by using an other effective value of the axial-vector coupling constant, coined
gA(ββ).

To follow the above described procedure one has to use the latest data on the involved
single and double beta decays. The β− decays have been measured quite accurately (see
[49]) as visible in Fig. 1. The EC decays pose a problem since they have not been mea-
sured as accurately because of the involved small branchings to the electron-capture channels.
For the decay transition 100Tc → 100Mo there is a recently measured value for the com-
parative half-life of logf t = 4.29+0.08

−0.07 [50], and for the transition 116In → 116Cd Ref. [51]
gives f t = [2.84 ± 0.51(stat) ± 0.45(syst)] × 104 s. For the transition 128I → 128Te Ref. [52]
gives logf t = 5.049(7). We have to take into account also the error bars of the measured
2νββ half-lives. From Ref. [19] we obtain the half-lives (7.1 ± 0.4) × 1018 yr (A = 100),
(2.8 ± 0.2) × 1019 yr (A = 116) and (1.9 ± 0.4) × 1024 yr (A = 128).

Combining the above listed logf t values and 2νββ half-lives, with their error bars included,
one can derive the ranges of values of gpp, gA(β) and gA(ββ) listed in columns 2–4 of Table 9
and shown pictorially in Fig. 7. It should be noted here that the results for the A = 100 case
deviate from those of our previous publication [16] since in the present work we use a more
recent experimental result from [50] for the EC branch of beta decay. As can be seen in the
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Fig. 7. Ranges of gA(β) and gA(ββ) extracted in this work.

figure the values of gA(ββ) are monotonically decreasing whereas the values of gA(β) behave
irregularly.

The comparison between theoretical and experimental f t values, to estimate renormalization
effects for β-decay moments, was used long ago to extract effective values of the axial-vector
coupling constant. A very concrete example is given by the analysis of first-forbidden transi-
tions around 208Pb carried out in Ref. [36] in Chapter 3, page 353. Assuming some dominant
single-particle configurations around the double-closed shell in A = 208, the analysis of Bohr
and Mottelson yields two sets of values for the axial-vector coupling which are absolutely com-
patible with our present results, that is: geff

A /gA = 0.5 and geff
A /gA = 0.7. In fact, these values lie

in the range of values depicted in Fig. 7, a feature which seems to indicate a sort of universality of
the underlying renormalization. The result clearly supports our claim that the renormalization of
single and double beta-decay transitions, for the two-neutrino mode, must be of the same nature,
since the two decays participant in the 2νββ processes are not linked by a neutrino propagator.

A strong quenching of gA(β) ∼ 0.6 was reported also in the shell-model calculations in
the mass A = 90–97 region in Ref. [53]. This is very close to the presently obtained value
gA(β) = 0.61–0.70 for the A = 100 case in Table 9. In a more recent shell-model study [26] val-
ues of about gA(ββ) ∼ 0.7 were obtained in the mass region A = 128,130 and even a stronger
quenching gA(ββ) = 0.56 for A = 136. These are still weaker quenchings than the ones obtained
for A = 128 in the present study (see Table 9). Here it should be mentioned that in the analyses
of beta decays in the sd shell [54] and pf shell [55] only moderately quenched values gA(β) ∼ 1
were used. However, from the results of [55] one can infer that for the transitions 0+ → 1+
a stronger quenching gA(β) ∼ 0.7–0.8 would be needed in order to reproduce the corresponding
experimental values.

In [12] several double-beta-decaying nuclei were analyzed by using a Gogny-interaction-
based energy density functional approach. The individual 1+ states of the intermediate nuclei
could not be constructed but the total β− and β+/EC Gamow–Teller strengths could be gener-
ated. The available experimental total strengths could be reproduced quite nicely by using the
unquenched value gA(β) = 1.25. However, these calculations cannot address the question about
the need to quench the Gamow–Teller contribution to the lowest 1+ transition.
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Another interesting analysis of the quenching was done in [13] where both the beta-decay and
2νββ decay data were analyzed for the A = 100,116 systems in the framework of the pnQRPA
using least squares to achieve best-fit values for gA. In [13] the best fit values gA = 0.74 (A =
100) and gA = 0.84 (A = 116) were obtained. The first value touches the presently obtained
range for gA(ββ) and the latter one is very close to the present range of values for gA(β). So it
seems that in the fitting of [13] the value of gA for A = 100 is double-beta-like and for A = 116
more single-beta-like. Furthermore, it is interesting to note that in the first version [56] of the
paper [13] also results for the A = 128 system were included. There the result gA = 0.39 was
quoted which agrees with the range gA(ββ) = 0.38–0.43 obtained in the present study. Hence,
the A = 128 result of [56] is double-beta-like.

