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CHERN-SIMONS FIELD THEORY ON THE GENERAL AFFINE GROUP, 3d-GRAVITY

AND THE EXTENSION OF CARTAN CONNECTIONS

S. CAPRIOTTI

ABSTRACT. The purpose of this article is to study the correspondence between 3d-gravity
and the Chern-Simons field theory from the perspective of geometric mechanics, specifically
in the case where the structure group is the general affine group. To accomplish this, the
paper discusses a variational problem of the Chern-Simons type on a principal fiber bundle
with this group as its structure group. The connection to the usual Chern-Simons theory is
established by utilizing a generalization, in the context of Cartan connections, of the notion
of extension and reduction of connections.

1. INTEGRABLE FIELD THEORIES AND GRAVITY

Chern-Simons field theory is a well-known type of gauge field theory [CS74; DJT82;
Fre95] whose quantization yields to topological field theory [Wit88b; RSW89]. In its
more general setting [Fre95], the fields in Chern-Simons gauge theory are connections
on any K-principal bundle with fixed base space. In this vein, the Chern-Simons action
is considered as a function on the (infinite dimensional) manifold of the K-connections
on a fixed base space M, and it is evident that the construction of this manifold requires
a precise knowledge of every K-principal bundle on M. Although this operation can be
performed successfully (getting more complicated as the dimension of M increases), this
scheme is out of range of the geometrical formulation for field theory [GIM97; Ble81;
LSVn15; LMD03; EEMLRR96], because in this approach the fields should be sections of
a definite bundle (preferably, of finite dimension). A successful formulation for Chern-
Simons field theory fitting in this geometrical scheme is described in [Tej04], using a
variational problem posed by local Lagrangians; a multisymplectic formulation for Chern-
Simons field theory can be found in [GGRR23], where the structure of the constraints
arising from the singular nature of the Lagrangian is studied. The formulation we will use
in this article is inspired in [Wis+09], and uses Cartan connections as fields.

On the other hand, it is an interesting result [AT86; Wit88a] that when gauge group is
the Poincaré group ISO (2, 1), Chern-Simon field theory in dimension 3 can be related with
Palatini gravity on a spacetime of the same dimension. This correspondence is achieved
by the splitting

iso (2, 1) = so (2, 1) ⊕ R
3,

that decomposes the field A in two parts, one living in R
3 and another in so (2, 1); the idea

is to recognize each of these fields as a vierbein and a so (2, 1)-connection respectively,
which can be seen as the basic fields for the Palatini description of general relativity. In
[Wis+09], this scheme is generalized to pair of algebras g ⊂ h defining a Cartan connec-
tion on a G-principal bundle π : P →M.

A remarkable fact is that, in some of these descriptions of Chern-Simons theory and its
connection with gravity, is usual a certain lack of definiteness with respect to the nature
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of the principal bundle to which the connections of the theory belongs. While the cor-
responding base space and structure group are properly set, it is avoided any precision
on the geometrical characteristics of such bundle. Not that it keeps people away from
working with Chern-Simons gauge theory: It is in this context where frameworks like the
one discussed by Freed are fruitful. Moreover, the informed reader could recall that when
dealing with gravity, a metric is available, and it can be used to select suitable subbundles
of the frame bundle. Nevertheless, this answer should be considered as partial, and in
fact might put us in a paradoxical situation, because the metric is part of the dynamical
fields in gravity, and so it should be necessary to solve the equations of motion of gravity
before constructing the bundle where the fields should live. Therefore, it seems to ap-
pear a tension between the formalism describing field theory from a geometric viewpoint,
and the characteristics that a Chern-Simons gauge theory must have in order to represent
gravity. At the end, the apparent paradox is solved by invoking the gauge symmetry of the
Lagrangian, but it could be interesting to explore how to deal with this situation from a
geometrical point of view.

These considerations set the aims of the article. Basically, we are looking for a formula-
tion of the correspondence between Chern-Simons field theory and gravity (for spacetime
dimension m = 3) where the structure groups of the involved principal bundle are re-
spectively the affine general group A (3) and the general linear group GL (3). In order to
achieve this objective, we will generalize the scheme posed by Wise. The main tool used
for the generalization is the (as far as I know, novel) formulation of a concept equivalent
to extension of a connection for Cartan connections (see Section 4 below). The idea for
the generalization is that any Cartan connection can be seen as a principal connection on
a suitable bundle (i.e. Proposition 3); thus the extension of a Cartan connection is the
Cartan connection induced by the extension of this associated principal connection. As we
will see, a drawback of this construction is that, in general, the connections obtained will
be of more general nature than Cartan connections (are generalized Cartan connections,
as defined in [AM95]).

Let us describe in some detail how this scheme will be implemented. In the formulation
of Wise, the basic geometrical data is a K-principal bundle Rζ, and its fields are described
by a Cartan connection taking values in a Lie algebra g such that k ⊂ g. Let us recall that
the Lorentz group K = SO (m− 1, 1) becomes a subgroup of different Lie groups G in the
Wise scheme, depending on the sign of the cosmological constant Λ; namely, we have that
the total group G is in each case

G =






SO (m, 1) Λ > 0

K⊕ R
m Λ = 0

SO (m− 1, 2) Λ < 0.

K enters as subgroup in the case Λ < 0 through the immersion

ι− (A) =

[
A 0

0 1

]

for every A ∈ K, and

ι+ (A) =

[
1 0

0 A

]
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in the case Λ > 0. In the present article we will focus in the case Λ = 0; the other cases
will be considered elsewhere.

In order to see how to proceed for the generalization of this scheme to a principal
bundle with structure group GL (m), let us consider the following diagram of Lie groups:

GL (m) K

GL (m)⊕ R
m K⊕ R

m

Arrows are induced by canonical inclusions. We want to promote it to a commutative
diagram involving principal bundles with structure groups borrowed from the nodes of
this diagram. Now, what kind of K-principal bundle Rζ on a manifold M has a Cartan
connection with values in the Lie algebra g = k ⊕ R

m? A possible answer can be found
using geometrical considerations. In fact, as it is indicated in [Sha97; Bar04], whenever
the map

Ad : K→ GL (k⊕ R
m/k) = GL (m)

is injective, Rζ becomes a K-structure, namely, it is a K-subbundle of the frame bundle
LM; in this case, the previous diagram has an analogous diagram at principal bundle level

M LM Rζ

AM LM [GL (m)⊕ R
m] Rζ [K⊕ R

m]

γ

τ

β◦τ

Here AM indicates the affine frame bundle of the spacetime M, maps β : AM → LM,γ :

LM→ AM are canonical maps between these bundles (see Appendix C), and the symbol
P [G], where π : P → M is an H-principal bundle and G ⊃ H is a Lie group containing
H, indicates the extension of P by enlarging its structure group to G (this construction is
detailed in Section 3 below). Therefore, we will restrict ourselves to Cartan connections
describing Palatini gravity on a K-structure Rζ; in this setting we devise a method to extend
them to Cartan connections on LM, in order to reproduce the correspondence between
Chern-Simons field theory and Palatini gravity in a case where the structure group is the
general linear group GL (m).

Let us briefly describe the structure of the article. The geometrical tools used through-
out the article are presented in Section 2. The description of Cartan connections as sections
of a bundle is carried out in Section 3; this description is necessary due to the type of ge-
ometrical formulation adopted for the variational problems. The operations of extension
and reduction for generalized Cartan connections are developed in Section 4. Although
the author’s knowledge of Cartan connections is far from exhaustive, it seems that these
operations, even though they are a direct consequence of the procedure of identification
between Cartan connections and principal connections on the extended bundle, have not
been described previously in the literature. If this is indeed the case, this section represents
an original contribution of the present article. The variational problems for Chern-Simons
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and gravity are described in Section 5. The main contribution of this section is to find
a global formulation for the Chern-Simons field theory in terms of jet bundles (Section
5.1); the price that must be paid for this formulation is the appearance of an additional
constraint (see Remark 4). The main result of the article is discussed in Section 6: A varia-
tional problem of the Chern-Simons type has been found, but with a structure group given
by the general affine group (Section 6.1) such that the extremals of any Chern-Simons
theory (described in terms of the Section 5.1) are in a bijective correspondence with their
extremals through the extension and reduction operations of Section 4.

Notations. We are adopting here the notational conventions from [Sau89] when dealing
with bundles and its associated jet spaces. It means that, given a bundle π : P →M, there
exists a family of bundles and maps fitting in the following diagram

· · · Jk+1π Jkπ · · · J1π P

· · · · · ·

M

πk+1,k

πk+1

πk,k−1

πk

π21

π1

π10

π

Sections of π : P → M will be indicate by the symbol Γπ. The set of vectors tangent to P

in the kernel of Tπ will be represented with the symbol Vπ ⊂ TP. In this regard, the set of
vector fields which are vertical for a bundle map π : P →M will be indicated by XVπ (P).
The space of differential p-forms, sections of Λp(T∗Q) → Q, will be denoted by Ωp(Q).
We also write Λ•(Q) =

⊕dim Q
j=1 Λj(T∗Q). If f : P → Q is a smooth map and αx is a p-

covector on Q, we will sometimes use the notation αf(x) ◦ Txf to denote its pullback f∗αx.
If P1 → Q and P2 → Q are fiber bundles over the same base Q we will write P1 ×Q P2 for
their fibered product, or simply P1 × P2 if there is no risk of confusion. Unless explicitly
stated, the canonical projections onto its factor will be indicated by

pri : P1 × P2 → Pi, i = 1, 2.

Given a manifold N and a Lie group G acting on N, the symbol [n]G for n ∈ N will indicate
the G-orbit in N containing n; the canonical projection onto its quotient will be denoted
by

pN
G : N→ N/G.

Also, if g is the Lie algebra for the group G, the symbol ξN will represent the infinitesimal
generator for the G-action asssociated to ξ ∈ g. Finally, Einstein summation convention
will be used everywhere.

We will be working with several different types of connections, so it will be necessary
to have a notational convention for them. Giving a H-principal bundle p : Q → M, the
first jet bundle J1p has a h-valued 1-form that is called canonical connection; this form will
be indicated by the symbol

θJ1p ∈ Ω1
(
J1p, h

)
.

Because it will become a connection form, its associated curvature form will be denoted
by

ΘJ1p ∈ Ω2
(
J1p, h

)
.

On the other hand, two different types of connection will be considered on a principal
bundle p : Q→M. First, it could have a connection form, which will be indicated as ωQ;



CHERN-SIMONS, 3d-GRAVITY AND EXTENSIONS 5

its asscoiated curvature form will be ΩQ. Moreover, if the structure group H is a subgroup
of a bigger Lie group G ⊃ H, then we can have on Q a g-valued 1-form, which will be
denoted as AQ, and the curvature connection will become FQ.

2. SOME GEOMETRICAL TOOLS

The following section collects geometrical facts regarding principal bundles and Cartan
connections on them.

2.1. Geometry of the jet space of a principal bundle. Throughout the article, we will
make extensive use of the geometrical tools related to the jet space associated to a principal
bundle, as well as its connection bundle, as they are discussed in [Gar72; CM01]. So, in
order to proceed, let p : Q → N be a principal bundle with structure group H; then we
can lift the right action of H on Q to a H-action on J1p, and so define the bundle

p : C (Q) := J1p/H→M

fitting in the following diagram

J1p

Q C (Q)

M

p10
p

J1p
H

p p

It can be proved [CM01] that this diagram defines J1p as a pullback, namely, that

(2.1) J1p = p∗Q = Q×M C (Q) .

We know that J1p comes equipped with the contact structure, that can be described by
means of a Vp-valued 1-form

(2.2) θJ1p
∣∣
j1xs

:= Tj1xsp10 − Txs ◦ Tj1xsp1;

moreover, because p : Q → N is a principal bundle, we have the bundle isomorphism on
Q

Vp ≃ Q× h.

It means that we can consider θ as a h-valued 1-form; in fact, with respect to the K-
principal bundle structure

p
J1p
H : J1p→ C (Q) ,

the 1-form θ becomes a connection form, dubbed canonical connection form. It has the
following property.

Proposition 1. Let ΓQ : Q → J1p be a connection on Q. Then its connection form ωQ ∈

Ω1 (Q, h) can be constructed from the canonical connection form through pullback along ΓQ,

ωQ = Γ∗QθJ1p.
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For any manifold M of dimension m, the bundle τ : LM→M is the frame bundle of M,
is defined through

(2.3) LM :=
⋃

x∈M

{u : Rm → TxM linear and with inverse} .

It has a canonical free GL (m,R)-action, given by the formula

u ·A := u ◦A, u ∈ LM,A ∈ GL (m,R) .