It should be noted that in terms of the pnQRPA calculations the present and the ones of [13,
56] are very similar as evidenced by comparing Fig. 2 of the present work with Fig. 1 of [13] and
[56]. However, in [13,56] the adopted experimental data for the EC branches of decay were older
than the data used in the present analysis: The logf t values 3.96 (A = 100) and 4.39 (A = 116)
were adopted instead of 4.29 (A = 100) and 4.45 (A = 116) used in this work (see Fig. 1). Since
the decay rate of the EC branch is very slowly varying in the pnQRPA calculations this can cause
notable deviations in the best-fit values of gpp and gA.

A monotonic behavior of gA(ββ) was parametrized in [15] by analyzing the magnitudes of
NMEs produced by the IBA-2 and the interacting shell model (ISM). In this study the obtained
gA-versus-A slope was very flat whereas in the present calculations the slope turns out to be
steeper, as visible in Fig. 7. The contrast between the various calculations was shown in Table 1
of [16]. Here, in the last column of Table 9, we quote the original numbers for gA(ββ) produced
in the IBA-2 calculations of [15]. The first two numbers refer to the use of the single-state domi-
nance (SSD) hypothesis in the IBA-2 calculations. Based on the present analysis this assumption
is approximately valid since, as discussed in Section 4, the magnitudes of the first 1+ contribu-
tion and the final 2νββ NME are practically the same for the decays of 100Mo (for small values
of gA!) and 116Cd.

The last number of the IBA-2 column in Table 9 refers to the assumption of closure approxi-
mation (CA) in the IBA-2 calculation. It is well established that such an approximation does not
work for the 2νββ decays and thus this number could be dubious. Indeed, in a later publication
[48] a more consistent theoretical framework was used (the interacting boson–fermion–fermion
model, IBFFM-2) and in the case of A = 128 values of gA were obtained that differ notably from
the one obtained in [15]. These new, IBFFM-2 based values are presented in columns 5 and 6 of
Table 9. One can see that the IBFFM-2 values of gA(β) and gA(ββ) are very close to those of
the present pnQRPA based calculations.

Based on the present results it is hard to judge if the trends of gA(β) and gA(ββ) with increas-
ing A are really there. In the shell-model calculations the trend of the effective value of gA is
much smoother in terms of A [15], as it is also for IBA-2, as shown in the last column of Table 9.
Something very interesting occurs when one uses, instead of the varying values of gA(β) and
gA(ββ), the average values

〈
gA(β)

〉 = 0.57 ± 0.21,
〈
gA(ββ)

〉 = 0.61 ± 0.20, (12)

obtained from Table 9. Indeed, the average values of the two effective gA are compatible with
each other, which is quite interesting. Thus it could be that the best way to interpret the present
results is to adopt a common averaged value of

〈gA〉 ≈ 0.6 ± 0.2 (13)
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for the effective gA, to be used for both the beta and double beta calculations. The corresponding
average from the work [56] would be 〈gA〉 ∼ 0.66, very close to the presently obtained average.
Also the shell-model value [26] 〈gA〉SM ∼ 0.7 is not far from that of (13).

The apparently larger quenching factor in the pnQRPA than in the shell-model could be at-
tributed to missing the contributions of the complex configurations beyond the two-quasiparticle
(particle–hole) configurations of the pnQRPA (see also [17]). On the other hand, it was shown in
[57] for the 2νββ decay of 76Ge and in [58] for the 2νββ decay of 100Mo that the inclusion of
the four-quasiparticle (two-particle–two-hole) degrees of freedom in a higher-QRPA scheme (in
this case the pnMAVA) does not affect appreciably the low-energy Gamow–Teller properties of
pnQRPA.