Let η ∈ Mm (R) be a non degenerate symmetric m × m-matrix with real entries; for
definiteness, we will fix

η :=




−1 0 · · · 0

0 1 0
...

. . .
...

0 · · · 0 1


 ,

although the constructions we will consider in the present article should work with any
signature. Then we have a Lie group K ⊂ GL (m,R) defined by

(2.4) K :=
{
A ∈ Mm (R) : AηAT = η

}
.

Then we have an action of K on LM; it yields to a bundle

τΣ : Σ := LM/K→M.

Lemma 1. The bundle Σ is the bundle of metrics of η-signature on M.

Let us indicate with k the Lie algebra of K; then, we have that

k :=
{
a ∈ gl (m,R) : aη+ ηaT = 0

}
.

Accordingly, we can define the K-invariant subspace

(2.5) p :=
{
a ∈ gl (m,R) : aη− ηaT = 0

}
,

usually called transvections (see [Wis+09]); it follows that

gl (m,R) = k⊕ p.

We will need this result concerning some natural properties of the canonical connec-
tions.

Lemma 2. Let p : Q→ N be a H-principal bundle and iζ : Rζ →֒ Q a L-principal subbundle,

with projection

pζ : Rζ → N.

We have the following relation between the canonical connections on J1p and J1pζ, namely
(
j1iζ

)∗
θJ1p = θJ1pζ

,

where θJ1p ∈ Ω1
(
J1p, h

)
and θJ1pζ

∈ Ω1
(
J1pζ, l

)
are the corresponding canonical connec-

tion forms.

Proof. The lemma follows from the formula

θJ1p
∣∣
j1xs

◦ Tj1xσ
(
j1iζ

)
= Tσ(x)iζ ◦ θJ1pζ

∣∣
j1xσ

,

valid for any j1xs = j1iζ
(
j1xσ
)

and j1xσ ∈ J1pζ. �
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Assuming that some topological conditions on the manifold M hold1, a family

{Oζ : ζ : M→ Σ metric}

of subbundles of LM can be constructed; namely, let us define

Oζ := {u ∈ LM : ζ (u (w1) , u (w2)) = η (w1, w2) for all w1, w2 ∈ R
m} .

Here η : Rm × R
m → R indicates the bilinear form associated to the matrix η.

2.2. Introduction to Cartan geometry. Let us recall the definition of Cartan connections
on a principal bundle [Wis10; AM95; Sha97]. Let (G,H) be a pair of Lie groups such that
H ⊂ G is a closed subgroup and G/H is connected. Recall that for every principal bundle
π : P →M with structure group H we have a map

κH : VP → h

such that
κH (ξP (u)) = ξ

for every ξ ∈ h and every u ∈ P.

Definition 1 (Cartan geometry). A Cartan geometry modelled on the pair (G,H) is an
H-principal bundle π : P →M together with a g-valued 1-form A on P such that

(i) Au : TuP → g is a linear isomorphism for every u ∈ P,
(ii) R∗

hA = Adh−1 ◦A for every h ∈ H, and
(iii) A|VP = κH.

The form A is called the (principal) Cartan connection for the given Cartan geometry.

A Cartan geometry on a manifold provides us with a associated bundle description of
its tangent bundle, as the following result indicates.

Proposition 2. Let (π : P →M,A) be a Cartan geometry modeled on the pair (G,H). Then

TM is isomorphic as vector bundle to the associated bundle

P ×H g/h,

where H acts on g/h through the quotient representation induced by the Ad (H)-action on g.

Proof. Let u ∈ P; because Au : TuP → g satisfies A|VP = κH, it induces a morphism

φu : TxM→ g/h : vx 7→ πg/h (Au (v̂x)) ,

where x = π (u), v̂x ∈ TuP is any element projecting onto vx via Tuπ, and

πg/h : g→ g/h

is the canonical projection onto the quotient. It becomes an isomorphism because Au is
also an isomorphism, and given that this map is H-equivariant, we have that

φu·h = Adh−1 ◦ φu

for every u ∈ P ad h ∈ H. Therefore, we have the isomorphism of bundles q : P×H g/h→
TM given by

q
([

u, [ξ]h

]
H

)
:= (φu)

−1
(
[ξ]h

)
,

that can be proved to be well-defined. �

1The existence of a metric with (p, q)-signature is equivalent to the splitting of the tangent bundle TM in a
direct sum of vector subbundles of rank p and q respectively.
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We should stress that a Cartan connection is not a principal connection on P, because it
takes values in the larger Lie algebra g; nevertheless, there exists a relationship between
these concepts [Pan98]. Consider H as a G-space through left multiplication, and construct
the associated bundle

P [G] := P ×H G;

it is a G-principal bundle, and we have a canonical inclusion γ : P →֒ P [G] given by

γ (u) := [u, e]H .

It is known that every morphism of G-principal bundles on a fixed basis M is an isomor-
phism [Ste99]; this fact gives rise to the following property of the extension procedure
described above.

Lemma 3. Let P be an H-principal bundle on M and suppose further that it is a subbundle

of a G-principal bundle Q on M. Then Q ≃ P [G].

Proof. Let i : P →֒ Q be the immersion of P into Q; then we have the morphism

φ : P [G]→ Q : [u, g]H 7→ i (u) · g.

It is a morphism of G-principal bundles on M; therefore, Q and P [G] are isomorphic, as
desired. �

The extension of a principal bundle can be used to relate Cartan connections with
principal connections [AM95; Sha97; Pan98].

Proposition 3. The Cartan connection A : TP → g induces on P [G] a unique principal

connection form Ã : TP [G]→ g such that

γ∗Ã = A.

Conversely, suppose that dimP = dimG and let Ã be a principal connection on P [G] such

that

(2.6) ker Ã ∩ Tγ (TP) = {0} .

Then A := γ∗Ã is a Cartan connection on P.

Proof. Because the quotient map pP×G
H : P × G → P [G] is surjective, any element W ∈

T[u,g]H
P [G] can be represented as

W = T(u,g)p
P×G
H (Xu, TeLgζ)

for Xu ∈ TuP and ζ ∈ g. Then we define

Ã
∣∣∣
[u,g]H

(W) := ζ+ Adg−1 A|u (Xu) .

It can be proved that it is well-defined, and defines a principal connection on P [G].
Now, let us suppose that we have a principal connection Ã on P [G] and define

A := γ∗Ã : TP → g.

Let us verify that it is a Cartan connection on P. Because of the condition (2.6), the map

Au : TuP → g

is a monomorphism; because dim TuP = dimP = dimG = dim g, we have that this map is
an isomorphism.
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Aditionally, for any h ∈ H

R∗

hA = R∗

hγ
∗Ã

= (γ ◦ Rh)
∗
Ã

= (Rh ◦ γ)∗ Ã

= γ∗R∗

hÃ

= γ∗

(
Adh−1 ◦ Ã

)

= Adh−1 ◦A.

Finally, let us take ξ ∈ h; because of the identity

Tuγ (ξP (u)) = ξP[G] (γ (u))

we will have that

Au (ξP (u)) = Ãγ(u) (Tuγ (ξP (u))) = Ãγ(u)

(
ξP[G] (γ (u))

)
= ξ

for any u ∈ P. �

3. CARTAN CONNECTIONS AND JET BUNDLES

The basic idea for the geometrical interpretation of the correspondence between Chern-
Simons field theory and gravity is due to Wise [Wis+09; Wis10], and uses a Chern-Simons
Lagrangian evaluated on forms that are not principal connections, but Cartan connections.
As we have pointed out before, this approach is not convenient when you try to understand
Chern-Simons field theory from the viewpoint of geometric mechanics (i.e., the setting
described in [GIM97; GIM04; Got91a; Got91b; EEMLRR96]). Therefore, we will devote
the next section to translate the formalism of Cartan connections into the realm of jet
bundles, in order to have at our disposal a language suitable for the description of Chern-
Simons field theory from this viewpoint.

3.1. Canonical (generalized) Cartan connection on a jet bundle. Thus, we have that a
Cartan connection on an H-principal bundle P can be seen as a principal connection Ã on
the extended bundle P [G], provided that

(a) P has the same dimension than G, and
(b) the horizontal spaces of this connection are complementary to the tangent spaces

of P (viewed as subspaces of the tangent spaces of P [G]).

We can reformulate the second condition in terms of jet bundles; in fact, let us define
the set

Uγ :=
{
j1xs ∈ J1π[G] : Ts(x)Rg−1 (Txs (TxM)) ∩ Tuγ (TuP) = {0} iff s (x) = [u, g]

}
.

Using decomposition (2.1), we can see that sections having its images in this set corre-
sponds exactly with connections on P [G] that verify condition (b) above. It gives us the
following characterization for condition (2.6) in terms of the jet bundle of the extended
principal bundle P [G].

Proposition 4. A connection Γ̃ : P [G] → J1π[G] will satisfy Equation (2.6) if and only if

Γ̃ ([u, g]) ∈ Uγ for all [u, g] ∈ P [G].

Now, we have the following result.
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Lemma 4. The set Uγ is open in J1π[G].

Proof. Given V1, V2 ⊂ V a pair of subspaces of the (finite-dimensional) vector space V , fix
basis B1, B2 and B for each of them. Thus the condition

V1 ∩ V2 = {0}

is equivalent to Fk 6= 0, where Fk is the sum of the squares of the k × k minors of the
matrix formed by the components of the vectors in B1 ∪ B2 respect to the basis B, where
k = dimV1 + dimV2. Consider now

V = Ts(x)P [G]

V1 = Ts(x)Rg−1 (Txs (TxM))

V2 = Tuγ (TuP) ;

in terms of local coordinates on J1π[G], Fk gives rise to a polynomial in the jet variables,
and the result follows. �

Therefore, instead of considering the variational problem for a Cartan connection over
the entire bundle J1π[G], we can restrict ourselves to the open set Uγ, thereby abandoning
condition (b) above. With this consideration in mind, let us generalize the notion of
Cartan connection; to this end we will use the notion of generalized Cartan connection, as
it is defined in [AM95].

Definition 2 (Generalized Cartan connection). A generalized (principal) g/h-Cartan con-

nection on an H-principal bundle π : P →M is a g-valued 1-form A on P such that

(i) R∗

hA = Adh−1 ◦A for every h ∈ H, and
(ii) A|Vπ = κH.

Let us consider the following diagram

J1 (π ◦ pr1) P ×G P

J1π[G] P [G] M

(π◦pr1)10

j1pP×G
H

pP×G
H

pr1

π

(π[G])
10

π[G]

The bundle π ◦ pr1 : P ×G→M together with the action

(u, g) · (h, g ′) := (u · h, gg ′)

is an H×G-principal bundle. Thus we have the following result.

Lemma 5. If θJ1(π◦pr1)
∈ Ω1

(
J1 (π ◦ pr1) , h× g

)
denotes the canonical connection on

J1 (π ◦ pr1) and θJ1π[G]
∈ Ω1

(
J1π[G], g

)
is the canonical connection on J1π[G], then

(
j1pP×G

H

)∗
θJ1π[G]

= pr
h×g
2 ◦ θJ1(π◦pr1)

,

where

pr
h×g
2 : h× g→ g

stands for the projection onto the second factor.
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Proof. Recall that the canonical connection on the jet bundle of a principal bundle π : P →
M is nothing but the Vπ-valued contact form, which can be seen as g-valued through the
identification

Vπ ≃ P × g.

It means that they have the property
(
j1pP×G

H

)∗
θJ1π[G]

= TpP×G
H ◦ θJ1(π◦pr1),

and the lemma follows from the identification between the vertical bundles and the Lie
algebras. �

3.2. Generalized Cartan connections as equivariant sections of a jet bundle. Recall
that a principal connection on P can be represented by an equivariant map Γ : P → J1π.
The next result gives an analogous representation for generalized Cartan connections.

Proposition 5. Any generalized Cartan connection A : TP → g gives rise to a H-equivariant

bundle map

ΓA : P → J1π[G]

covering the immersion γ : P →֒ P [G]. Conversely, for any H-equivariant bundle map Γ :

P → J1π[G] making the following diagram

J1π[G]

P P [G]

(π[G])
10

Γ

γ

commutative, there exists a generalized Cartan connection AΓ : TP → g such that

AΓ = Γ∗θJ1π[G]
.