A degree of freedom missing in the present approach is the deformation. In [9] a deformed
BCS + QRPA framework was used based on either a deformed Woods–Saxon or Hartree–Fock
mean field. The Skyrme force Sk3 was used as the two-body interaction to describe the 2νββ

decays of the A = 48–150 nuclei. There effective values gA = 0.87–1.0 were used in the calcu-
lations. It was found that the deformation affects, e.g., the 2νββ properties of the A = 100–128
nuclei although the involved deformations (see [9]) are not very large. This could have an impact
also on the present results. In particular, the difference in deformation between the 2νββ initial
and final nuclei can play a role. In [9] the β− and EC decays of the first 1+ states in the interme-
diate nuclei were not analyzed and consequently no tests of the adopted quenching factors were
done from the point of view of beta decays. In fact, it would be highly interesting if a similar
analysis as in the present work was done in the aforementioned deformed framework.

5.2. Effective strength functions

It is instructive to see how are the Gamow–Teller strength distributions and the cumulative
2νββ NMEs when the parameter gpp resides within the ranges quoted in the second column
of Table 9. All this information has been collected in Tables 10–12 for the studied nuclei. In
the captions we specify the values of gpp and gA. In these tables the calculated Gamow–Teller
strengths, namely the (p,n) type of strength for transitions 100Mo → 100Tc, 116Cd → 116In and
128Te → 128I, and the (n,p) type of strengths for transitions 100Ru → 100Tc, 116Sn → 116In and
128Xe → 128I are defined as

B(GT)−(m) = [
gA(β)

]2
∣∣∣∣(1+

m

∥∥∑
k

t−k σ k

∥∥0+
i

)∣∣∣∣
2

, (14)

B(GT)+(m) = [
gA(β)

]2
∣∣∣∣(1+

m

∥∥∑
k

t+k σ k

∥∥0+
f

)∣∣∣∣
2

, (15)

where 0+
i (0+

f ) is the ground state of the initial (final) nucleus in the 2νββ decay and 1+
m is the

m:th 1+ state in the intermediate nucleus of the 2νββ decay. These strength functions can be
called “effective strength functions”.

In Tables 10–12 the strengths B(GT)± are summed up within energy bins of 1 MeV width.
In the tables we give the strength up to 15 MeV of 1+ excitation energy which corresponds to a
practically saturated cumulative 2νββ NME given in the last columns of the tables. This energy
interval also contains practically all of the GTGR region on the B(GT)− side. The effective
cumulative 2νββ NME is defined as
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Table 10
The calculated (p,n) type (14) and (n,p) type (15) bin-wise strengths
(columns 2 and 4, respectively), up to 15 MeV of excitation energy,
for Gamow–Teller transitions to 1+ states in 100Tc. Comparison with
the experimental bin-wise (p,n) strength distribution from [59] is given
in column 3. The cumulative 2νββ NME (16) for the A = 100 system
of isobars is given in the last column of the table. The quantities are
computed for the parameter values gpp = 0.829, gA(β) = 0.655 and
gA(ββ) = 0.800.

Bin (MeV) B(GT)− B(GT)+ M
(2ν)
cumul

Calc. Exp. [59]

0.0–1.0 0.940 0.411 0.483 0.305
1.0–2.0 0.000 0.072 0.000 0.305
2.0–3.0 0.000 0.114 0.000 0.305
3.0–4.0 0.200 0.37 0.232 0.275
4.0–5.0 0.216 0.052 0.264
5.0–6.0 1.128 0.148 0.249
6.0–7.0 0.807 0.005 0.247
7.0–8.0 1.669 0.015 0.236
8.0–9.0 0.203 0.010 0.234
9.0–10.0 0.019 0.002 0.233

10.0–11.0 0.330 0.013 0.230
11.0–12.0 12.78 0.018 0.207
12.0–13.0 0.829 0.003 0.210
13.0–14.0 0.410 0.027 0.212
14.0–15.0 0.034 0.010 0.211

M
(2ν)
cumul = [

gA(ββ)
]2

B∑
m=1

M(2ν)
(
1+
m

)
, (16)

where all 1+ states below the upper bound B of each bin are to be included into the cumulative
sum. In this way we are then building up the matrix element g4

A|M(2ν)|2 of Eq. (2) and the inverse
of the 2νββ half-life is directly obtained by multiplying with a corresponding phase-space factor
of Table 1.