Proof. The map ΓA : P → J1π[G] is given by

ΓA (u) : v ∈ TxM 7→ T(u,e)p
P×G
H (v̂u,−Au (v̂u)) ,

where v̂u ∈ TuP is any lifting of v ∈ TxM to TuP, and

pP×G
H : P ×G→ P [G]

stands for the canonical projection onto the quotient; it is well-defined because of the
identity

T(u,g)p
P×G
H (−ζP (u) , TeRg (ζ)) = 0

for every (u, g) ∈ P ×G and ζ ∈ h.
Let us now prove that

Γ∗AθJ1π[G]
= A

where θJ1π[G]
∈ Ω1

(
J1π[G], g

)
is the canonical connection form on J1π[G]. In order to

accomplish it, let us define the section Γ̃ : P [G]→ J1π[G] for
(
π[G]

)
10

such that

Γ̃ ([u, g]) : v ∈ TxM 7→ Tγ(u)Rg (ΓA (u) (v)) ∈ T[u,g]P [G] .
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Accordingly, we have the following commutative diagram

J1π[G]

P P [G]

ΓA

γ

Γ̃

Moreover, by fixing an auxiliary connection ω0 ∈ Ω1 (P, h) for P, we can define a map
Γ̂ω0

A : P ×G→ J1 (π ◦ pr1) such that

Γ̂ω0

A (u, g) (v) :=
(
vHu ,−TeRg−1

(
Au

(
vHu
)))

for every (u, g) ∈ P × G and v ∈ TxM; here vHu indicates the horizontal lifting of v to TuP

by means of the connection ω0. These maps fit in the following diagram

J1 (π ◦ pr1) P ×G P

J1π[G] P [G]

j1pP×G
H

Γ̂
ω0
A

pP×G
H

inc

γ

Γ̃

Namely, Cartan connection ΓA can be retrieved through the formula

ΓA = Γ̃ ◦ γ = j1pP×G
H ◦ Γ̂ω0

A ◦ inc;

therefore, because (
Γ̂ω0

A ◦ inc
)∗

θJ1(π◦pr1) = ω0 + A,

Lemma 5 implies that
Γ∗AθJ1π[G]

= A

as required. �

We can rephrase Proposition 3 using this correspondence.

Corollary 1. For any map Γ : P → J1π[G] covering γ we have a section Γ̃ : P [G] → J1π[G]

for
(
π[G]

)
10

, which is defined through

Γ̃ ([u, g]) : v ∈ TxM 7→ Tγ(u)Rg (Γ (u) (v)) ∈ T[u,g]P [G] .

Conversely, any connection Γ̃ : P [G] → J1π[G] gives rise to a map Γ : P → J1π[G] covering γ

by restriction to γ (P) ⊂ P [G].

Recall also the usual extension of principal connections in this context.

Proposition 6. Let H ⊂ G be a pair of Lie groups. Consider a G-principal bundle τ : Q→M

and let π : P → M be a H-principal subbundle; let i : P →֒ Q be the canonical immersion.

For every connection

Γ : P → J1π

the extension Γ̂ : Q→ J1τ of Γ is the map

Γ̂ (û) := j1i
(
j1Rg (Γ (u))

)
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if and only if û = i (u)g.

3.3. The bundle of (generalized) Cartan connections. We know [Gar72; CM01] that
connections on a H-principal bundle π : P →M can be seen either as equivariant sections
of the map π10 : J1π→ P or as sections of the quotient bundle

π : J1π/H→M.

Both descriptions are related by the following result.

Proposition 7. Let π : P →M be an H-principal bundle and suppose that we have a bundle

p : Q → P together with an H-action on Q such that p is an H-equivariant map; consider

the induced bundle p : Q/H → M. Then, any section σ : M → Q/H of p can be lifted to a

section σ̂ : P → Q of p and viceversa, any section of p induces a section of p by quotient.

Proof. Because the H-action on P is free, given [q] ∈ Q/H and u ∈ π−1 (p ([q])), there
exists a unique element q̃ ∈ [q] such that

p (q̃) = u.

Thus, for every x ∈ M, define

σ̂ (u) := q̃

if and only if σ (x) = [q] and q̃ ∈ [q] is such that

p (q̃) = u. �

In the case of Cartan connections, the description in terms of equivariant maps is pro-
vided by the following corollary of Proposition 5.

Corollary 2. A generalized Cartan connection can be represented as an H-equivariant section

of the pullback bundle

γ∗
(
J1π[G]

)
J1π[G]

P P [G]

pr
γ
2

pr
γ
1 (π[G])

10

γ

Thus, for g/h-Cartan connections, we have the following commutative diagram of bun-
dles

γ∗
(
J1π[G]

)
P

γ∗
(
J1π[G]

)
/H M

prγ
1

p
γ∗(J1π[G])
H

π

prγ
1

where on γ∗
(
J1π[G]

)
the H-diagonal action is considered. By proceeding in analogy with

the principal connections case, we obtain the following definition.



CHERN-SIMONS, 3d-GRAVITY AND EXTENSIONS 14

Definition 3 (Bundle of (generalized) g/h-Cartan connections). The bundle of (general-

ized) g/h-Cartan connections is the bundle

prγ1 : γ∗
(
J1π[G]

)
/H→M.

Remark 1. The Cartan connection form is thus recovered from a section

σ : M→ γ∗
(
J1π[G]

)
/H

through the following procedure: we construct the unique H-equivariant section σ̂ : P →
γ∗
(
J1π[G]

)
, which can be seen as a map Γσ : P → J1π[G]. The Cartan connection form is

then the pullback form

Aσ := Γ∗σθJ1π[G]
∈ Ω1 (P, g) .

Conversely, given a Cartan connection form A, we use Proposition 5 in order to construct
an H-equivariant map ΓA : P → J1π[G], and so a section

σA : M→ γ∗
(
J1π[G]

)
/H,

as required.

4. EXTENSIONS AND REDUCTIONS OF GENERALIZED CARTAN CONNECTIONS

We want to describe the connection between gravity and field theory using general-
ized connections on principal fiber bundles with the general linear group as the structure
group. To accomplish this task, it will be essential to have an operation of extension and
reduction of connections similar to those available for principal connections, but that work
on generalized Cartan connections.

Therefore, in the present section we will use the correspondence between general-
ized Cartan connections and principal connections on a extended bundle, as described
by Proposition 3, in order to generalize these constructions to the realm of (generalized)
Cartan connection.

4.1. How to extend a generalized Cartan connection. Let us consider the following
problem: Given the diagram of Lie groups

(4.1)

G

G1 G2

H

such that G1/H and G/G2 have the same dimension than M, and a generalized Cartan
connection A : TP → g1 on a H-principal bundle π : P → M, construct a generalized
Cartan connection A[G2] : TP [G2]→ g in a canonical way.

In order to properly address this problem, let us establish the following auxiliary result.

Lemma 6. Let K ⊂ G1 ⊂ G be a chain of Lie groups, and consider a K-principal bundle

π : P →M. Then

P [G] ≃ (P [G1]) [G] .
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Proof. The identification is given by the map

[u, g] ∈ P [G] 7→ Φ ([u, g]) := [[u, e] , g] .

In fact, for every [[u, h] , g ′] ∈ (P [G1]) [G], we have that

[[u, h] , g ′] = [[u, e] , hg ′] = Φ ([u, hg ′]) ,

showing that Φ is surjective. On the other hand, if [u, g1] , [u, g2] ∈ P [G] are such that

Φ ([u1, g1]) = Φ ([u2, g2]) ,

we will have that

[[u1, e] , g1] = [[u2, e] , g2] ,

meaning that [
u1, h

−1
]
= [u2, e] , hg1 = g2

for some h ∈ G1. Therefore

u1k
−1 = u2, kh−1 = e, hg1 = g2

and so

[[u2, e] , g2] =
[[
u1k

−1, e
]
, kg1

]
= [[u1, e] , g1] .

This shows that Φ is also injective. �

This lemma allows us to lift Diagram 4.1 to principal bundles level:

(4.2)

P [G]

P [G1] P [G2]

P

γG1
γG2

γ1
H γ2

H

Remark 2. It is interesting to note that, in view of Lemma 3, the solution to this problem
described below, will apply to any diagram of principal bundles

Q

P1 P2

P

j1 j2

i1 i2

where P, P1, P2, Q are H,G1, G2, G-principal bundles respectively, and the arrows indicate
principal bundle immersions.

The idea to extend the g1/h-Cartan connection on P is to use Proposition 3; with its
help, we can find a principal connection on the bundle P [G1], and then lift it through the
map γG1

: P [G1] →֒ P [G]. Afterwards, we can induce a g/g2-Cartan connection on P [G2]

using Proposition 3 together with the map γG2
: P [G2] →֒ P [G].
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Proposition 8. Given any generalized g1/h-Cartan connection A : TP → g1, there exists a

unique generalized g/g2-Cartan connection B : TP [G2] → g with the following property: If

B̃ : TP [G] → g is the principal connection on P [G] associated to B and Ã : TP [G1] → g1 is

the corresponding principal connection for A, we have that

γ∗

G1
B̃ = Ã.

In terms of bundle maps, this correspondence proceeds as follows: Given a Cartan
connection

Γ : P → J1π[G1],

we can define a principal connection Γ̃ : P [G]→ J1π[G] through

Γ̃ ([u, g]) : v ∈ TxM 7→ TγG1
([u,e])Rg (TuγG1

(Γ (u) (v))) .

Then the induced g/g2-Cartan connection is the map

(4.3) Γ ♯ ([u, g]) : v ∈ TxM 7→ TγG1
([u,e])Rg (TuγG1

(Γ (u) (v)))

for every [u, g] ∈ P [G2] ≡ γG2
(P [G2]).

4.2. Reducible Cartan connection. What about the converse of this result? Namely,
given a g/g2-Cartan connection, will it restrict to a g1/h-Cartan connection on P? The
problem with this question is that, because of the way in which the extension is defined,
we have that B̃ should be g1-valued, at least when it is restricted to P [G1]. It poses some
restrictions to the desired converse result.

Proposition 9. Let Γ ♯ : P [G2] → J1π[G] be a generalized g/g2-Cartan connection on P [G2].

If the induced principal connection

Γ̃ : P [G]→ J1π[G]

is such that

Γ̃ (γG1
([u, g1])) ∈ j1γG1

(
J1π[G1]

)

for all [u, g1] ∈ P [G1], then it reduces to a generalized g1/h-Cartan connection on P

Γ : P → J1π[G1]

through the formula

Γ̃ (γG1
([u, e])) = j1γG1

(Γ (u)) .

A commutative diagram could be clearer in illustrating these matters

(4.4)

J1π[G] P [G]

P [G1] P [G2]

J1π[G1] P

Γ̃

γG1

γG2

Γ♯

j1γG1

(
π[G1]

)

10

γ1
H

γ2
H

Γ

γG
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4.3. Examples of extensions for (generalized) Cartan connections. Here we will con-
sider some examples for the constructions devised above; the example concerning K-
structures will be relevant when we will consider the relationship between Wise formu-
lation of the correspondence Chern-Simons and gravity and the formulation of the corre-
spondence in terms of bundle with the group GL (m) as structure group (see Section 6.3
below).

4.3.1. Extension of principal connections. Let G be a Lie group and H ⊂ G a closed Lie
subgroup. As a first example, let us consider the pair of diagrams

(4.5)

Q G

P Q H G

P H

where π : P → M is a H-principal bundle and p : Q → M is a G-principal bundle; the
left diagram is the principal bundles diagram, and the right diagram corresponds to the
underlying Lie groups. In this case, Proposition 8 reduces to the usual result on extensions
of principal connections (see Proposition 6.1 in [KN63]); on the other hand, hypothesis in
Proposition 9 is equivalent to the reducibility of the principal connection on Q.

4.3.2. Induced principal connection for a Cartan connection. Let H,G, P,Q be as in the
previous section. We can put Proposition 3 also in this context; to this end, let us consider
the diagrams

Q G

Q Q G G

P H

comprising Lie groups and their principal bundle counterparts. In this setting, the ad-
ditional hypothesis in Proposition 9 is automatically fulfilled. So, once we realize that
Q ≃ P [G] via Lemma 3, Proposition 8 and Proposition 9 are nothing but Proposition 3.

4.3.3. K-structures on space-time. The previous scheme can also be applied to the case
in which the original relationship between Palatini gravity (formulated on a SO (2, 1)-
subbundle of LM) and Chern-Simons field theory (on a SO (2, 1) ⋉ R

3-principal bundle)
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is promoted to a relationship between gravity formulated in the bundle LM and Chern-
Simons theory on a bundle with structure group GL (3)⋉R

3. Diagram (4.1) then becomes

(4.6)

GL (m)⋉R
m

SO (p, q)⋉R
m GL (m)

SO (p, q)

that in terms of principal bundles turns out to be

AM

Oaff
ζ LM

Oζ

Here Oζ ⊂ LM and Oaff
ζ ⊂ AM are the SO(p, q)- and SO(p, q) ⋉ R

m-structures respec-
tively, defined through

Oζ :=
⋃

x∈M

{u : Rm → TxM : ζ(u (v) , u (w)) = η (v,w) for all v,w ∈ R
m}

and

Oaff
ζ :=

⋃

x∈M

{u : Rm → AxM : ζ(β (u (v)) , β (u (w))) = η (v,w) for all v,w ∈ R
m}

for some metric ζ : M→ Σ := LM/K with (p, q)-signature.
Let us use the local description for the frame bundle and its affine counterpart (see

Appendix C) in order to show how the proposed extension works in this case. Let us
consider (xµ, fνi ) the natural coordinates of an element in Oζ; it means that

gµνf
µ
i f

ν
j = ηij,

where ζ = gµνdx
µ ⊗ dxν. The map

φ : LM×GL(m) A (m)→ AM

constructed in Proposition 14, Appendix C.2, reads in these coordinates

(4.7) φ
([
(xµ, fνi ) ,

(
ai
j, 0
)])

=
(
xµ, aj

if
ν
j

)
.

Now, from a local data

(4.8)
(
AOζ

)
U
=
(
Γαγβdx

β ⊗ Eγ
α, σ

α
βdx

β ⊗ eα
)

for the Cartan connection AOζ
∈ Ω1 (Oζ, k⋉R

m), using Proposition 5 we obtain a map

ΓAOζ
: Oζ → J1

(
(β ◦ τ)|Oaff

ζ

)
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that is locally given by

ΓAOζ
(xµ, fνi ) = dxµ ⊗

(
∂

∂xµ
− fγi Γ

α
γµ

∂

∂eαi
− σα

µ

∂

∂vα

)

Remark 3. As an aside comment that will become important later, it can be proved that
relation (5.9) below implies that

Fµ :=
∂

∂xµ
− f

γ
i Γ

α
γµ

∂

∂eαi

is a vector field tangent to Oζ, and so

ΓAOζ
(xµ, fνi ) ∈ J1

(
(β ◦ τ)|Oaff

ζ

)
.

Namely, as expected, the metricity condition implies that ΓAOζ
takes values in the jet

bundle of the affine subbundle determined by the metric ζ.

Now, using Equation (4.3), we obtain the induced Cartan connection given by the map

Γ
♯
AOζ

([
(xµ, fνi ) ,

(
ai
j, 0
)])

= dxµ ⊗

(
∂

∂xµ
− a

j
if

γ
j Γ

α
γµ

∂

∂eαi
− σα

µ

∂

∂vα

)
,

and using identification (4.7), it will become

Γ ♯AOζ
(xµ, eνi ) = dxµ ⊗

(
∂

∂xµ
− eγj Γ

α
γµ

∂

∂eαi
− σα

µ

∂

∂vα

)
.

This is nothing but the Cartan connection associated to local data (4.8), when it is consid-
ered as providing a a (m) /gl (m)-Cartan connection on the frame bundle LM.

5. VARIATIONAL PROBLEMS FOR CHERN-SIMONS FIELD THEORY AND GRAVITY

We will use the present section to introduce the variational problem for Chern-Simons
field theory used by Wise in [Wis+09; Wis10], and the variational problem for gravity
with basis, both in a form suitable for the purposes of this article. Concretely, we will try
to find a formulation for these variational problems fitting in the scheme devised by Gotay
in the pioneering works [Got91c; Got91a]. It means that we need to find for each of these
descriptions a triple

(π : P →M,λ, I) ,

where π : P → M is a bundle on the base space M, λ ∈ Ωn (P) is an n-form (where
n = dimM), and I ⊂ Ω• (P) is a differential ideal in the exterior algebra of P (a so called
exterior differential system, see [Bry11; Bry+91; IL03]). As Gotay explained in the article
referenced above, with these data it is possible to formulate a variational problem in the
following way: To find the stationary sections σ : U ⊂ M→ P for the action

S [σ] :=

∫

U

σ∗λ

subject to the constraints σ∗α = 0 for all α ∈ I. In the present article we will use the term
Gotay variational problem to refer to this kind of variational problems; in this secrtion we
will describe Chern-Simons field theory and gravity from this viewpoint.
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5.1. Wise variational problem. Our first objective is to find a variational problem of
this type for the Chern-Simons field theory, as described in the articles by Wise [Wis+09;
Wis10]. To do this, we will use as a starting point the description of this field theory given
by Tejero Prieto [Tej04], which uses a formulation in terms of local variational problems.
First, we will study how the canonical forms of the jet space of a principal fiber bundle can
be used to globalize this collection of local variational problems. Then, we will introduce a
constraint that will relate the degrees of freedom of the underlying principal bundle with
the degrees of freedom of the Cartan connection. It should be clarified that this constraint
is absent in Wise’s description because the relevant degrees of freedom are associated only
with the connection, whereas in our approach, by using the frame bundle as the underlying
principal bundle, we have degrees of freedom that can be used to represent the coframe
(see Remark 4 below).

5.1.1. Local formulation for Wise variational problem. Let us suppose that we have a Car-
tan geometry modelled on the pair (G,H). The Cartan connection A associated to this
geometry can be described locally by a collection of pairs (U,AU), where U ⊂ M are open
sets and AU ∈ Ω1 (U, g) are g-valued 1-forms such that the map

πh ◦ AU|x : TxU→ g/h

is a linear isomorphism. These forms are related to the Cartan connection A through a
section sU : U→ P, via the map

AU = s∗UA.

Now, according to Freed [Fre95], on every trivializing neighborhood U ⊂ M it is possible
to define an action for Chern-Simons through

SU [sU, A] :=

∫

U

s∗UTq (A, F) .

Modulo some topological assumptions regarding the structure group of the principal group,
it can be proved that this action is independent of the section sU involved in its definition.
Moreover, whenever dimM = 3 and the Lie group H is simply connected, any H-principal
bundle on M is necessarily trivial, so that this prescription gives rise to a well-defined
variational problem on the whole principal bundle.

On the other hand, Tejero Prieto [Tej04] is able to give global sense to this collection
of local actions by requiring that, whenever the domains intersect, the associated Euler-
Lagrange equations are the same for any of the local actions. Thus, we will interpret the
Wise variational problem as a collection of local actions

SU [A] :=

∫

U

Tq (AU, FU)

given by the local description (U,AU) of a Cartan connection, because its Euler-Lagrange
equations will coincide on the intersection of the corresponding domains.

Using Proposition 3, we consider the equivalent variational problem on the bundle
πγ : Uγ → M; therefore, we can see the Wise variational problem as a problem whose
fields are principal connections Ã on P [G], and the action is given by the formula

SU

[
Ã
]
:=

∫

U

Tq
(
ÃU, F̃U

)
,
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where ÃU = s̃∗UÃ is the local description of the principal connection Ã, with

s̃U (x) = γ (sU (x)) = [sU (x) , e] .

5.1.2. Wise variational problem in jet bundle formulation. It is our next aim to formulate
Wise variational problem in terms of a Lagrangian form and a bundle; we are looking for a
formulation in which the integrand Tq (AU, FU) in the action comes from the Lagrangian
form through pullback along a section of a suitable bundle, and this section is uniquely
determined by the Cartan connection. Recalling the discussion carried out in Section 3.3,
we will choose the bundle

π ◦ prγ1 : γ∗
(
J1π[G]

)
→M

as the bundle whose sections can be put in one-to-one correspondence with g/h-Cartan
connections on P.

Our next task is to find the Lagrangian form. To this end, consider a generalized Cartan
connection Γ : P → J1π[G], with local description {AU}. Then Remark 1 tells us that

AU = (Γ ◦ sU)
∗
θJ1π[G]

,

where θJ1π[G]
∈ Ω1

(
J1π[G], g

)
is the canonical connection form and sU : U→ P is a local

section for the principal bundle π : P →M. Let us define

(5.1) θ∗J1π[G]
:= (prγ2 )

∗
θJ1π[G]

and

Θ∗

J1π[G]
:= (prγ2 )

∗
ΘJ1π[G]

where prγ2 : γ∗
(
J1π[G]

)
→ J1π[G] is the horizontal projection in the pullback diagram in

Corollary 2. Therefore, the Lagrangian form is given by

λCS := Tq
(
θ∗J1π[G]

, Θ∗

J1π[G]

)
∈ Ω2k−1

(
γ∗
(
J1π[G]

))
;

we have that

LU := Tq (AU, FU) = (sU, Γ ◦ sU)
∗
λCS.

Thus, we obtain the following corollary.

Corollary 3. The extremals of the local variational problem determined by the Lagrangian

LU are in one to one correspondence with the local extremals of the variational problem given

by the triple (
π ◦ pr

γ
1 : γ∗

(
J1π[G]

)
→M,λCS, 0

)
.

Proof. The correspondence is given by

(AU, sU) 7→ (sU, Γ ◦ sU) ∈ (π ◦ prγ1 )
−1

(U) ⊂ γ∗
(
J1π[G]

)
. �

5.1.3. Wise variational problem for first order geometries. Recall [Sha97; Bar04] that a pair
(P,A), where π : P → M is an H-principal bundle and A is a g/h-Cartan connection, is
called a first order geometry if and only if the representation

Ad : H→ GL (g/h)

is faithful. Then we have the following result.

Proposition 10. P admits a first order geometry if and only if it is an H-structure.
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Proof. Recall that a Cartan connection A on P induces a family of isomorphisms

φu : TxM→ g/h, u ∈ π−1 (x)

such that φuh = Adh−1 ◦ φu. Thus, the isomorphism is given by

u ∈ P 7→
(
φ−1

u (w1) , · · · , φ
−1
u (wm)

)
,

where {w1, · · · , wm} is a basis for g/h. �

In the present section we will assume that P admits a first order geometry; according to
the previous proposition, it means that P can be considered a subbundle of the bundle of
frames LM. Therefore, for every element vx ∈ TxM and u ∈ π−1 (x), we have two ways
to represent it, namely

vx = φ−1
u (wu) = u (cu)

for some elements wu ∈ g/h and cu ∈ R
m; it gives rise to a linear isomorphism

(5.2) κu : Rm → g/h : c 7→ φu ◦ u (c) .

Example 1 (Affine connections). Let us calculate this isomorphism for a (m) /gl (m)-
Cartan connections on LM, the so called generalized affine connections [KN63]. Assuming
that the local version of a Cartan connection on LM is

ω̃U =
(
Γαγβdx

β ⊗ Eγ
α, σ

α
βdx

β ⊗ eα
)

for some local functions Γαβγ and σα
β, from Equation (C.5) we obtain

φ(xα,e
β
i )

= eiασ
α
βdx

β ⊗ ei.

Now, recall that in this case a (m) /gl (m) = R
m in canonical fashion, so that κ(xα,e

β
i )

is

a linear endomorphism of Rm. Therefore, the matrix for this morphism in terms of the
canonical basis {ei} will become

[
κ(xα,e

β
i )

]i
j
= eiαe

β
j σ

α
β.

According to the classical definition [KN63], a Cartan connection on LM is an affine con-

nection if and only if κ(xα,e
β
i )

is the identity on R
m, or equivalently

eiαe
β
j σ

α
β = δij.

We can see this constraint in terms of the jet bundle description for the Cartan connection
(see Section 3.1). In order to proceed, let us define the map

(5.3) j : J1τ →֒ J1 (τ ◦ β) : j1xs 7→ j1x (γ ◦ s) − ϕ|s(x) ,

where ϕ indicates the canonical Rm-valued 1-form on LM, which can be seen as an ele-
ment of

T∗

xM⊗ R
m ⊂ T∗

xM⊗ a (m) ≃ T∗

xM⊗ Vγ(s(x)) (AM)

and thus acts on the affine space J1γ(s(x)) (τ ◦ β). In local terms, we have that

ϕ|(xα,e
β
i )

= eiβdx
β ⊗ ei

and if an element j1xs ∈ J1τ has coordinates
(
xα, eβi , e

β
iγ

)
, then it represents the map

j1xs :
∂

∂xα
7→

∂

∂xα
+ e

β
iα

∂

∂e
β
i

;
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additionally, the map γ : LM→ AM simply reads

γ
(
xα, e

β
i

)
=
(
xα, e

β
i , 0
)
.

Then, from Definition (5.3) we can conclude that

(5.4) j
(
xα, e

β
i , e

α
iγ

)
=
(
xα, e

β
i , 0, e

α
iγ,−eαi e

i
β

)
,

as required.

Our next task is to adapt the Equation (5.2) to the description discussed in Section 3.2,
where Cartan connections were considered as sections in a bundle. The main reason to
do that is that, just as we saw in the previous example, the pullback bundle γ∗

(
J1π[G]

)

would contain degrees of freedom associated to the principal bundle P and the g/h-part
of the Cartan connection. In fact, given an element u =

(
u, j1xs

)
∈ γ∗

(
J1π[G]

)
, we can

construct the map
φu : TxM→ g/h

in the following way: Given a tangent vector vx ∈ TxM, fix a lift v̂u ∈ TuP, and use it to
construct the tangent vector

Ws(x) := Tuγ (v̂u) − Txs (vx) ∈ Ts(x) (P [G]) .