From Table 10 one can see that below 5 MeV the strength B(GT)−(100Mo → 100Tc) is con-
centrated in the first bin in the calculations whereas experimentally the strength is more evenly
distributed between 0 and 4 MeV. The calculated strength is somewhat larger than the measured
one below 4 MeV. The situation is different for the strength B(GT)−(128Te → 128I) as shown in
Table 12. There the theoretical total strength below 5 MeV is larger than the experimental one, but
shifted to a somewhat higher energy than the measured one. The B(GT)− strength below 5 MeV
of excitation is the largest of all cases for the transition 116Cd → 116In. For the A = 100 and
A = 128 systems the GTGR is very pronounced at around 11–12 MeV whereas for the A = 116
system the GTGR is widely spread. For the A = 128 system the strength B(GT)+(128Xe → 128I)
is very small whereas for the A = 100 and A = 116 systems the interval 0–1 MeV gathers a large
amount of the B(GT)+ strength. In addition, there is a considerable amount of B(GT)+ strength
between 3 MeV and 6 MeV of excitation in the A = 100 system.

From Table 11 one notices that the cumulative 2νββ NME for the A = 116 system is prac-
tically constant after the first 1+ contribution. The final value of the NME is 0.114 and we can
really speak about SSD [61]. From Table 12 it is evident that there is a step in the cumulative
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Table 11
The calculated (p,n) type (14) and (n,p) type (15) bin-wise strengths
(columns 2 and 3, respectively), up to 15 MeV of excitation energy, for
Gamow–Teller transitions to 1+ states in 116In. The cumulative 2νββ

NME (16) for the A = 116 system of isobars is given in the last column
of the table. The quantities are computed for the parameter values gpp =
0.515, gA(β) = 0.710 and gA(ββ) = 0.608.

Bin (MeV) B(GT)− B(GT)+ M
(2ν)
cumul

0.0–1.0 0.624 0.402 0.100
1.0–2.0 0.876 0.001 0.103
2.0–3.0 0.171 0.000 0.104
3.0–4.0 0.517 0.003 0.104
4.0–5.0 0.360 0.003 0.105
5.0–6.0 0.162 0.000 0.105
6.0–7.0 0.013 0.000 0.105
7.0–8.0 1.357 0.002 0.107
8.0–9.0 1.774 0.028 0.108
9.0–10.0 0.755 0.001 0.109

10.0–11.0 0.025 0.009 0.108
11.0–12.0 9.776 0.003 0.110
12.0–13.0 1.903 0.002 0.111
13.0–14.0 4.318 0.008 0.113
14.0–15.0 6.589 0.005 0.113

Table 12
The calculated (p,n) type (14) and (n,p) type (15) bin-wise strengths
(columns 2 and 4, respectively), up to 15 MeV of excitation energy,
for Gamow–Teller transitions to 1+ states in 128I. Comparison with the
experimental bin-wise (p,n) strength distribution from [60] is given in
column 3. The cumulative 2νββ NME (16) for the A = 128 system
of isobars is given in the last column of the table. The quantities are
computed for the parameter values gpp = 0.530, gA(β) = 0.333 and
gA(ββ) = 0.400.

Bin (MeV) B(GT)− B(GT)+ M
(2ν)
cumul

Calc. Exp. [60]

0.0–1.0 0.165 0.177 0.016 0.0224
1.0–2.0 0.121 0.380 0.001 0.0254
2.0–3.0 0.068 0.270 0.001 0.0256
3.0–4.0 0.254 < 0.04 0.001 0.0279
4.0–5.0 0.649 < 0.04 0.070 0.0406
5.0–6.0 0.000 0.000 0.0406
6.0–7.0 1.345 0.038 0.0438
7.0–8.0 0.000 0.000 0.0438
8.0–9.0 0.000 0.000 0.0438
9.0–10.0 0.003 0.001 0.0439

10.0–11.0 0.415 0.001 0.0441
11.0–12.0 4.399 0.002 0.0433
12.0–13.0 0.496 0.002 0.0437
13.0–14.0 0.048 0.002 0.0437
14.0–15.0 0.304 0.001 0.0437
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Fig. 8. Effective strength functions of (14) [upper panel] and (15) [lower panel] for Gamow–Teller transitions to 1+ states
in 100Tc. The parameter values gpp = 0.829, gA(β) = 0.655 have been used.