Then we have that

Ts(x)π[G] (Tuγ (v̂u)) = vx

and so Ws(x) ∈ Vs(x) (P [G]); it means in particular that there exists an element W̃ (v̂u) ∈ g

such that

Ws(x) =
(
W̃ (v̂u)

)
P[G]

(s (x)) .

Now, changing the lift v̂u in this definition will produce a shift in W̃ (v̂u) by an element
living in h; therefore, we can define the map φu : TxM → g/h by projecting into the
quotient by h, namely

φu (vx) :=
[
W̃ (v̂u)

]
h
,

where [·]h indicates the equivalence class in g/h.
Using Example 1 and Equation (5.2), we can define a map

κu := φu ◦ u : Rm → g/h

for every u =
(
u, j1xs

)
∈ γ∗

(
J1π[G]

)
. It will allow us to identify the degrees of freedom

mentioned above by means of the constraint

(5.5) κu = κ0

for some fixed isomorphism κ0 : Rm → g/h, under the assumption that P admits a first
order geometry. So we are ready to introduce the following definition.

Definition 4 (Wise variational problem for first order geometries). Let π : P → M be an
H-principal bundle admitting a first order geometry associated to the pair (G,H); fix an
isomorphism κ0 : Rm → g/h. The Wise variational problem is the triple

(
π ◦ prγ1 : γ∗

(
J1π[G]

)
→M,λCS,Kκ0

)
.

where Kκ0
is the EDS induced by the constraint (5.5).
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Remark 4 (On the the constraint Kκ0
). The introduction of the constraint Kκ0

implies a
departure from the scheme devised by Wise in the previously cited works, where the de-
grees of freedom associated to the g/h-part of the Cartan connection are the ones devoted
to describe the vielbein when the relationship with gravity is established. In our present
description, we are choosing to use the degrees of freedom of the underlying principal
bundle in order to describe it, and the rôle of the constraint Kκ0

is to enforce the identifi-
cation of the g/h-part of the Cartan connection with the group coordinates in the principal
bundle P. For example, when P = LM,H = GL (m) , G = A (m), we can deal with the
constraint Kκ0

in a straightforward manner. In fact, because of the Equation (5.3), we
have that a section σ : U ⊂ M → γ∗

(
J1 (τ ◦ β)

)
is integral for this EDS (with κ0 = id,

given the identification g/h = R
m we have at our disposal is this case) if and only if there

exists a section s : U→ J1τ such that

σ (x) = (τ10 (s (x)) , j (s (x))) .

Thus we can fulfill this constraint by using this form for the sections we consider in the
variational problem.

5.2. Variational problem for gravity with basis. It is usual [Wit88a] to describe gravity
with a pair

(
e
µ
i ,ω

i
j

)
, where e

µ
i are the components of a local basis of the tangent bundle

TM respect to some coordinates xµ, and ωi
j are a set of local 1-form, the so called spin

connection forms. This pair can be represented in terms of the bundle of frames LM on the
space-time: Fixing a common open domain U ⊂ M, eµi gives rise to a local section σ of
LM through the formula

x ∈ U 7→ σ (x) :=

(
e
µ
1 (x)

∂

∂xµ
, · · · , eµm (x)

∂

∂xµ

)
.

The forms ωi
j together with the section σ can be used in order to define the Christoffel

symbols Γµνσ of the underlying connection, through the so called vielbein postulate

(5.6) ωi
j = eiµ

(
eνj Γ

µ
νσ +

∂e
µ
j

∂xσ

)
dxσ.

The connection form on LM2 associated to
{
ωi

j

}
can be retrieved by the formula [Nak96;

KN63]

(ωLM)
i
j

∣∣∣
u
= eiµe

ν
j Γ

µ
νσdx

σ + eiµde
µ
j

where u ∈ LM is represented by the set of coordinates (xµ, eµi ). This gives rise to a locally
defined action

(5.7) SPG :=

∫

U

ǫijklη
kpeiµe

j
νdx

µ ∧ dxν ∧Ωl
p,

where Ωi
j is the local curvature 2-form associated to ωi

j. A constraint that should be
adopted on the set of forms ωi

j is that the underlying connection form is o (3, 1)-valued,
namely

(5.8) ηijωk
j + ηkjωi

j = 0.

2Or a subbundle...
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Before to continue, we have to deal with the constraints given by Eqs. (5.8); according
to formula (5.6), it is equivalent to

(5.9)
∂gµν

∂xσ
+ gµρΓνρσ + gνρΓµρσ = 0

namely, the connection associated to the symbols Γ
µ
νσ is metric with respect to the metric

associated to the vielbein,
gµν = ηije

µ
i e

ν
j .

At jet bundle level it is equivalent to the set of equations

(5.10)
(
ηkjeiµ + ηijekµ

)
(
−eµjσ +

∂eµj

∂xσ

)
= 0.

Thus, a solution for gravity with basis is a section

σ : U ⊂ M→ J1τ

which is both an extremal for the functional (5.7) and also verifies the condition (5.10).
On the other hand, there is a formulation for field theory in which the action is calcu-

lated using a Lagrangian density, that is a bundle map

L : J1q→ ∧4 (T∗M) ,

where q : E→M is a bundle on M. Namely, for every section σ : M→ E of q, we have a
map

L ◦ j1σ : M→ ∧4 (T∗M) ,

which is a 4-form on M, and so you can integrate,

SPG [σ] :=

∫

M

L ◦ j1σ.

We want to find this kind of formulation for gravity with basis; in order to carry out this
task, it is necessary to identify the bundle E, and then to write down a Lagrangian density
on this bundle. Because eαi are part of the degrees of freedom for this flavor of gravity, the
bundle E should include it, namely, we are searching for a bundle of the form

E = LM×M ⋆,

where ⋆ stands for the degrees of freedom associated to ωi
j. As we said before, these

data corresponds to the specification of a linear connection on LM; from a geometrical
viewpoint, the relevant bundle in this regard is the connection bundle τ : C (LM) → M,
defined in such a way that it fits in the following diagram

J1τ LM

C (LM) M

τ10

pJ1τ
GL(m)

τ

τ

Therefore, a section of the connection bundle is equivalent to a equivariant section of the
projection τ10. Now, recall that an element of J1τ is a linear map m : TxM → Tu (LM)

such that
Tuτ ◦m = idTxM.
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Using the data ωi
j, this section can be constructed according to the formula

Γ (u) := dxµ ⊗

(
∂

∂xµ

)H

u

= dxµ ⊗

(
∂

∂xµ
− eρj Γ

σ
ρµ

∂

∂eσj

)

where u = (X1, · · · , Xm) ∈ LM and the symbols Γµνσ are calculated through Equation
(5.6); here (·)Hu indicates the horizontal lift of a vector field to TuLM. Thus the bundle
describing this flavor of gravity will become

E = LM×M C (LM) .

Moreover, it can be proved [Gar72; CM01] that this bundle is isomorphic as affine bundle
on LM to the first jet bundle J1τ; in terms of the induced coordinates

(
xµ, eνi , e

σ
kρ

)
, this

correspondence is given by the formula

(5.11) Γµνσ = −ekνe
µ
kσ.

Then, the relevant bundle in the description of gravity with basis will be the first jet bundle
of the frame bundle.

Having identified the basic bundle, we need to write down a Lagrangian density and
to encode the constraint imposed by Eq. (5.8). In order to proceed, let us define the
canonical connection form

θJ1τ|j1xs
:= eiµ

(
de

µ
j − e

µ
jρdx

ρ
)
⊗ E

j
i

where j1xs =
(
xµ, eνj , e

σ
kρ

)
are the induced coordinates on J1τ; it can be proved that this

formula defines a gl (m)-valued 1-form on J1τ, and that it becomes a connection form on
the GL (m)-principal bundle

pJ1τ
GL(m)

: J1τ→ C (LM) .

Let
ρ (x) := (xµ, eµi (x) , eνkσ (x))

be a local description for a section ρ : U → J1τ; then from the tetrad postulate (5.6) and
using Eq. (5.11), we have that

ρ∗θJ1τ = (ωLM)
i
j ⊗ Ej

i.

Let ΩLM ∈ Ω2
(
J1τ, gl (m)

)
be the curvature form associated to γ; naturatility of the

pullback implies that
ρ∗ΘJ1τ = (ΩLM)

i
j ⊗ E

j
i

at curvature forms level. The formula

ϕ|j1xs
:= eiµdx

µ ⊗ ej

also defines a global Rm-valued 1-form on J1τ; out from this form and the bilinear map
η : Rm × R

m → R, we can define a GL (m)-valued (m− 2)-form as follows: First, define
the ∧m−2

R
m-valued (m− 2)-form given by the formula

ϕm−2 :=

m−2︷ ︸︸ ︷
ϕ∧ · · ·∧ϕ .
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Then, use the star map ⋆ : ∧m−2
R

m → ∧2
R

m determined by the bilinear form η to define
a ∧2

R
m-valued (m− 2)-form ⋆

(
ϕm−2

)
; finally, use the isomorphism η : Rm → (Rm)

∗ to
define a map

η♯ : ∧2
R

m → (Rm)
∗ ⊗ R

m = gl (m)

giving rise to a gl (m)-valued (m− 2)-form, called Sparkling form

ϕ
♯
m−2 := η♯

(
ϕm−2

)
.

Additionally, η induces a bilinear pairing between gl (m)-forms on J1τ. Using the naturality
properties of the pullback, we can conclude that (in the case m = 4)

ρ∗
(
η
(
ϕ

♯
2

∧, Γ
))

= ǫijklη
kpeiµe

j
νdx

µ ∧ dxν ∧Ωl
p;

also, for the case m = 3 it would result

ρ∗
(
η
(
ϕ

♯
1

∧, Γ
))

= ǫijkη
kpeiµdx

µ ∧Ωj
p.

These considerations allows us to define the Lagrangian form for gravity with basis, that
becomes

(5.12) λPG := η
(
ϕ

♯
m−2

∧, Γ
)
.

Strictly speaking, λPG is not a τ1-horizontal form on J1τ, and so it is not associated to a
Lagrangian density; if we wanted to deal with the underlying variational problem as an
usual variational problem, we would have to lift it to the jet bundle J1τ1 (or perhaps to
the subbundle J2τ). Instead, we will treat it as a Griffiths variational problem, in order to
avoid the introduction of additional variables.

Regarding the constraint (5.8), let

gl (m) = p⊕ k

be the decomposition of the general linear Lie algebra in terms of the ±1-eigenspaces of
the involutive operator

A 7→ ηATη;

then this constraint is recovered by the equation

(5.13) ρ∗ (πp ◦ θJ1τ) = 0,

where πp : gl (m)→ p is the associated projection onto the factor p.

Definition 5 (Variational problem for gravity with basis). The variational problem for

gravity with basis is the triple
(
τ1 : J1τ→M,λPG, IPG

)

where IPG is the exterior differential system on J1τ generated by the forms (5.13).

6. EXTENSION OF GENERALIZED CARTAN CONNECTIONS AND CHERN-SIMONS FIELD THEORY

In this section we will formulate a Chern-Simons field theory on a principal bundle with
structure group A (m), and we will relate it with the usual Chern-Simons field theory on
a K-structure using the operation of extension for generalized Cartan connections.
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6.1. Chern-Simons variational problem with Lie group A (3,R). In the present section
we will work with the affine frame bundle on a manifold of dimension m = 3. Using
Corollary 3 and the geometrical constructions performed in Appendix C, we will define a
Griffiths variational problem on γ∗

(
J1 (τ ◦ β)

)
in order to represent Chern-Simons gauge

theory. To proceed, let us define the bilinear form 〈·, ·〉 : gl (m)× gl (m)→ R given by

〈a, b〉 := ak
i b

i
k.

Lemma 7. The bilinear form 〈·, ·〉 is non degenerate and GL (3)-invariant.

Recall that K ⊂ GL (m,R) is the Lorentz group defined by the matrix η (see Equation
(2.4)); as always, k will indicate its Lie algebra. Then we have the isomorphism [Wis10]

k ≃ R
3

given by
ξ =

(
ξi
)
7→ a

j
i := ηjkǫiklξ

l.

It allows us to use the prescription

〈(a, ξ) , (b, ζ)〉 := 〈a, ζ〉+ 〈b, ξ〉

for the extension of the bilinear form defined above to gl (3)⋉R
3. Thus we have a quadratic

form
q : a (3)→ R : (a, ξ) 7→ 〈(a, ξ) , (a, ξ)〉 ,

and using Equation (B.2), we obtain the following definition.

Definition 6 (Chern-Simons Lagrangian 3-form). The Lagrangian form for Chern-Simons

variational problem is the 3-form LCS ∈ Ω3
(
γ∗
(
J1 (τ ◦ β)

))
defined through

LCS :=
〈
θ∗J1(τ◦β)

∧, Θ∗

J1(τ◦β)

〉
−

1

6

〈
θ∗J1(τ◦β)

∧,
[
θ∗J1(τ◦β)

∧, θ∗J1(τ◦β)

]〉
,

where θ∗
J1(τ◦β)

∈ Ω1
(
γ∗
(
J1 (τ ◦ β)

))
is the pullback to γ∗

(
J1 (τ ◦ β)

)
of the canonical

connection on the principal bundle p
J1(τ◦β)

A(3)
: J1 (τ ◦ β) → C (AM) (see Equation (5.1)

above).

Because θ∗
J1(τ◦β)

is gl (3)⊕ R
3-valued, we can write

θ∗J1(τ◦β) = o∗

J1τ + e

Using Equation (C.6) we see that, in local terms, this form becomes

θ∗J1(τ◦β) = e
j
β

(
de

β
i − e

β
iαdx

α
)
⊗ Ei

j − eiβv
β
αdx

α ⊗ ei,

so that
o∗

J1(τ◦β) = e
j
β

(
de

β
i − e

β
iαdx

α
)
⊗ Ei

j, e = −eiβv
β
αdx

α ⊗ ei.

Also,
Θ∗

J1(τ◦β) = O∗

J1(τ◦β) + E.

Now, the splitting a (3) = gl (3)⊕ R
3 has the following properties

[gl (3) , gl (3)] ⊂ gl (3) ,
[
gl (3) ,R3

]
⊂ R

3,
[
R

3,R3
]
= 0

and
gl (3) ⊥ gl (3) , R

3 ⊥ R
3,

so that we can obtain a result that is the equivalent in this context to Proposition 1 in
[Wis+09].
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Proposition 11. The Chern-Simons Lagrangian can be written as

LCS =
〈
e ∧, O∗

J1(τ◦β)

〉
.

In local coordinates, this Lagrangian becomes

LCS = ǫjklη
kpvνβe

j
νdx

β ∧
(
O∗

J1τ

)l
p
.

It is interesting to note that, except by the factors vαβ, this Lagrangian is equivalent to the
Lagrangian for 2 + 1-gravity with basis; we need to take care of them, and it will be done
through the imposition of constraints.

So, it is necessary to prescribe the set of constraints that sections σ : U ⊂ M →
γ∗
(
J1 (τ ◦ β)

)
should obey in order to be evaluated in the action associated to LCS. The

first set of constraints we need to consider are those imposed by Equation (5.8) above; in
order to achieve it, let us consider the decomposition

a (3) = (p + 0)⊕
(
k⊕ R

3
)
;

accordingly, let
πp : a (3)→ p + 0, πk : a (3)→ k⊕ R

3

be the corresponding projectors. Then we will have that

πp ◦ θ
∗

J1(τ◦β) = ηik
(
o∗

J1(τ◦β)

)j
k
+ ηjk

(
o∗

J1(τ◦β)

)i
k
,

so that this set of forms is suitable for the incarnation of Equation (5.8) in this setting.
As we mentioned above, another constraint to be taken into account has to do with

coordinates vαβ; the most natural thing is to use the map j : J1τ → J1 (τ ◦ β) discussed in
Example 1, where the classical notion for affine connection was introduced. In particular,
it was proved there (see Equation (5.4)) that the image set of the map j is described by
the equations

vα = 0, vαβ = −eiβe
α
i .

Then the constraint in this case deals with the extra degrees of freedom vαβ through this
map; concretely, we are imposing the form

x 7→ (τ10 (s (x)) , j (s (x))) ∈ γ∗
(
J1 (τ ◦ β)

)

for the allowed sections in the variational problem with Lagrangian LCS, where s : U ⊂

M→ J1τ is a section of τ1 : J1τ→M.

Definition 7 (Constraints for Chern-Simons variational problem on A (3,R)). We will say
that a section σ : U ⊂ M → γ∗

(
J1 (τ ◦ β)

)
is admissible for the Chern-Simons variational

problem if and only if
σ (x) = (τ10 (s (x)) , j (s (x)))

for some section s : U ⊂ M→ J1τ and also

σ∗

(
πp ◦ θ

∗

J1(τ◦β)

)
= 0.

The admissible section will have the following property.

Proposition 12. Let θJ1(τ◦β) ∈ Ω1
(
J1 (τ ◦ β) , a (m)

)
be the canonical connection on J1 (τ ◦ β)

and θJ1τ ∈ Ω1
(
J1τ, gl (m)

)
be the canonical connection form on J1τ. Then

j∗θJ1(τ◦β) = θJ1τ + τ∗10ϕ.
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Proof. We will give an argument in local terms. Using Equation (C.6) and the local expres-
sion (5.4), it follows that

j∗θJ1(τ◦β) = ejβ

(
deβi − eβiαdx

α
)
⊗ Ei

j + eiβδ
β
αdx

α ⊗ ei = θJ1τ + τ∗10ϕ,

as required. �

With these elements at hand, it is immediate to formulate the variational problem we
will use to represent Chern-Simons gauge theory in this context.

Definition 8 (Chern-Simons variational problem on A (3,R)). It is the variational problem
prescribed by the action

σ 7→
∫

U

σ∗ (LCS)

for σ : U ⊂ M→ γ∗
(
J1 (τ ◦ β)

)
an admissible section.

From Proposition 11 and 12 we obtain the correspondence between Chern-Simons field
theory and gravity with basis in this setting.

Theorem 1. The extremals of the Chern-Simons variational problem on A (3,R) are in one-

to-one correspondence with the extremals of the variational problem described in Definition

5.

Proof. The correspondence is determined by the bijective map

s 7→ σ := (τ10 ◦ s, j ◦ s)

between a section s of τ1 : J1τ→M and an admissible section σ for γ∗
(
J1 (τ ◦ β)

)
. �

6.2. Gauge properties of the Chern-Simons Lagrangian 3-form. In order to prove that
this variational problem is able to reproduce the usual Chern-Simons field theory on a
subbbundle, it will be necessary to prove that LCS established by Definition 6 has the
correct transformation properties with respect to a gauge transformation (see Appendix
A). To this end is devoted the following lemma, which is a reformulation of a previous
result of Freed [Fre95] to this new setting.

Lemma 8. Let (Q,π,N) be a H-principal bundle; indicate with θ ∈ Ω1
(
J1π, h

)
the canonical

connection on the bundle

pJ1π
H : J1π→ C (Q) .

Also, let s : U ⊂ M→ J1π be a local section, and g : U→ H a map. Define the new section

s : U→ J1π : x 7→ s (x) · g (x) .

Then

(s∗θ)|x = Adg(x) ◦ (s∗θ)|x + (g∗λ)|x ,

where λ ∈ Ω1 (H, h) is the (left) Maurer-Cartan 1-form on H.

In the previous setting let us take Q = AM. By using the identification

LM ≃ γ (LM) ⊂ AM

we can consider
γ∗
(
J1 (τ ◦ β)

)
⊂ J1 (τ ◦ β) ;

therefore, any section s : U ⊂ γ∗
(
J1 (τ ◦ β)

)
can be seen as a section of the bundle

(τ ◦ β)1 : J1 (τ ◦ β) →M taking values in this subbundle. With this in mind, we have the
following consequence of the previous lemma.
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Corollary 4. For LCS given by Definition 6 and a section s constructed as in the previous

lemma, the following relation holds

s∗LCS = s∗LCS + d
〈
Adg−1 ◦ s∗ (θ∗) ∧, g∗λ

〉
−

1

6

〈
g∗λ ∧,

[
g∗λ ∧, g∗λ

]〉
.

Remark 5. The 3-form 〈
g∗λ ∧,

[
g∗λ ∧, g∗λ

]〉

is closed; therefore, the last term does not contribute to the action when performing vari-
ations, and so

δ

∫

M

s∗LCS = δ

∫

M

s∗LCS.

6.3. Chern-Simons variational problem on A (3) as extension of the Wise variational

problem. We will prove in this section that sections of J1τ that are extensions of extremals
for the Wise variational problem on the jet bundle J1πζ associated to any K-structure Oζ,
are extremals for the Chern-Simons variational problem on A (3) and viceversa. In order
to achieve this result, we will need to use the relationship that connects extensions of
Cartan connections with the original connections, as described in Diagram (4.4). In this
case, with the help of the naturality of the canonical connection established in Lemma 2,
the following proposition can be proven (the notation used is the one employed in Section
4).

Proposition 13. Let

Γ : P → J1π[G1] Γ ♯ : P [G2]→ J1π[G]

be a pair of (generalized) Cartan connections such that

j1γG1
◦ Γ = Γ ♯ ◦ γ2

H.

Then (
Γ ♯ ◦ γ2

H

)∗
θJ1π[G]

= Γ∗θJ1π[G1]
.

We will use this result to prove that the Chern-Simons variational problem on A (3) can
be seen as an extension of the Wise variational problem, namely, that we can establish a
one-to-one correspondence between the extremals of these variational problems through
the operations of extension and reduction of generalized Cartan connections, as defined
in Section 4. To this end, let us apply Proposition 13 to the following diagram

AM

Oaff
ζ LM

Oζ

γaff
ζ γ

γζ
γOζ

Now, recall from Section 4.3.3 that the choice of a metric ζ : M → Σ allows us to select a
K-structure Oζ ⊂ LM and a subbundle Oaff

ζ ⊂ AM; let us indicate with

τaff
ζ : Oaff

ζ →M
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the restriction of the canonical projection τaff : AM→M to this subbundle. It follows that
if

σ : U→ γ∗
(
J1 (τ ◦ β)

)

is a section of the jet space for the affine frame bundle, and

σζ : U→ γ∗

ζ

(
J1
(
(β ◦ τ)|Oaff

ζ

))

is a section of the jet space for the restriction of the affine frame bundle to orthonormal ba-
sis respect to the metric ζ, then they will be related by a relation of reduction or extension
if and only if

τ10 ◦ pr1 ◦ σ =
(
τaff
ζ

)
10

◦ pr1 ◦ σζ

and
j1γaff

ζ ◦ pr2 ◦ σ = pr2 ◦ σζ ◦ γOζ
,

where pri, i = 1, 2 are the projections onto the factors in the cartesian product. Then by
Proposition 13 we will have that

σ∗LCS = σ∗

ζλCS,

for sections related by the operations of reduction or extension of generalized Cartan
connections; it means that the correspondences

σ 7→ σζ, σζ 7→ σ

establish a one-to-one correspondence between the Chern-Simons variational problem on
A (3) and the Wise variational problem, as required. Thus, we can prove the following
result.

Theorem 2. The operations of reduction and extension of generalized Cartan connections

establish a one-to-one correspondence between the extremals of the Wise variational problem

for any first order geometry associated to the pair
(
SO (2, 1)⋉R

3, SO (2, 1)
)

(Definition 4)

and the Chern-Simons variational problem on A (3) (as it is described by Definition 8).

Proof. Let us suppose that we have a section

σ : U ⊂ M→ γ∗
(
J1 (τ ◦ β)

)
⊂ LM× J1 (τ ◦ β) ;

then, the induced section
sσ := pr1 ◦ σ

has its image in a subbundle Oζ ⊂ LM for some metric ζ, which is given by the formula

ζ := ηijXi ⊗ Xj,

where
sσ (x) = {X1 (x) , · · · , Xm (x)} , x ∈ U.

Recalling Remark 3 and constraints (5.13), we will have that its associated map ΓAOζ
has

its image in J1
(
(β ◦ τ)|Oaff

ζ

)
and so its can be reduced to a connection σζ for the subbundle

Oζ.
Now, the complicated part of the proof is the one that demonstrates that each extremal

section of the variational problem in the restricted bundle is an extremal section for the
general variational problem, because the variations of the first problem do not encompass
all possible variations of the second problem. So, let us suppose that we have a section

σλ : U → J1
(
(β ◦ τ)|Oaff

ζ

)
for the restricted variational problem; let σ : U ⊂ M →
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γ∗
(
J1 (τ ◦ β)

)
be a section for γ∗

(
J1 (τ ◦ β)

)
induced by σζ. Consider σt : U ⊂ M →

γ∗
(
J1 (τ ◦ β)

)
a variation for σ; then for every t there exists a map gt : U → A (3) such

that the section

σ̃t := σt · gt

verifies the condition Im (pr1 ◦ σ̃t) ⊂ Oζ, and so it is induced by a variation σt for σζ.
Then from Corollary 4 we have that

σ∗

tdλCS = σ̃∗

tdLCS = σ∗

tdLCS,

and therefore σ is an extremal whenever σζ is. �

APPENDIX A. GEOMETRY OF PRINCIPAL BUNDLES

The following appendix contains the usual construction of a principal fiber bundle and
its jet space from a local point of view. Although this construction is well-known, the
article utilizes some of its consequences. Therefore, we have decided to include it here to
establish the notation and provide the reader with a quick reference to these results.