NME at 4–5 MeV for the A = 128 system. The final value of the NME is 0.0442, not far from
the last value of the cumulative NME quoted in Table 12. For the A = 100 system the NME
is slowly decreasing and achieves its final value at 0.209, very close to the last value of the
cumulative NME in Table 10.

To get a visual feeling of the effective strength functions they are presented separately in
Figs. 8–10, where the upper panel relates to the B(GT)− strength (14) and the lower panel to the
B(GT)+ strength (15). As can be seen from the figures the B(GT)− strength looks qualitatively
similar for A = 100 and A = 128 but for A = 116 the bulk of the strength is at a higher energy
and the Giant resonance is more spread. For A = 100 and A = 116 the B(GT)+ strength looks
similar, except for A = 116 there is practically nothing beyond the first peak. For A = 128 there
is relatively more B(GT)+ strength at intermediate energies but the absolute strength is quite
small as compared to the other two cases.

It is yet unclear what is the primary reason for the quenching of gA and what is the share
between the model-dependent and model-independent components of the quenching. The model-
independent quenching can be associated with the non-nucleonic, i.e. isobaric degrees of freedom
in nuclear matter [62,63]. The model-dependent quenching, associated with the limitations in
the single-particle models space (ISM, IBA-2, IBFFM-2) or the lack of complicated many-
nucleon configurations (pnQRPA, IBA-2, IBFFM-2) is certainly there and surprisingly enough
the pnQRPA-based and the IBFFM-2 based formalisms seem to produce similar magnitudes of
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Fig. 9. Effective strength functions of (14) [upper panel] and (15) [lower panel] for Gamow–Teller transitions to 1+ states
in 116In. The parameter values gpp = 0.515, gA(β) = 0.710 have been used.

quenching. The handling of quenching of gA in different theory frameworks is an extremely
interesting issue and certainly necessitates further investigation in the future.

6. Summary and conclusions

Two-neutrino double beta decays and single EC and β− decays have been studied for the
A = 100 (100Mo–100Tc–100Ru), A = 116 (116Cd–116In–116Sn) and A = 128 (128Te–128I–128Xe)
isobaric triplets in the framework of the proton–neutron quasiparticle random-phase approx-
imation. The present calculations have been done in large single-particle model spaces with
G-matrix based two-nucleon interactions. By examining the cumulative sums of the 2νββ NMEs
we conclude that the three discussed isobaric systems behave differently in terms of cumulative
contributions. By letting the value of the axial-vector coupling constant gA vary freely, together
with the particle–particle interaction strength parameter gpp, we can reproduce both the single
and double beta decay data of a given isobaric triplet by using one value of gpp and two values
of gA, one for the single beta decays [gA(β)] and one for the double beta decay [gA(ββ)]. The
values of gA(β) and gA(ββ) vary widely as functions of the mass number A. However, taking
average values over A a common quenched value of 〈gA〉 ≈ 0.6±0.2 is arrived at. These findings
may have drastic implications for the highly interesting 0νββ NMEs. The relation of our present
results to the values of the 0νββ NMEs remains still an open issue but we view the present study
as an incentive to tackle these issues in future investigations. Finally, it should be noted that in the
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Fig. 10. Effective strength functions of (14) [upper panel] and (15) [lower panel] for Gamow–Teller transitions to 1+
states in 128I. The parameter values gpp = 0.530, gA(β) = 0.333 have been used.

present analysis we have used bare transition operators. In the case of a more advanced approach,
using effective transition operators [64], the situation changes and part of the renormalization of
gA may be absorbed into these operators.
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