A.1. Connections and principal bundles. It is a usual to represent a principal connection
by a family of locally defined g-valued 1-forms AU ∈ Ω1 (U, g), with U belonging to a
covering C := {U} for M; these forms should obey a gauge transformation condition: For
every pair U,V ∈ C there must exists a map

tUV : U ∩ V → G

such that

(A.1) AV = Adt−1
UV

(AU) + t−1
UVdtUV = Adt−1

UV
(AU) + t∗UVλ,

where λ ∈ Ω1 (G, g) is the (left) Maurer-Cartan form on G. Additionally, these maps must
be compatible in the sense that, for every U,V,W ∈ C such that U ∩ V ∩W 6= ∅, then

tUW (x) = tUV (x) · tVW (x)

for every x ∈ U ∩ V ∩W. The existence of these maps is equivalent to have a G-principal
bundle on M [KN63, p. 51], for which the family C becomes a covering of trivializing
open sets; as it would seem obvious, we want to stress the fact that a principal bundle is
singled out when dealing with a connection described in this way.

Before to go on, let us discuss briefly about a notion of equivalence involving the princi-
pal bundle structure. As we know, a gauge transformation does not change the connection;
therefore, a collection of forms

A ′

U := Adg−1
U

(AU) + g∗

Uλ

where gU : U → G is a family of smooth functions, should describe the same connection.
Accordingly, the structure functions tUV must change obeying the rule

(A.2) t ′UV : U ∩ V → G : x 7→ gU (x) tUV (x)gV (x) ,

with the underlying principal bundle remaining invariant; therefore, set of transformations
{tUV } , {t

′

UV } related by Equation (A.2) should be considered as equivalent.
Let us look more closely to the principal bundle so constructed. Consider the triples

(U, x, a) ∈ C ×M×G
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such that x ∈ U; we say that (U, x, a) is equivalent to (V, y, b) if and only if U ∩ V 6= ∅,
x = y and

b = tVU (x)a.

We will indicate with [U, x, a] the equivalence class containing (U, x, a); the space obtained
by quotient by this equivalence relation becomes a G-principal bundle π : P →M, where

π ([U, x, a]) = x

and the G-action is simply given by

[U, x, a] · h = [U, x, ah] .

The covering C contains trivializing open sets; in fact, on π−1 (U) we have the trivializing
map

tU : π−1 (U)→ U×G : [U, x, a] 7→ (x, a) .

This description of the bundle P allows us to construct a family of local sections for P,
namely

sU : U→ π−1 (U) : x 7→ [U, x, e] ,

where we have used the symbol e for the unit in G; it follows that

(A.3) sV (x) = [V, x, e] = [U, x, tUV (x)] = [U, x, e] · tUV (x) = sU (x) · tUV (x)

for every x ∈ U ∩ V . It means that the local sections sU are related by the gauge transfor-
mations associated to the transition functions tUV .

Let U ∈ C be an open set in the covering; then the pair (AU, sU) allow us to construct
the connection form ω on P through the formula [Nak96]

(A.4) ω|u := Ad(gU(u)−1) (π
∗ AU|x) + g∗

Uλ;

here x = π (u), gU : π−1 (U)→ G is defined by

u = sU (x) · gU (u)

and λ is the (left) Maurer-Cartan form on G. The transformation properties of these local
data imply that

Ad(gU(u)−1) (π
∗ AU|x) + g∗

Uλ = Ad(gV (u)−1) (π
∗ AV |x) + g∗

Vλ, x = π (u)

for any pair U,V ∈ C and u ∈ π−1 (U ∩ V); therefore, this definition is independent of the
open set used to calculate it through Eq. (A.4).

A.2. Gauge transformations. Recall that a gauge transformation of a principal bundle P

is a bundle map φ : P → P over the identity that commutes with the G-action, namely

φ (u · g) = φ (u) · g.

Using the trivialization maps tU : π−1 (U) → U × G, a gauge transformation is locally
described by the maps

φU (x, a) :=
(
tU ◦ φ ◦ t−1

U

)
(x, a) = (x, hU (x)a) ,

where the functions hU : U→ G must have the following transformation property

hV (x) = tUV (x)hU (x)

for every x ∈ U ∩ V . In fact, let us define

φ ([U, x, a]) := φU (x, a) = [U, x, hU (x)a]
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for any [U, x, a] ∈ P; if x ∈ U ∩ V , we will have that

[V, x, hV (x)a] = [U, x, tVU (x)hV (x)a]

= [U, x, hU (x)a] ,

showing that this definition is independent of the open set U containing x.

A.3. Jet bundle and the bundle of principal connections. Let us suppose that every
U ∈ C is a coordinate domain; therefore, we can write

AU = ζUi dx
i, ζUi : U→ g

and so, locally, we have that a connection can be seen as a section of the bundle

pr1 : U×G×

m times︷ ︸︸ ︷
g⊗ · · · ⊗ g→ U.

As with P, we can take advantage of the transition functions tUV in order to glue together
these local fibrations. Accordingly, let us consider the (m+ 3)-uples

(U, x, a, ξ1, · · · , ξm) ∈ C ×M×G×

m times︷ ︸︸ ︷
g⊗ · · · ⊗ g

such that x ∈ U, and define the equivalence relation given by

(U, x, a, ξi) ∼ (V, y, b, ζi)

if and only if U ∩ V 6= ∅, x = y, b = tVU (x)a and

ζidx
i = ξidx

i + Ada−1 (t∗VUλ) .

The quotient space J1π is a manifold, the so called jet space of the bundle π : P → M; we
have canonical projections

π10 : J1π→ P : [U, x, a, ξi] 7→ [U, x, a]

and
π1 : J1π→M : [U, x, a, ξi] 7→ x

giving it bundle structure on both spaces P and M. As before, we have a local trivialization
for J1π through the formula

TU : π−1
1 (U)→ U×G×

m times︷ ︸︸ ︷
g⊗ · · · ⊗ g : [U, x, a, ξi] 7→ (x, a, ξi) .

Every element [U, x, g, ξi] ∈ J1π is equivalent to a linear map

∂

∂xi
∈ TxM 7−→ T[U,x,e]Rg ◦ TxsU

(
∂

∂xi

)
+ (ξi)P ([U, x, g]) ∈ T[U,x,g]P,

where ζP is the infinitesimal generator of the G-action on P corresponding to the element
ζ ∈ g. Using the fact that

tU ◦ Rh = (id × Rh) ◦ tU

for every h ∈ G, we can see that
TtU ◦ ζP = ζRG

for all ζ ∈ g; here ξRG indicates the infinitesimal generator on G associated to the right
action. Therefore, the map TU is induced by TtU.

It can be seen that J1π is a G-space; the action is given by the formula

[U, x, a, ξi] · h = [U, x, ah,Adh−1ξi]
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for all h ∈ G. This action allows us to construct a quotient bundle

C (P) := J1π/G,

and the canonical projection gives rise to a new bundle

pJ1π
G : J1π→ C (P) .

The map π : C (P)→M such that

π1 = π ◦ pJ1π
G

gives C (P) structure of a bundle on M; its elements are the equivalence classes

[U, x, a, ξi]G := {[U, x, ah,Adh−1ξi] : h ∈ G} .

For every U ∈ C, we have a trivialization map

φU : π−1 (U)→ U× g⊗m : [U, x, a, ξi]G 7→ (x,Adaξi) ;

for every pair U,V ∈ C such that U ∩ V 6= ∅, we have that

φV ◦ φ−1
U (x, ξi) = φV ([U, x, e, ξi]G)

= φV

([
V, x, tVU (x) , ξi + (t∗VUλ)

(
∂

∂xi

)]

G

)

=

(
x,AdtVU(x)

[
ξi + (t∗VUλ)

(
∂

∂xi

)])

=

(
x,AdtUV(x)−1ξi − (t∗UVλ)

(
∂

∂xi

))

where it was used that tVU (x) = tUV (x)
−1. The fact that this expression is equivalent

to the transformation law (A.1) allows us to consider C (P) as the bundle of principal
connections for P; namely, we have an identification

(A.5) [U, x, a, ξi]G ←→ AU := −Adaξidx
i.

With this correspondence in mind, the existence of a g-valued 1-form AU for every U ∈ C

such that compatibility conditions (A.1) are fulfilled, is equivalent to the existence of a
section

σ : M→ C (P) .

In fact, we have the formula

σ (x) =

[
U, x, e,− AU|x

(
∂

∂xi

)]

G

for every U ∈ C and x ∈ U.

A.4. The canonical connection form on J1π. A fundamental geometric structure on J1π

is the canonical connection form A, which is a g-valued 1-form on J1π inducing a connection
on the G-principal bundle pJ1π

G : J1π→ C (P); for every U ∈ C, it is given by the formula

A|[U,x,a,ξi]
:= λ|a − ξidx

i.

In fact, because b = tVU (x)a, it results that

λ|b = λ|a + Ada−1 (t∗VUλ) ;
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thus, if [U, x, a, ξi] = [V, x, b, ζi] for x ∈ U ∩ V , we will have

A|[V,x,b,ζi]
= λ|b − ζidx

i

= λ|a + Ada−1 (t∗VUλ) −
(
ξidx

i + Ada−1 (t∗VUλ)
)

= λ|a − ξidx
i

= A|[U,x,a,ξi]
,

and the form A is well-defined.
There is an important property that the canonical form has. In order to formulate it, let

us consider another way to specify a connection, namely, through an equivariant bundle
map

Γ : P → J1π.

In fact, using the above description of these bundles, and given a local description {AU : U ∈ C}

for a connection, we can construct the map

Γ : [U, x, a] 7→
[
U, x, a,−Ada−1

(
AU|x

(
∂

∂xi

))]
,

where identification (A.5) was used. Having the gauge transformation property (A.1) in
mind, we can prove that it is a good definition. Now, given that

sU (x) = [U, x, e]

and from u = sU (x) · gU (u) for every u = [U, x, a] ∈ π−1 (U), we obtain the formula

u = [U, x, gU (u)] .

Then
Γ∗
(
A|Γ(u)

)
= Γ∗

(
λ− ξidx

i
)
= g∗

Uλ+ AdgU(u)−1 AU|x = ω|u ,

namely, the connection form can be obtained through pullback along the map Γ of the
canonical form.

APPENDIX B. LOCAL AND GLOBAL CHERN-SIMONS LAGRANGIANS

Let K be a Lie group and πζ : Rζ → M a K-principal bundle (the notation will be
explained later); on its first order jet space

(πζ)1 : J1πζ →M

we will define a (global) variational problem, which we will prove to represent Chern-
Simons gauge theory. In order to accomplish this task, it will be necessary to lift it to
J1 (πζ)1, and compare it with the variational problem defined by local data, which lives
on J1πζ.

Let us now suppose that we have an invariant polynomial q : k → R of degree n.
According to the Chern-Simons theory [CS74; Mor01], the 2n-form

α := q (F) ∈ Ω2n
(
J1πζ

)

is closed. For example, when the Lie algebra comes with an invariant bilinear form, we
can consider the quadratic polynomial

q (F) :=
〈
F ∧, F

〉
;

Additionally, it can be proved that the bundle

pr1 : J1πζ ×C(Rζ) J
1πζ → J1πζ,
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is a trivial K-principal bundle; it means that α is not only closed, but also exact. Therefore,
there exists a (2n − 1)-form

(B.1) β := Tq (A, F) ∈ Ω2n−1
(
J1πζ

)
,

such that

dβ = pr∗1α;

the polynomial Tq can be found by a transgression formula [Nak96]. When q is the
quadratic form determined by an invariant bilinear form, the transgression is given by

(B.2) Tq (A, F) =
〈
A ∧, F

〉
−

1

6

〈
A ∧,

[
A ∧, A

]〉
.

How can these forms be related to the local forms usually used to described Chern-
Simons field theory? In this case, we have another K-principal bundle structure, namely
the quotient map

p
J1πζ

K : J1πζ → C (Rζ) ,

and q (F) defines a Chern class for it. Accordingly, there exists a 2n-form γ on C (Rζ) such
that (

p
J1πζ

K

)∗
γ = q (F) .

Moreover, using the canonical 2-form F2 on the bundle of connections C (Rζ), we can
prove that

γ = q (F2) .

But now, this bundle is not trivial in general; in short, from decomposition

J1πζ = Rζ ×M C (Rζ) ,

we obtain that it is trivial if and only if the bundle

πζ : Rζ →M

is. In consequence, it is not expected that the 2n-form γ, although closed, should also
be exact; it is the reason why, although we have a global variational problem on J1πζ, it
cannot be reproduced on C (Rζ), even having in mind that the transformations properties
of LCS are telling us that the degrees of freedom associated to the Rζ-factor can be ignored.

Nevertheless, because Rζ admits trivializing open sets, the previous considerations can
be used to associate to every such set U ⊂ M a Lagrangian LU := Tq

(
AU

2 , F2
)
, where

AU
2 ∈ Ω1

(
(πζ)

−1
(U) , k

)

is a 1-form such that (
p
J1πζ

K

)∗
AU

2 = A|
((πζ)1)

−1
(U)

.

Remark 6. A study of conditions ensuring the existence of global solutions for the local
variational problem for Chern-Simons gauge theory can be found in [PW17]. In this re-
gard, it is interesting to note that here we have changed a variational problem determined
by local data and whose sections could be globally defined, by a variational problem de-
scribed by global data, but whose sections are forced to have local nature (part of these
sections are sections of a principal bundle).
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APPENDIX C. GEOMETRY OF THE AFFINE FRAME BUNDLE

From now on we will devoted ourselves to particularize this definition to a very specific
principal bundle, the so called affine frame bundle (see Definition 9 below), and to relate
the variational problem so obtained with Palatini gravity.

C.1. The affine general linear group and the affine frame bundle. We have the split-
ting short exact sequence

0 R
m A (m,R) GL (m,R) 1

α β

γ

where A (m,R) ⊂ GL (m+ 1,R) is the subgroup of matrices of the form

B :=

[
a ξ

0 1

]

where a ∈ GL (m,R) and ξ ∈ R
m; the maps in the sequence read

α (ξ) :=

[
1 ξ

0 1

]
, β

([
a ξ

0 1

])
:=

[
a 0

0 1

]
,

and

γ (a) :=

[
a 0

0 1

]
.

Because this short sequence splits, we can consider

A (m,R) = GL (m,R)⊕ R
m,

with the isomorphism of groups given by

GL (m,R)⊕ R
m → A (m,R) : (a, ξ) 7→ γ (a) + α (ξ) .

Now, let Am be the set R
m considered as an affine space; we can set an isomorphism

between A (m,R) and the set of affine maps

f : Am → Am;

in fact, given B = (a, ξ), the associated affine map reads

fB (z) := az+ ξ

for every z ∈ Am. Using the expression of an element (a, ξ) as a matrix, we have that

(a, ξ)
−1

=
(
a−1,−a−1ξ

)

and

(C.1) Ad(a,ξ) (b, ζ) = (Adab, aζ− (Adab)ξ)

for any (a, ξ) ∈ A (m,R) , (b, ζ) ∈ a (m,R).
In the same vein, let Ax (M) be the set TxM considered as an affine space, for every

x ∈ M. As it is well-known [KN63], the set of affine maps

u : Am → Ax (M)

for every x ∈ M has structure of A (m,R)-principal bundle; the action of an element
B ∈ A (m,R) is simply given by

u · B := u ◦ B.
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Definition 9 (Bundle of affine frames). The bundle of affine frames on M will be the set

AM :=
⋃

x∈M

{u : Am → Ax (M) affine} .

As it follows from the general theory of principal bundles, there exists a pair of principal
bundle morphisms associated to the homomorphisms β : A (m,R) → GL (m,R) and γ :

GL (m,R)→ A (m,R)

AM LM

M

β

γ

τ

For any G-principal bundle π : P → M, the affine bundle (C (P) , π,M) defined through
the diagram

J1π P

C (P) := J1π/G M

π10

pJ1π
G

π

π

is called the bundle of connections of the bundle P, and we can establish a canonical one-to-
one correspondence between its sections and principal connections on P. The correspon-
dence is given as follows: Any element j1xs ∈ J1π is a linear map

j1xs : TxM→ Ts(x)P

such that

Ts(x)π ◦ j1xs = idTxM,

and so a G-orbit
[
j1xs
]
G

can be interpreted as a linear map

[
j1xs
]
G
: TxM→ (TP/G)x .

Given u ∈ P, there exists a unique m-dimensional subspace Hu ⊂ TuP such that

[
j1xs
]
G
(TxM) = pTP

G (Hu) ;

the assignment u 7→ Hu is the connection associated to
[
j1xs
]
G

.
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Therefore we have the diagram

J1 (τ ◦ β) C (AM)

J1τ C (LM)

AM LM M

p
J1(τ◦β)

A(m,R)

j1β

(τ◦β)10

[j1β]

pJ1τ
GL(m,R)

τ10 τ

β τ

It is a theorem that any connection Γ : M → C (LM) gives rise to a unique connection
Γ̃ : M→ C (AM) such that if

ωLM ∈ Ω1 (LM, gl (m,R)) and ωAM ∈ Ω1 (AM, a (m,R))

are the corresponding connection forms, then

(C.2) γ∗ωAM = ωLM +ϕ,

where ϕ ∈ Ω1 (LM,Rm) is the canonical solder 1-form on LM.

C.2. The affine frame bundle as extension of the frame bundle. It remains to interpret
the affine frame bundle as the extension of the frame bundle using the group immersion
GL (m,R) ⊂ A (m,R).

Proposition 14. Let H = GL (m,R), G = A (m,R) and P = LM. Then

P ×H G ≃ AM.

Proof. Let us define the map

φ ([u, (h, v)]H) := a ∈ AM|x

if and only if x = τ (u) and

a : Rm → TxM : w 7→ (u ◦ h) (w) + u (v) .

Then, for any (h ′, v ′) ∈ A (m,R), we have that

φ ([u, (h, v)]H · (h ′, v ′)) = φ ([u, (h, v) (h ′, v ′)]H)

= φ ([u, (hh ′, hv ′ + v)]H)

= [w 7→ (u ◦ h ◦ h ′) (w) + u (hv ′ + v)]

= [w 7→ u (h (h ′w+ v ′)) + u (v)]

= φ ([u, (h, v)]H) ◦ (h ′, v ′) ,

proving that φ is a bundle map.
For every a ∈ AM|x, we have that

φ ([u, (e, v)]H) = a

if and only if v = a (0) and
u (w) = a (w) − a (0)
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for all w ∈ R
m; therefore, φ es an epimorphism of bundles.

Additionally, if [u1, (h1, v1)]H , [u2, (h2, v2)]H are such that

φ ([u1, (h1, v1)]H) = φ ([u2, (h2, v2)]H) ,

then
(u1 ◦ h1) (w) + u1 (v1) = (u2 ◦ h2) (w) + u2 (v2)

for all w ∈ R
m. With w = 0 it gives us that

(C.3) u1 (v1) = u2 (v2)

and so
u2 ◦ h2 = u1 ◦ h1 =⇒ u2 = u1 ◦ h1 ◦ h

−1
2 .

Thus, Equation (C.3) tells us that

v2 =
(
h2 ◦ h

−1
1

)
(v1)

and it means that

[u2, (h2, v2)]H =
[
u2 ◦ h1 ◦ h

−1
2 ,
(
h2,
(
h2 ◦ h

−1
1

)
(v1)

)]
H
= [u1, (h1, v1)]H .

Namely, φ is a monomorphism of bundles. �

C.3. Local expressions. We will use the constructions developed in Section A in order
to find coordinates for LM, AM and its jet bundles. The first thing to note is that the
frame bundle LM can be trivialized on every coordinate chart (U,φ) for M; namely, for
u ∈ τ−1 (U) there exists a collection (eαi (u)) of real numbers such that

u
(
c1, · · · , cm

)
= cieαi (u)

∂

∂xα
,

(
c1, · · · , cm

)
∈ R

m,

where φ = (xα) are the coordinate functions on φ (U) ⊂ R
m. It induces the coordinate

chart on τ−1 (U) given by

ΦU (u) := (xα (τ (u)) , eαi (u)) .

In the same vein, given u ∈ (τ ◦ β)−1
(U) ⊂ AM, we can find numbers (eαi (u) , vα (u))

such that

(C.4) u
(
c1, · · · , cm

)
=
[
cieαi (u) + vα (u)

] ∂

∂xα
,

(
c1, · · · , cm

)
∈ R

m;

it defines a coordinate chart on (τ ◦ β)−1
(U) through the formula

ΦU (u) := (xα (τ (β (u))) , eαi (u) , vα (u)) .

The map γ fits nicely with these coordinates; in fact, we have that

ΦU ◦ γ ◦Φ−1
U

(
xα, e

β
i

)
=
(
xα, e

β
i , 0
)
.

Let us consider now the action of an element (a,w) ∈ A (m,R) = GL (m,R) ⊕ R
m on

AM; because of the equation (C.4), we have that

[u · (a,w)]
(
c1, · · · , cm

)
= u

(
a1
j c

j +w1, · · · , am
j cj +wm

)

=
[(
ai
jc

j +wi
)
eαi (u) + vα (u)

] ∂

∂xα

=
[
cieαi (u) +

(
vα (u) + cieαi (u)

)] ∂

∂xα
,
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namely, (
xα, e

β
i , v

ρ
)
· (a,w) =

(
xα, ai

je
β
i , v

ρ + e
ρ
iw

i
)
.

We are ready to deal with connections on AM in a local fashion; according to the dis-
cussion carried out in Section A.1, the local version of a connection on AM is an a (m,R)-
valued 1-form, namely

ω̃U =
(
Γαγβdx

β ⊗ Eγ
α, σ

α
βdx

β ⊗ eα
)
.

Accordingly, it can be globalized through formula (A.4); first, recall that in this case we
have

gU

(
xi, eαi , v

β
)
=
(
eαi , v

β
)
,

and so
g∗

Uλ =
(
eαi , v

β
)−1 (

deαi , dv
β
)
=
(
eiαde

α
j , e

i
βdv

β
)
.

Additionally, the adjoint action formula (C.1) tells us that

Ad
(gU(xi,eα

i
,vβ))

−1ω̃U =
(
e
γ
i e

j
αΓ

α
γβdx

β ⊗ Ei
j, e

i
α

(
Γαγβv

γ + σα
β

)
dxβ ⊗ ei

)
,

so that
(C.5)

ω̃|
ΦU(xi,e

β
j
,vγ) =

(
ejα
(
deαi + e

γ
i Γ

α
γβdx

β
)
⊗ Ei

j, e
i
α

[
dvα +

(
Γαγβv

γ + σα
β

)
dxβ

]
⊗ ei

)
.

Coordinates ΦU and ΦU induce coordinates on J1τ and J1 (τ ◦ β) respectively, which will
be indicated as (

xα, e
β
i , e

β
iγ

)
and

(
xα, e

β
i , v

α, e
β
iγ, v

α
β

)
.

The A (m,R)-action lifts to J1 (τ ◦ β) as follows
(
xα, e

β
i , v

ρ, e
β
iγ, v

α
β

)
· (a,w) =

(
xα, ai

je
β
i , v

ρ + e
ρ
iw

i, ai
je

β
iγ, v

α
β + eαiβw

i
)
.

using the form of this action, we can consider the projection from J1 (τ ◦ β) to C (AM);
we have that

p
J1(τ◦β)

A(m,R)

(
xα, e

β
i , v

ρ, e
β
iγ, v

α
β

)
=
(
xi, ejγe

α
jβ, v

α
β − eiγe

α
iβv

γ
)
.

Let us now consider the canonical connection θJ1(τ◦β) on J1 (τ ◦ β); it results that the
contact structure is

T (τ ◦ β)10 − Txs ◦ T (τ ◦ β)1 =
(
de

β
i − e

β
iαdx

α
)
⊗

∂

∂e
β
i

+
(
dvβ − vβαdx

α
)
⊗

∂

∂vβ
,

and because the infinitesimal generators for the A (m,R)-action on AM are
(
Ej
i

)
AM

(
xα, eβi , v

γ
)
= eαi

∂

∂eαj
, (ei)AM

(
xα, eβi , v

γ
)
= eαi

∂

∂vα
,

we obtain that

(C.6) θJ1(τ◦β)

∣∣
(xα,e

β
i
,vρ,e

β
iγ

,vα
β)

= ejβ

(
deβi − eβiαdx

α
)
⊗ Ei

j + eiβ
(
dvβ − vβαdx

α
)
⊗ ei.
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